
Digital Signal Processors for real-time audio processing

Francisco J. Casajús-Quirós
(1) ETSI Telecomunicación-UPM, Ciudad Universitaria, 28040 Madrid, Spain

javier@gaps.ssr.upm.es

Abstract

We analyze the requirements for digital signal processors used in audio applications. Methods for

assessing the real computing power expected from them are presented. Proper requirements for a real-time

development platform are also described. Code development tools are also included. Finally a review of

common processors is done according to those criteria.

1 Introduction
Generation of digital audio effects by high-level

software, using off-line processing is fairly common.

This is necessarily so in those cases that require

strong interaction between the

musician/composer/technician and the programs that

generate the sound. Many complex effects need the

manual adjustment of several parameters, for which

purpose a clever operator with good knowledge of the

“meaning” of the sound is the only solution. The

result of such interaction is usually unique and deeply

ingrained in the “art” of sound.

On the other hand there is a growing body of

techniques for audio processing that require no

interaction whatsoever with the composer, whereas

they do allow a very interesting dialogue with the

performer. From filtering, through reverberation to

real-time harmonisation; a lot of those techniques can

be used in real time. As available computing power

(per unit cost) increases, more automatic intelligence

can be put into those algorithms, thus enlarging the

range of what can be done in real-time.

Afterwards we will have gone round the circle. Real-

time implementations allow an enormous degree of

interaction. The result of changing parameter settings

can be heard immediately, in a time-varying fashion if

you want. Testing on a wide variety of sounds is easy

and convenient. In this way real-time processing

becomes a composer tool again.

This paper is addressed to those first considering the

possibility (or the need) of implementing sound

processing algorithms in real-time. The process might

not be easy in certain cases, but after 15 years of

general-purpose digital signal processors, a lot can be

done by most people with a little effort.

In the following sections a few basic questions are

given some kind of answer. Section 2 analyses what

kind of DSPs are adequate for audio processing. In

section 3 some guidelines concerning the processing

speed of processors are be used to show what be be

expected in from them in terms of performance.

Section 4 describes the external interfaces that are

most likely to be used in audio applications. Software

tools that can be used in order to generate and debug

code are found in section 5. In order to save effort, it

is advisable to use a commercial board that

incorporates a DSP plus memory and useful

peripherals, so that no additional hardware is needed.

The elements of boards typically used for audio

processing are described in section 6.

2 Wordlength
Of the plethora of DSPs that can be found in the

market, only a few can be actually used for audio

processing. For many audio applications 16 bit

quantization of the input sound is used. This is also

the minimal wordlength used nowadays, 8-bit and 12-

bit wordlengths being intended for voice systems.

However DSPs with 16-bit wordlength should not be

used for high-quality audio processing. The reason is

well known: the product of two 16-bit numbers has 32

bits. Since this length cannot be handled by the

processor, usually the 16 most significant bits are

kept, after rounding the least significant of them. Of

course this means that we have introduced some error

(or rounding noise) in the resulting number. The error

is certainly very small (for large numbers), but it

accumulates along the processing chain. For a 16-bit

input sample, in a 16-bit processor, every

multiplication with rounding introduces an error, the

power of which equals the quantization noise of the

analog-to-digital converter.Thus rounding noise can

easily become audible.

The problem can be of course alleviated if we keep

24-bit out of the 32-bit product. In this case the

rounding error will affect digits that are 8 places to

the right of the least significant bit of the input

sample. Rounding noise power resulting from one

multiplication is 256 weaker than quantization noise.

This means that 256 multiplicative processing stages

can be performed before rounding noise has a chance

of being heard.

That is the reason why processors like NEC’s 77229

or Motorola’s DSP56002/DSP56300/DSP56600

feature 24-bit wordlengths.

Figure 1 illustrates this in a particular case. We have

taken 10 bits as the wordlength of the analog-to-

digital converter for simplicity. The example shows

that 5 extra bits for calculations are welcome.

10 bit fixed point arithmetic

sign bit 0 1 1 1 1 1 1 1 1 1 x

9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 y

9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 x*y

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 to be stored to be rounded

0 1 0 0 0 0 0 0 0 0 z

9 8 7 6 5 4 3 2 1 0

15 bit fixed point arithmetic

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 x

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 y

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x*y

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 z

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1: Rounding error for 10-bit samples. If binary point is assumed to be

after the sign bit then x=1-2
-9

= 0.998046875, y=1/2 and z=0.4990234375

(with infinite precision).

For 10 bit arithmetic the number that gets stored is

z=0.498046875 (without rounding)

z=0.5 (with rounding)

For 15 bit arithmetic the exact result gets stored.

So far we have been only considering fixed-point

processors. Another possibility is the use of floating

point processors. Practically all of then have 32-bit

wordlength with 24-bit mantissas and 8-bit exponents.

Since the length of the mantissa is the number of

digits that are retained after rounding (or truncation),

it is the 24 bits of the mantissa that set a lower bound

to rounding noise, equivalent then to 24-bit fixed

point arithmetic. The exponent only keeps track on

the binary point, it has two beneficial effects: it can

handle samples with 24-bit resolution within much

wider set of values than fixed point arithmetic;

moreover: whereas rounding noise power is fixed for

fixed-point arithmetic (no matter the size of signal

samples), it is also fixed but relative to the size of the

samples for floating point arithmetic. Floating-point

arithmetic is also much easier for the programmer,

who usually forgets about problems of normalization.

Therefore the use of 32-bit floating point devices like

Analog Devices’ ADSP-2106x (SHARC), Texas

Instruments’ TMS320C3x/TMS320C67x or

Motorola’s DSP96002 is almost always

advantageous. However we will show in the next

section that, being in general slower than their fixed-

point counterparts, they are by no means the selection

of choice for audio processing.

In the foregoing paragraphs 16-bit signals have been

assumed. With 20-bit and 24-bit signals becoming

more popular, 32-bit mantissas (or fixed-point

wordlengths) will be necessary. Indeed 32-bit

arithmetic can be handled by the above processors, in

the same way that 16-bit fixed-point processors can

deal with 32-bit floating point arithmetic: through

emulation. Unfortunately this means that

multiplications are not carried out by single multiply

instructions but as sequences of elementary

instructions. Therefore the equivalent computational

capacity of the processor drops rapidly.

3 Speed
In this section we describe how the computing power

of a particular processor can be estimated, either from

data provided by the manufacturer, or conducting

some simple tests. This must be done in order to

assess what is in principle possible for a given

processor, and what is definitely out of its

capabilities.

It is also important not to overestimate the computing

power required by an audio processing application.

Although one should in principle use the best

processor available, it might be unnecessarily

expensive. One should bear in mind that the prices of

DSP boards one single user is likely to need, range

two orders of magnitude.

Not less important is the fact that selection of the very

newest processor might be a source of trouble until its

development environment becomes mature (and free

of most bugs).

3.1 MIPS, MOPS, MFLOPS

Table I shows as an example the performance of a

few processors as indicated by the manufacturer,

taken from readily available datasheets. The

instruction cycle has also been included in the table.

Those processors will be used as an example

throughout the article because they are most likely to

be used in the future for audio applications [1, 2, 3].

Processor Performance Instruction

Cycle (nsec)

Analog Devices

ADSP-21065

60 MIPS,

180 MFLOPS,

180 MOPS

17

Motorola

DSP56302

100 MIPS 10

Texas Instruments

TMS320C67

1336 MIPS,

334 MMACS

6

These figures are somewhat ambiguous. For instance

the ADSP-21065 is said to perform 60 million

instructions per second (MIPS), which is consistent

with an instruction cycle of 17 nsec. However since

some instructions perform three floating point

operations simultaneously (e.g. multiply and add), the

processor has a peak computing power of 180 million

floating point operations per second (MFLOPS), but

in practice this means 60 million multiply-accumulate

per second (MMACS). The DSP56302 carries out

100 MIPS that also can be interpreted as MMACS, so

no ambiguity results, and the DSP (which uses fixed

point arithmetic) is consistently faster than the ADSP-

21065, which is floating-point and more or less of the

same generation.

The TMS320C67 features a novel architecture in

what DSPs are concerned. It has 8 processing units

capable of working in parallel. This includes the

capability of performing two multiplications and two

additions in the same instruction cycle. But the figure

of 1336 MIPS must be read carefully. There are 167

million instruction cycles per second. If all 8 units

work in those cycles, one obtains 1336 MIPS, but

with only 2 multiply-adds per instruction cycle which

gives a peak performance of 334 MMACS.

It seems that when one must compare performance,

one should use the instruction cycle as a gross

indicator, or better still the MMACS figure, although

this one might not be obvious from the

manufacturer’s documentation. Since all processors

seem able to carry out at least a multiply-add in one

instruction cycle, the MMACS figure can be obtained

by taking the reciprocal of the instruction cycle, and

multiplying by the number of multipliers-

accumulators in the CPU, should there be more than

one (this only happens in the case of the

TMS320C67, that has 2 arithmetic units).

3.2 Parallelism

It has been mentioned that the TMS320C67 has 8

processing units working in parallel. They are not all

equivalent: there are two multipliers, two shifters, two

addressing units, etc. It is clear that there will be one

instruction being executed at every instruction cycle.

Not every program however will be capable of

sequencing its operations so as to use all 8 units for a

useful purpose at each and all instruction cycles. This

means that the full figure of 1336 MIPS will be

attained only by certain programs.

Of course this is a fact (not a weakness) inherent in all

systems with parallel processing. When computing

power from one processor is not enough, one can

always try to use multiple processors working in

parallel. Analog Devices’ ADSP-21065 offers

glueless parallel processing with two processors and

can be enlarged to many more. TI’s TMS320C67 is

already a parallel one. It is not our purpose to go into

the depths of parallel systems, which require very

special operating systems and compilers, but

remember that not all algorithms are amenable to

processing in parallel and that final performance will

in general be far from the performance of one

processor times the number of processors.

3.3 Test code

The performance of a processor in MMACS is just a

rough indicator of its suitability for a specific

application, because it only takes into account

multiply-add operations. However computation

intensive an algorithm might be, addressing is often as

big issue with DSPs as crude computation. After all

DSPs have extremely good hardware multipliers

accumulators, for them multiplying two numbers is as

complex as loading them into registers. That is one of

the reasons why more or less utilized benchmarks

have been developed. The following are fairly

common and well documented for almost all

processors:

FIR filter: all processors can one way or another

process 1 filter tap per instruction cycle.

IIR filter: addressing is somewhat more involved,

usually 4 instruction cycles per biquad section

1024-point complex FFT: addressing very

complicated, implementations vary considerably,

some processors have addressing units that generate

FFT addresses by hardware. As a rule of thumb,

addressing can increase execution times by a factor 3

to 6 times the time required by arithmetic operations

alone.

Divide: for floating point processors does not have

special difficulties. Addressing is minimal,

computations are merely multiplies in a Newton

iteration with an initial value easily generated. 6

instruction cycles are usually enough.

For fixed point processors division is difficult in

general due to the possibility of unbounded results. A

lot of effort is spent in controlling arithmetic. Most

reported implementations are special cases that can be

solved in 24 instruction cycles, for 24-bit wordlength.

These benchmarks have been chosen among other

reasons because they are by far the most common

operations in digital signal processing. However

implementation difficulties resulting from

underestimation of the computing power required, are

all too common. There are as many cases as

implementations. However we will try in the

following to present a few examples that illustrate

some particular problems that arise frequently.

The multiply-add-shift loop

This loop is by far the most common operation in

DSP, because it implements a Finite Impulse

Response (FIR) filter, the output of which is

calculated as

y(n) = bkx(n − k)
k = 0

N −1

∑

Normally output samples are calculated one at a time,

so there is no need of storage for more than the latest.

However some memory buffer must be provided in

order to store past samples of the input. This buffer

must be updated whenever a new input sample

arrives. This can be done by means of circular

buffering and pointers, but the most common solution

is to shift values to the next position in the buffer.

C-like pseudocode for this operation should be

something like:

/* FIR filter with N taps */

real b[N] // Filter coefficients
z[N] // Filter memory
aa // Accumulator
x // Input sample
y // Output sample

while(1)
{

x = receive_input_sample();
aa = b[N-1]*z[N-1];
for (n=N-2; n>=0; n--)
{

aa = aa + b[n]*z[n];
// Multiply-accumulate

z[n+1] = z[n];
// Update memory
}
z[0] = x;
y = aa;
send_output_sample(y);

}

Practically any DSP should be able to carry out the

for loop in one cycle per iteration, with some

restrictions. This means a multiply-add operation plus

a data move in memory. Therefore the overhead that

the loop control instructions create can be very

significant. It logically implies that DSP

manufacturers include special hardware features so as

to be able to perform zero-overhead loops. They

might be required to be executed in an internal cache

memory, or using exotic forms of addressing.

Processor architectures are optimized towards this

purpose, so that the programming of multiply-add-

shift loops that are maximally efficient should be

almost inmediate.

The maximum search routine

The need to find the maximum value of a data table

does not appear particularly often in DSP algorithms.

It does appear however and also illustrates a typical

weakness of DSP processor.

Pseudocode for this operation would look like:

/* Find maximum value of L words */

real x[L] // Input vector
xmax // Maximum value

int n // Loop counter
nmax // Index of max. value

xmax = x[0];
nmax = 0;
for (n=1; n<L; n++)

if(x[n] > xmax)
{

xmax=x[n];
// Update maximum value
nmax=n;
// Update index

}

Most processors can handle zero-overhead loops, they

are not restricted to multiply-add loops. However

when the group of instructions within the loop

includes a condition, regularity is often broken.

Although the foregoing algorithm is conceptually

simple and does not require any arithmetic operations,

DSP processors can be very inefficient when

implementing it. Or, at least, efficiency is far worse

than in the case of multiply-add loops.

FFT butterfly

The possibility of signal processing in the frequency

domain is a key fact of DSP. Nowadays it is practical

only because fast algorithms exist for the computation

of Discrete Fourier Transforms. These algorithms are

known generically as FFT algorithms. They are used

very frequently and, as mentioned above, are a typical

benchmark for DSP performance. Here we will use

them to illustrate another fact of DSP programming.

So far our examples have used sequential addressing

of vectors, which any processor can handle efficiently

by means of autoincrement registers or something

similar. But for FFT calculations (and many other

DSP algorithms) addressing is quite an issue. Let us

examine the basic equation of an FFT butterfly [4]:

x
m

(p) = x
m−1

(p) + w(r)x
m−1

(q)

x
m

(q) = x
m−1

(p) − w(r)x
m−1

(q)

In general the multiplications and the additions are

complex. For our purposes we will ignore this fact in

order to concentrate on the addressing problem. Index

m indicates the FFT stage, for a given value of it,

pseudocode implementing the above computation

would be as follows:

for(n=0;n<Number_of_butterflies;n++)

{
p = get_next_p(m);
q = get_next_q(m,p);
r = get_next_r(m,p);
aa0 = x[p]+ w[r]*x[q];
aa1 = x[p]-w[r]*x[q];
x[p] = aa0;
x[q] = aa1;

}

Addressing vector x is done in a non linear fashion

known as bit reversal addressing. It can be solved in a

variety of ways, but it can be as important as

arithmetic operations. Remark also that we use two

values of the vector in order to calculate those very

same values, which requires intermediate variables

for temporary storage. Lastly observe than the same

product is used in two different additions. Some

processors provide means in order to avoid two

calculations of the same product or intermediate

storage of its value, which would result in additional

addressing overloading of the loop.

Block floating point operation

For fixed point processors the dynamic range of

internal variables can be a serious concern. The above

example of the FFT butterfly could be modified in

order to show how such problems are dealt with in

practice. For that purpose assume that all variables in

the FFT butterfly are fixed-point. They also share a

variable exponent for all of them. This notation is

known as block floating point. To use it efficiently the

processor must provide some means to normalize

variables so that the exponent for a block of data can

be found easily. If this is done somehow large

dynamic ranges, that would result in overflow for

fixed point arithmetic, can be coped with as the

following pseudocode for the FFT butterfly shows:

for(n=0;n<Number_of_butterflies;n++)

{
p = get_next_p(m);
q = get_next_q(m,p);
r = get_next_r(m,p);
aa0 = x[p]+ w[r]*x[q];
aa1 = x[p]-w[r]*x[q];
if (aa0 or aa1 overflow)
{

divide all values of x by 2;
recalculate aa0 and aa1;
increase block exponent by 1;

}
x[p] = aa0;
x[q] = aa1;

}

The additional code breaks the regularity of the loop

by introducing a complex condition. If the condition

is met the amount of additional computation and

addressing is not negligible. It should then be obvious

that block floating point and other fancy notations can

be extremely inefficient, unless special hardware

resources are available.

4 External interface
The external interface of a DSP processor can be

fairly complex. In what follows we will highlight only

those elements that are likely to interest the effects

developer. For instance many processors allow the

use of different kinds of memory: fast, slow, SRAM,

DRAM, ROM, EPROM, etc. Interfaces for test and

emulation like JTAG are also available. They are very

important when the time for a selfcontained

implementation arrives, but not at the algorithmic

implementation stage. Implementation is best done in

development boards that already contain all the

elements that are likely to be used by the developer.

Of interest to the latter are some forms of interface

which can be specially useful.

DMA

Direct Memory Access allows external devices to

access the memory without intervention of the control

unit. In practice this means that the programmer needs

not concern him/herself with the control of the

external device. Instead a simple check of the

presence of the expected data is enough. For this

purpose the processor uses a special-purpose

controller with some external pins that must be used

by the external device. But once the hardware is set

up, interaction with the main program is minimal.

Parallel and serial ports

By parallel ports we understand that the processor has

some dedicated pins that allow the transfer of data to

or from external devices, more than one bit at a time.

Data transfers can be fast, but the programmer must

hold control over every single one. For some

applications this is exactly what is needed, for

instance, when commands or parameters settings are

sent to the processor.

Serial ports have more or less the same functionality

but minimise the number of external pins, because

transfer are done through a single serial pin, plus

possibly a couple of control pins.

Multiprocessor support

Analysis of the computational needs of some effect

leads sometimes to the conclusion that only several

processors working in parallel can provide the

necessary computing power. The implementation is

almost always far from trivial. Under the

circumstances it is very useful to utilize processors

that provide support for parallel processing.

Parallel processing among several processors usually

implies the transfer of large amounts of data or, at

least, control information. This is usually done by

means of ports (serial or parallel) because the

programmer must often hold complete control over

the amount and timing of data transfers.

5 DSP boards
Most audio effects implementation for real time can

be done on general purpose development boards. All

manufacturers also provide these boards. Besides that

third parties also produce those kind of boards usually

with more sophisticated hardware, that is to say with

more peripherals and capabilities of interaction with

the external world. In what follows we will list the

very few requirements that the effects developer is

likely to appreciate. See figure 2.

ADC and DAC

Obviously no audio processing is possible without

analog audio input/output capabilities. Most boards,

even the cheapest ones, have a stereo 16-bit audio

codec, preferably using DMA channels or serial ports.

The manufacturer usually provides examples of

input/output routines in order to ease the use of the

analog interface.

Some boards allow only a limited number of sampling

frequencies. In others an oscillator must be physically

changed in order to alter the sampling frequency.

Serial interfaces: MIDI, AES/EBU, MADI

For musical applications the developer often needs to

receive, transmit or manipulate musical data in MIDI

format. All processors can in principle handle the

format via a serial or parallel port. Electrical

compatibility will usually require some electronics

external to the processor chip. Some third party

manufacturers provide this.

As a limited example considerer that for a PC board it

is difficult to keep the analog noise level below the

level of the least significant bit of a 16-bit ADC. The

problem is much worse for higher resolutions.

Therefore external, high quality, professional

conversion systems can be much better that onboard

converters. But some form of digital interface must be

provided in order to access the data. Serial ports can

be enhanced with drivers, TAXI chips, etc. in order to

communicate with external systems via standard

interfaces like AES/EBU, SPDIF, MADI, etc.

Propietary interfaces for some systems already exist.

However they usually communicate with a board of

the same company where the DSP processor cannot

be chosen, if it can programmed at all by the user.

Host interface

Development boards are hosted usually by a personal

computer using a PCI slot (more expensive solutions

for other buses like VME also exist). The host is used

of course to download programs to the DSP. Control

of the execution, debugging and so on is also carried

via the host. In principle such tasks can be

accomplished by using the serial port of the PC. For

audio effects applications the developer will usually

like to interact with the processing in real time. This

means that some parameters are changed. The result

is listened to even as those changes occur. Changes

are very often done by means of the PC user interface.

A fast interface with the PC plus some support (in the

form of routines) from the board manufacturer are

essential.

In this sense the board shoud be apt to accessed by a

user program running on the PC. This opens the

possibility of communicating other PC boards via

user programs. For instance, data from/to MIDI

input/output boards can be passed to/from the DSP

board via the PC and so on.

 DSP processor Host Computer

 Memory

 ADC and DAC

 MIDI Interface

 AES/EBU,

SPDIFInterface

User Interface

Control of audio

processing

Development board

Figure 2: Typical structure of a DSP system for audio processing

6 Code development
A final word about the tools that are used to create

and test the program that generates the effect on the

DSP processor. All manufacturers provide the

following tools for their processor. They are software

tools that run in principle with no processor board at

all.

Compiler

C compilers can be very useful in order to create a

first working version of the processor code. They are

practical for floating point processors. Less so for

fixed point processor because fixed-point arithmetic

is somewhat involved, many times full control of

arithmetic problems is only possible with low level

programming.

On the whole the main drawback of C compilers is

they produce code that is not very efficient. If the

computing power available is big, this is no problem

at all. When the programmer is using the processor at

the utmost speed, low-level programming can be

advisable. In any case the C code must be written

after the style guidelines of the manufacturer in order

to produce compilable, efficient code.

Optimizer

Some manufacturers include an optimizer as a

separate program. It can sometimes greatly improve

the performance of an assembly or C program.

Sometimes optimizers crash hopelessly

Assembler/Linker

Assembler/linkers are essential in order to produce

the file that is finally loaded in the board memory.

They take their input in assembly language. Some

programmers never use other thing. For the nonexpert

its direct use is necessary for development of

computation intensive applications.

Simulator/Debugger

Once the program has been produced it is necessary

to check its correct performance. Simulator/debugger

programs allow the execution of the program as

though it were running on a real processor. Simulated

registers, memory, etc. can be examined. They do not

require a real processor to be present and can provide

useful statistics such as execution times. Interfacing to

test signals contained on disk files is also greatly

simplified.

Some of them also allow the possibility of using a real

processor on an evaluation board in order to execute

the program. The debug interface remains the same.

There is also the possibility of accessing real

peripherals such as MIDI or ADCs. But bear in mind

that, as soon as they use a board, they are hardware

dependent and must be provided by the board

manufacturer.

7 Conclusions
A comparison of the three processors mentioned in

section 3.1 was intended at this point. Due to

difficulties in the availability of some of them it has

been impossible to carry out the test in time. The

results will be presented at the conference.

References
[1] Analog Devices. 1998. "Datasheet of ADSP-

21065".

[2] Motorola. 1998. . "Datasheet of DSP56302".

[3] Texas Instruments. 1998. . "Datasheet of

TMS320C67"..

[4] Oppenheim, A, and Schafer, R. 1989. Discrete-

time signal processing, Prentice-Hall.

