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ABSTRACT

This paper presents a simple and easy way to obtain good
estimates of the frequencies of spectral peaks in voiced
sounds. The instantaneous frequency throughout the
spectrum is calculated using an analytically derived
window. Peaks are detected by examining the difference
between the frequencies of spectral lines and their
corresponding instantaneous frequencies. The instantaneous
frequencies near peaks are used as estimates of their actual
frequencies. The corresponding amplitude values are
calculated from the Gabor transform at the estimated
frequencies.
The performance of the estimation of the frequencies using
analytically derived windows has been verified using
synthetic signals and musical sounds. This method gives a
better estimate of the instantaneous frequency than
commonly used methods and the resynthesis of sound from
the additive parameters gives good results.

1. INTRODUCTION

This work presents a method of finding and estimating the
frequencies and amplitudes of the sinusoidal components of
musical signal, so called additive analysis. In additive
analysis, frequencies are generally estimated by
interpolating peaks [1], or by time difference. In this work,
the frequencies are found by calculating the time derivative
of the phase in one sample. This method gives numerically
more stable results, while keeping the same order of
complexity as commonly used methods.
The results obtained here are part of ongoing research [2],
[3], in time-frequency analysis, and particularly the
methods presented in [4].
This paper first presents the signal model used, then the
instantaneous frequency calculation using analytically
derived windows is presented. Some results and numerical
comparisons with peak interpolation and time difference are
presented, and finally there is a conclusion.

2. SIGNAL MODEL

The model of the sounds analyzed in this paper is
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where ak and fk are the time-varying amplitudes and
frequencies of N partials. The equation (1) is both an
analysis and a synthesis model.
The sound is thus the sum of a number of sinusoidals with
time-varying amplitude and frequency. The problem stated
is the estimation of the ak and fk of the sinusoidals.

3. ANALYTIC FREQUENCY CALCULATION

In order to calculate the instantaneous frequency over the
time-frequency plane we define the continuous Gabor
transform Gw as follows [4], [5],
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- where s is the signal to be analyzed, w is a windowing
function, t means time, f means frequency, <Æ,Æ>  denotes
the inner product, and the so-called Gabor functions g t,f are
defined by
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In the following formulas s is omitted for clarity. Gw is a
complex-valued function. It thus defines a non-negative real
amplitude function Aw and a real phase function ϕw over the
time-frequency plane (at time-frequency coordinates where
Aw(t,f) ≠ 0):
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Gw is a phase modulated variant of the short-time Fourier
transform STFTw [6],
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This phase modulation gives the Gabor transform the
following desirable property: Given a fixed frequency that
is high enough to make the Gabor function effectively
analytic (i.e. without negative frequencies), the Gabor
transform will filter an analytic signal from the original
signal using the filtering properties of the Gabor function.
For time-frequency coordinates (t,f) where the frequency
meets the above requirement we define the instantaneous
frequency fi by
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Applying the logarithm to (4) and differentiating leads to
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By combining (2), (6), and (7)  we obtain
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- where w’ is the derivative of w.
From (8) we can calculate the instantaneous frequency fi

without using numerical differentiation. A natural
utilization of this formula is when extracting additive
components from multicomponent signals according to (1).
Such components generate ridges in the spectrogram, as far
as the analyzing window is able to separate them. It can be
shown that on ridges the instantaneous frequency is equal
to the frequency of the ridge [4]. Furthermore, in the
neighborhood of a ridge the instantaneous frequency is
greatly influenced by the ridge. It is therefore possible to
obtain a good estimate of the frequency of the ridge from
the instantaneous frequency in its neighborhood. By
restricting the Gabor transform to a fixed time we can use
the instantaneous frequency to estimate the frequency of
spectral peaks.
It should be noted that this method can be applied to all
differentiable windowing functions, including frequency
modulated analytic windows (chirps).
Figure 1 shows the estimated frequencies of the spectral
peaks of a frequency detail from a soprano voice. The
horizontal steps of the lower subplot indicate frequency
ranges where the instantaneous frequency is governed by the
spectral peaks. The horizontal crossings with the diagonal
line determine the frequency estimation of the peaks.
Because of the constant instantaneous frequency in the
vicinity of the spectral peaks, the frequency estimation can
be calculated with small error, from a single frequency line,
as long as the analysis frequency is close. Interpolation
algorithms can nonetheless easily be adapted, as well as
iterative search algorithms [4].
Linear interpolation has been used in figure 1, whereas no
interpolation has been used in the analytic derivation
method in the experiments in the next section.
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Figure 1. Top: Section of power spectrum of a soprano
voice. Bottom: fi vs. analysis frequency. The diagonal
line is where the instantaneous frequency equals the
analysis frequency. In both plots the vertical lines
show the estimated frequencies of the spectral peaks.

4. EXPERIMENTS

In order to test the accuracy of the frequency estimation of
the partials of a signal according to (1), three test signals
have been constructed. All three signals have eight
harmonic partials, each having the same amplitude
envelope; zero for 1/8th of a second, then a linear slope from
1800 to 600 for 3/4th of a second, and finally silence for
1/8th of a second. The fundamental frequencies of the three
test signals are 30, 100 and 300 Hz. Each test signal has
been analyzed using three different methods: peak-
interpolation using gauss interpolation, analytic derivation,
and time difference of the phase of two STFTwÕs one sample
apart. All methods use the hanning window, and the
window length is 2.8 times the period of the signal. This
window length has been found in this work to be the
shortest possible with adequate frequency separation of
harmonic signals, although [7] uses a window length of 2.5
times the period. The sampling rate is 32000 Hz. All three
methods use the same analysis frequencies to determine the
frequency and amplitude at each time step. These analysis
frequencies are the harmonic components with the
fundamental frequency determined algorithmically using an
autocorrelation-based pitch tracker [8]. The analysis
frequencies are generally worse than the estimated
frequencies of all three methods.
The resulting amplitude and frequency tracks can be seen in
figure 2 for the fundamental of the 300 Hz test signal. The
peak-interpolation results are shown top/left, the analytic
derivation results are shown in the middle and the time
difference results are shown bottom/right. The time and
frequency axes have been shifted in order to improve
visibility.
The peak interpolation and time difference methods both
determine the amplitude as the maximum of the gauss
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interpolation, whereas the analytic derivation method uses
the absolute value of the Gabor transform at the estimated
frequency.
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Figure 2. Amplitude estimation (top) and frequency
deviation (bottom) of the fundamental of a 300 Hz test
signal. Peak interpolation (left/top), analytic
derivation (middle) and time difference (right/bottom).

The mean errors for the eight partials are shown in figure 3
for the amplitude in dB (top) and the frequency in cents
(bottom). The peak interpolation errors are shown left, the
analytic derivation errors are shown middle and the time
difference errors are shown right.
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Figure 3. Amplitude error in dB (top) and frequency
error in cents (bottom) for peak interpolation (left),
analytic derivation (middle) and time difference
(right).

The analytic derivation results are clearly better than the
peak interpolation and the time difference results. The
amplitude estimations are identical for the peak
interpolation and the time difference analysis. The time
resolution is slightly better for the analytic derivation

analysis than for the other analysis methods, and it is in the
order of two thirds of the period of the fundamental.
Informal listening tests have been performed on a large
number of sounds from many instruments, including the
piano and the flute. The result of these listening tests are
that the sounds analyzed with the peak-interpolation and the
time difference methods generally have comparable quality,
whereas the sounds analyzed with the analytic derivation
method have equal or superior quality. The increase in
quality is especially noticeable on high-pitched sounds.

5.  CONCLUSIONS

This paper has presented the estimation of frequencies of
voiced sounds using analytic derivation. A formula for
calculating instantaneous frequencies is derived and it is
shown how the instantaneous frequencies can be used to
find spectral peaks. Experiments are presented that evaluate
the accuracy of the frequency estimation as compared to two
commonly used methods: peak interpolation and time
difference. The results of these experiments confirm that
frequency estimation using analytic derivation is
significantly better than the reference methods.
The analytic method is being used by the authors in
ongoing research regarding the separation of additive
components of musical sounds. The superiority of the
method is particularly pronounced when analyzing difficult
signals.
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