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ABSTRACT

In many high-level signal processing tasks, such as pitch
shifting, voice conversion or sound synthesis, accurate spec-
tral processing is required. Here, the use of Radial Basis
Function Networks (RBFN) is proposed for the modeling of
the spectral changes (orconversions) related to the control
of important sound parameters, such as pitch or intensity.
The identification of such conversion functions is based on
a procedure which learns the shape of the conversion from
few couples of target spectra from a data set. The general-
ization properties of RBFNs provides for interpolation with
respect to the pitch range. In the construction of the train-
ing set, mel-cepstral encoding of the spectrum is used to
catch the perceptually most relevant spectral changes. The
RBFN conversion functions introduced are characterized by
a perceptually-based fast training procedure, desirable inter-
polation properties and computational efficiency.

1. INTRODUCTION
In the field of speech and audio processing a large number of
applications have been proposed up to the present which are
based on the sinusoidal representation of the signal. Time
and pitch scaling have been widely explored, especially in
the speech processing field, and the problem of correctly
reproduce the spectral characteristics has been stressed [1].
Recently a new spectral processing approach has been pro-
posed by Stylianou et al. [2], where a conversion function
was build from training samples and was used to convert the
spectral features of a first speaker in the spectral features of
a second speaker who uttered the same sentence.

Among the applications related to music, expressive-
ness processing of musical performance and sound synthe-
sis have recently gained an increasing interest. In [3, 4] the
problem of controlling the high-level musical attributes of
a recorded performance by means of expressiveness mod-
els and suitable sound processing techniques is faced. In
the work by Horner and Beauchamp [5], additive synthesis
based onSTFT analysis are used as the engine for sound
generation purposes, and a dynamic filter is used to gain re-
alistic results with respect to pitch and intensity variations.
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All the reported applications realizes high-level trans-
formations by combination of simpler effects like time scal-
ing, pitch shifting, amplitude envelope scaling, spectral pro-
cessing. This work focuses on the spectral processing item,
and proposes a new frequency-domain filtering model suit-
able for the sinusoidal representation of sound. The iden-
tification of the model parameters relies on a learning pro-
cedure based on collections of real data which represents,
for example, a given musical instrument. The method is
proven to be useful in preserving the spectral characteris-
tics of sounds processed by transformations such as pitch
shifting or intensity scaling.

2. SOUND ANALYSIS AND RESYNTHESIS
FRAMEWORK

The investigation relies on the well known sinusoidal model
of the signal (SMS) [6]. The analysis algorithm acts on
windowed portions (here calledframes) of the signal, and
produces a time-varying representation as sum of sinusoids
(here calledpartials). Assuming that the number of partials
H is constant for all frames, for theith frame the result of
the sinusoidal modeling is a set of triples(fh(i); ah(i); �h(i))
(h = 1; : : : ; H) of frequency, magnitude and phase parame-
ters describing each partial, and a residual noise component
that will not be considered in this work. H is taken suf-
ficiently high to provide the maximum needed bandwidth,
and zero magnitude is assigned to the exceeding partials for
the spectra with lower bandwidth.

The sinusoidal representation allows to control some of
the basic sound parameters, such as pitch and intensity, by
simply shifting or scaling the frequency and magnitue of
the partials. However, without an accurate spectral com-
pensation which reflects the sound characteristics, the result
of a transformation performed with a constant magnitude
scaling is an unrealistic sound. The proposed spectral pro-
cessing method relies on learning from real data the spectral
transformations which occurs when such a musical parame-
ter changes. With this perspective, a perceptually weighted
representation of spectral envelopes is introduced in the next
section, so that the perceptually relevant differences are ex-
ploited in the comparison of spectral envelopes.
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2.1. Representation of spectral envelopes

To move from the original sinusoidal description to a per-
ceptual domain, the original spectral envelope is turned to
themel-cepstrumspectral representation, by application of
the regularized discrete cepstrum method [2]: for a given si-
nusoidal parametrization, the magnitudesfahg (h = 1:::H)
of the partials are expressed in the log domain and the fre-
quenciesffhg (h = 1:::H) in Hz are converted to Mel fre-
quenciesf�hgwith the formula� = mel(f) � 1127 log(1+
f=700). The real mel-cepstrum parametersmi (i = 0; :::;M )
are finally computed by minimizing the following least squares
(LS) criterion

HX
h=1

(jC(�h)j � 20 log10(ah))
2 (1)

with

jC(�)j = m0 + 2

MX
i=1

mi cos(
��i

2BH

) (2)

whereM is the number of cepstral coefficients,m0 is the
frame energy, andBH = minfmel(fH);mel(Fs=2)g with
Fs being the sampling frequency. The normalization factor
BH ensures that the upper limit of the band corresponds to a
value of 1 on the normalized warped frequency axis.jC(�)j,
the new warped and smoothed version of the spectral enve-
lope, is more reliable to catch the perceptually meaning-
ful differences among spectra of different sounds. Figure 1
shows the smoothed and warped spectral envelope for a sax-
ophone tone. The aim of this transformation is to find the
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Figure 1: Sustain average spectral envelope of a saxophone
note (upper figure), and frequency warped mel-cepstrum en-
velope (lower figure)

perceptually relevant deviations by comparing the smoothed
and warped versions of different spectral envelopes. We

call now ch = jC(�h)j = jC(mel(fh))j the hth partial
magnitude (in dB) of the mel-cepstrum spectral envelope,
and�C = f�Chg (h = 1; : : : ; H), with �Ch = (c

(2)
h �

c
(1)
h ), the difference between two mel-cepstrum spectral en-

velopes. By comparison of two different spectral envelopes
is possible to express the deviation of each partial in the
multiplicative form rh = 10 exp[�Ch=20], and we call
conversion patternthe setfrhg (h = 1; � � � ; H) generated
by the comparison of two spectral envelope.

2.2. Spectral conversion functions

In this section, the parametric model for the conversion func-
tions is presented as well as the parameter identification
principles. The conversion is expressed in terms of devi-
ations of magnitudes, normalized with respect to the frame
energym0, from the normalized magnitudes of a reference
spectral envelope. The reference spectral envelope can be
taken from one of the tones in the data set. If the tone in
the data set are notes with a classical attack-sustain-release
structure, we will always consider the sustain average spec-
tral envelopes, where the average is generally taken on a suf-
ficient number of frames of the sustained part of the tones.
Once the spectrum conversion function has been identified,
the reference tone can be seen as a source for the synthe-
sis of tones with different pitch or intensity, and correct
spectral behaviour. Moreover, we are interested in keep-
ing also the natural time-variance of the source tone, as well
as its attack-sustain-release structure. To this purpose, we
make the simplifying hypothesis that the conversion func-
tion identified with respect to the sustained part of notes
can be used to process every frame of the source tone. In
other words, the law which describes the spectral behaviour
of the sustained part of a note, is assumed to well describe
the behaviour in the remaining attack and release part of
the note. These assumption has proven to be satisfactory in
most cases, on the base of informal listening tests conducted
on the processed tones.

We now make the following assumption on the structure
of the conversion function:

� Due to the changing nature of the spectrum with the
pitch �0 of the tone, the conversion function is as-
sumed to be dependent on the pitch of the note. From
the above consideration the function will then be a
mapF : R ! R

H , whereH is the maximum num-
ber of partials in the SMS representation.

� The conversion function can be decomposed in itsH
componentsF(�0) = [F1(�0); :::FH(�0)], and for
each functionFj(�0) we assume the following para-
metric form:

Fj(�0) =

UX
i=1

Wi;j �G(�0;qi) (3)
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whereG(f ;qi) denotes a radial basis function with
parameter vectorqi, W = fWi;jgi=1���U;j=1���H is
aU � H matrix andU is the number of radial basis
units used. The radial functions used as hidden units
can be of various kind. Here, a cubic formG(x;�) =
(kx� �k)3 is used.

The conversion functions represents the behaviour of the
sound spectrum in an original space whose dimension is
equal in number to the number of partial used to describe
the spectrum. It is quite intuitive that the number of vari-
ables involved is often redundant and should be reduced. To
this purpose, singular value decomposition (SVD) is used.

Let R, be theN � H matrix containing a conversion
pattern in each row, one for each of theN notes in the data
set (including the reference note) The singular value decom-
position theorem states thatR can be decomposed into the
formRN�H = UN�NSN�HV

T
H�H whereU andV are

unitary matrices. S is a N �H pseudo-diagonal matrix
whose non-zero elements, called singular values, are non-
negative and by convention are given in decreasing order.

The singular values in matrixS are used to compute the
rank of the decomposed matrix, which is the index of the
last non-zero element. When the decomposed matrix is not
square, as in our case, the rank ofS will not be higher than
the lower dimension (N ), and a rank lower thanN is indi-
cated by an abrupt decrease of the magnitude between two
adjacent non-zero elements in the diagonal. If we decide
to use the firstP components, the new set of target conver-
sion paths will be given bybRN�H = bUN�P

bSP�P bVT
P�H

where the unwanted columns and/or rows of the original
matrices are not considered in the computation (note that
for P = N , bV is a base for the space spanned by the rows
ofR and isbR = R ). LetF = bUbS be theN�P new matrix
which represents the spectral conversion patterns, and letbV
be the matrix to return to the initial conversion patterns: if
we use the matrixF to train the RBFN, the dimensionality
of the conversion functionF is reduced fromH to P with
P � N < H and the output of the RBFN will need to be
multiplied by bV prior to be applied to a spectral envelope.

Let now face the problem of identifying the RBFN pa-
rameters. As usually needed by the neural networks learn-
ing procedures, the original data are organized in a training
set. In our case, the pitch values of the training set notes are
stored in the input training vectorTin = [�

(1)
0 ; : : : ; �

(N)
0 ],

so that each element corresponds to a row of the output ma-
trix Tout = F, representing the spectral envelope conver-
sion patterns. The centers� of the radial basis functions
are iteratively selected with the OLS algorithm [7] which
places the desired numberU of units (with U � N ) in
the positions that best explains the data. Once the radial
units with centers�1; : : : ; �U have been selected, the im-
age ofTin through the radial basis layer can be computed
asG = [G1 � � �GU ],Gi = [G(�

(1)
0 ; �i) � � �G(�

(N)
0 ; �i)]

T

(i = 1; : : : ; U ). The problem of identifying the parame-
tersWi;j of eq. (3) can thus be stated in the closed form
Tout = G �W, the LS solution of which is known to be
W = ToutG

+ withG+ pseudoinverse ofG.
To summarize the principal motivations why we adopted

the radial basis function network model, we emphasize that
the RBFNs can learn from examples, have fast training pro-
cedure, and havegeneralizingproperties, meaning that if we
use a training set ofN tones having pitch values of�(1)0 <

�
(2)
0 < � � � < �

(N)
0 , the resulting conversion function will

furnish a coherent result in the whole interval[�
(1)
0 ; �

(N)
0 ].

3. APPLICATIONS

The method will be demonstrated in this section by using a
conversion function to realize pitch transformations which
preserves the spectral identity of an instrument. The pro-
cedure for the training set construction is now reviewed.
From a data set ofN notes we want to constructN con-
version patterns (including an all-zeros pattern) comparing
the sustain spectral envelope of each note with that of the
note selected assource, whose pitch is modified each time
to match the others. To this purpose, the SMS represen-
tation of the source note undergoes a modification which
includes the scaling of the frequencies of partials, and op-
tionally the interpolation of magnitudes to preserve his for-
mant structure. This option gives the possibility to use the
a-priori knowledge on the nature of sound to improve the
identification process. Voice, for example, is known to be
characterized by a formant structure which is, for a given
vowel, approximately constant with respect to pitch varia-
tions. It is quite intuitive that, in such a case, preserving
the formants can lead to a conversion pattern set with re-
duced magnitude range. We callwaveform preservingthe
procedure where no formant preserving interpolation is per-
formed, otherwise the procedure is calledformant preserv-
ing. In Figure 2, the two procedures are compared with
respect to a set of voiced sung notes. In Figure 3, the con-
version patterns and the result of the RBF network identi-
fication is shown for a set of saxophone notes. The use of
the conversion function permitted to produce pitch shifted
synthetic tones whose spectral envelope reflects that of the
notes in the data set, at least in the sustain part of notes. To
compare the synthetic tones with the real ones, we used the
spectral centroidfsc = (

PH

h=1 fh � ah)=(
PH

h=1 ah), which
is known to be a good index of spectral similarity. Figure 4
shows the effect of the conversion function used to correct
the spectral envelope of a saxophone tone pitch shifting.

The same approach seen for pitch shifting can be used
to control other sound parameters implying spectral correc-
tion, like intensity. Let consider to compare couples of tones
having same pitch and different intensities, sayIm the min-
imum andIM the maximum intensity (no pitch shifting is
now implied in the construction of the conversion pattern

W99-3



Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

0
10

20
30

40
50 200

250
300

350
400

450
−100

−50

0

50

λ
0
 (Mel)

a) Waveform preserving conversion patterns

partial number

∆C
(λ

0) 
(d

B
)

0
10

20
30

40
50 200

250
300

350
400

450
−40

−20

0

20

λ
0
 (Mel)

b) Formant preserving conversion patterns

partial number

∆C
(λ

0) 
(d

B
)

Figure 2: Conversion patterns generated from 7 voiced
notes performing the same vowel: comparison between the
waveform preserving procedure and the formant preserving
procedure

set). IfD(�) is the conversion function that allows to switch
from IM to Im, the resynthesis formula that gives an inten-
sity levelI 2 [Im; IM ] is �ah = �Dh(�; I) � ah, whereah
is the magnitude of thehth partial of an origin tone,� is
the pitch of that origin tone, and�Dh(�; I) = D(�) ��(I).
The function�(I), ranging from1=D(�), for I = IM , to1,
for I = Im, weights the effect of the conversion function,
and can be approximated with a logarithmic function.

4. DISCUSSION AND CONCLUSIONS

A spectral processing model suitable for the sinusoidal rep-
resentation of sound has been proposed. The identifica-
tion procedure is characterized by a fast perceptually based
learning procedure and the possibility of learning from sound
examples has been stressed. Moreover, due to its low com-
putational cost, the model is suitable for real time applica-
tions such as expressive processing or sound synthesis. The
method has been applied to pitch shifting with spectral cor-
rection, and the spectral centroid of the synthesized sound
has been compared with the spectral centroid of the real tar-
get sound, showing the effectiveness of this approach.

5. REFERENCES

[1] T. F. Quatieri and R. J. McAulay, “Shape invariant time-
scale and pitch modification of speech,”IEEE Transac-
tions on Signal Processing, vol. 40, no. 3, pp. 497–510,
March 1992.

[2] Y. Stylianou, O. Capp´e, and E. Moulines, “Continuous
probabilistic transform for voice conversion,”Speech
and Audio Processing, vol. 6, no. 2, pp. 131–142,
March 1998.

[3] S. Canazza, G. De Poli, R. Di Federico, C. Drioli, and
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Figure 3: a) The 7 waveform preserving conversion patterns
resulting from 7 sax notes. b) Interpolating surface provided
by the RBFN
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