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Abstract
Dispersive tapped delay lines are attractive structures for altering the frequency content of a signal. In

previous papers we showed that in the case of a homogeneous line with first order all-pass sections the signal
formed by the output samples of the chain of delays at a given time is equivalent to compute the Laguerre
transform of the input signal. However, most musical signals require a time-varying frequency modification in
order to be properly processed. Vibrato in musical instruments or voice intonation in the case of vocal sounds
may be modeled as small and slow pitch variations. Simulations of these effects require techniques for time-
varying pitch and/or brightness modification that are very useful for sound processing. In our experiments the
basis for time-varying frequency warping is a time-varying version of the Laguerre transformation. The corre-
sponding implementation structure is obtained as a dispersive tapped delay line, where each of the frequency
dependent delay element has its own phase response. Thus, time-varying warping results in a space-varying,
inhomogeneous, propagation structure. We show that time-varying frequency warping may be associated to
expansion over biorthogonal sets generalizing the discrete Laguerre basis. Slow time-varying characteristics
lead to slowly varying parameter sequences. The corresponding sound transformation does not suffer from
discontinuities typical of delay lines based on unit delays.
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1 Introduction

In recent papers [3-9] the authors considered fre-
quency warping by means of orthogonal Laguerre
transform as a building block of algorithms for sound
manipulation. Frequency warping adds flexibility in
the design of orthogonal bases for signal representa-
tion and, at the same time, the computational scheme
associated with the Laguerre transform has all the
prerequisites for digital realizations.

The authors showed that the definition of or-
thogonal warping set based on a rational filter
structure is useful for the construction of wavelet
bases with arbitrary frequency band allocation [4].
The new combined transform leads to fine applica-
tions such as orthogonal and complete perceptual
filter banks [5,7].

The Laguerre transform may also be used for
adapting quasi-periodic sounds to pitch-synchronous
schemes [6]. In particular, by combining this trans-
form with the pitch-synchronous wavelet transform
[11,12], one can achieve transient and noise separa-
tion from resonant components by means of a unitary
transformation where resonant and noise components
are projected onto orthogonal subspaces [8,9].  In
order to achieve this separation in signals whose
partials are not equally spaced in the frequency do-

main one needs to determine a warping map bring-
ing partials onto harmonics. By combining inhar-
monic and harmonic components of different in-
struments one can obtain interesting cross-synthesis
examples.

The authors showed that inharmonic sounds,
such as those produced by stiff strings, plates, etc.,
may be conveniently modeled by means of
waveguides based on simple delay lines followed by
frequency warping elements [6]. The warping char-
acteristic of the Laguerre family is particularly accu-
rate in modeling inharmonicity of piano tones, as
comparison with the characteristics derived from the
physical model and direct analysis of the tones shows
[10,4]. When pitch shifting sample piano tones, this
concept allows us to take into account stiffness in-
crease as we move to the lower tones.

Frequency warping generates interesting sound
effects such as sound morphing, phasing, chorusing,
flanging, pitch-shifting and new effects not yet in the
catalogue. However, in order to be able to capture the
full range of possibilities one needs to consider dy-
namic variations of the warping parameters.

In this paper we approach the problem of time-
varying frequency warping by means of generalized
Laguerre transform. In this context, we show that
time-varying frequency warping may be imple-
mented in a space-varying sampled delay-line. The



generalized transform reverts to the Laguerre trans-
form if all the parameters are kept constant. Moreo-
ver, the transform may be embedded into an inverti-
ble operation via an associated biorthogonal and
complete set. This is useful for building effects that
can easily be undone without degradation of the
original sound. The use of the dynamic transform is
demonstrated by means of examples.

2 Space-Varying Dispersive Delay
Lines and Biorthogonal Expan-
sions

Time-varying frequency warping is necessarily a
time-frequency operation since we dynamically alter
the spectral content of a signal. More intriguing,
when implemented by means of dispersive delays,
this operation requires a space-varying, i.e., inhomo-
geneous line.

Consider the sampled dispersive delay line
shown in Fig. 1, consisting of a chain of real first-
order all-pass filters
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a sampling device closing at time k=0 and a shift-
register loaded at k=0 with the outputs of the filters
and outputting the sequence of samples nx at regular

clock intervals. The dispersive line reverts to a linear
delay line when all the parameters nb  are zero.
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Fig. 1 Sampled dispersive delay line.

It is easy to see that, upon time reversal of the input
sequence, the line implements the scalar product
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Hence, the z-transform of the sequence ][ knϕ  is







>
−

−
=

=Φ
−

−

=
∏ 0 

1

0 1

)(
1

1

1

nif
zb

bz
nif

z

k

k
n

k

n ,  (2)

which is the transfer function of an order n all-pass
corresponding to a frequency dependent (dispersive)
delay
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The output sequence nx may be interpreted as the

coefficients of a suitable signal expansion. In fact,
the set of sequences ][knψ  whose z-transforms are
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can be shown to be biorthogonal to the set ][ knϕ ,

i.e.,
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is the unit step sequence, required since the set is
complete over causal sequences (although it can be
easily extended to non-causal sequences).  We re-
mark that although at first sight the sequences ][knψ
may seem non-causal, by substituting (2) in (3) we
obtain for n>0:
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which clearly denotes a causal sequence. Property (4)
is easily shown by writing the scalar product in the z-
transform domain:
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and by observing that the integrand is a rational
function. For mn ≠  the degree of the denominator
exceeds by 2 that of the numerator, hence the inte-
gral is zero, while for mn =  there is a single pole
inside the unit circle whose residue is 1. Property (5)
requires some technical conditions on the asymptotic
behavior of the parameters nb . However, any finite

selection of them within the specified range
11 <<− nb  leads to a set that can be embedded in a

biorthogonal complete set. Correspondingly, the
signal x[k] is expanded onto the set ][knψ  as follows
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where the coefficients are given by (1).



There are several equivalent structures for im-
plementing the inverse transform. The one shown in
Fig. 2 is based on the following recurrence:
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and we used the convention that .00 =b  The analysis

coefficients nx  are used as weights for the dispersive

tapped delay line in a structure that generalizes
Laguerre filters [1,2].
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Fig. 2  Structure implementing the inverse transform

As a final remark we note that the biorthogonal se-
quences ][knψ  and ][knϕ  may be used inter-

changeably for the analysis or for the synthesis. If the
sequence of parameters bbn =  is constant one ob-

tains a biorthogonal sets that can be orthogonalized
without affecting the rational filter structure. In fact,
one obtains the set )(krλ  whose z-transforms are
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Unfortunately, orthogonalization of space-varying
dispersive delay lines yields non-rational transfer
functions.

3 Time-Varying Frequency Warping

Time-varying frequency warping is obtained by
means of the analysis structure shown in Fig. 1. In
previous papers [3,6] we analyzed the behavior of a
constant parameter line, in which case the maps
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One can show that
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(7) characterizes a pure frequency warping operation
in that an input sinusoid with angular frequency 0ω
is displaced to angular frequency )( 0
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output signal nxny =][ . The corresponding result

when the sequence  nb  is not constant has the fol-

lowing form
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where we used the set ][knϕ  for the synthesis. As

expected, in time-varying warping time and fre-
quency are mixed and not simply factored as in (6).
In order to gain intuition on the features of this algo-
rithm, suppose that the parameters nb  are periodi-

cally updated with rate N
1 , then
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Consider the STFT of the output when the signal is
analyzed using the set ][knϕ :
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where ][nw  is the rectangular window of length N, k

is the time index and m
N
π2  is the frequency. After

some routine manipulation we obtain:
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by the finite window and filtering due to the deriva-
tive term, the STFT of the output signal is approxi-
mately:
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which includes a warped version of the input with
map )(1 ωϑ +k  and a phase term due to the frequency

dependent characteristic of the basis. We observe
that slow variations of the parameters induce a time
dependent frequency warping of the signal and in-
troduce frequency distortion of the envelopes.

4 Applications

Time-dependent frequency warping may be invalu-
able in order to reduce a given, real-life signal,
showing pseudoperiodic features, to a nearly per-
fectly periodic one. By means of this technique we
are able to compensate for slow frequency shifts such
as vibrato in instrumental sounds or intonation in
spoken or sung vowels. Vice-versa, we can use this
technique to artificially introduce these features as
special effects.

In order to appreciate the power of the algorithm
we produced an example in which a spoken vowel
pronounced with relevant intonation results in a
time-varying pitch characteristic, as shown in the
spectrogram of Fig. 3(a). By using the inverse fre-



quency law in time-varying frequency warping we
were able to "regularize" the sound, reverting it to its
almost constant pitch version shown in Fig. 3(b).
This transformation may be used in order to detect
and track sound features, such as formant shapes for
both analysis and resynthesis purposes. Moreover,
after reducing the signal to its periodic version, any
pitch synchronous technique will work with constant
pitch. In particular, this technique improves noise
extraction in comb or multiplexed wavelet trans-
forms. In this case, after the time-dependent fre-
quency law of the signal is compensated for, a reso-
nant comb filter removes noise on the resulting peri-
odic signal, e.g., by attenuating the part of the signal
spectrum which falls far from the fundamental or its
harmonics. The inverse transform will recover the
source signal after denoising. In this case complete-
ness or the possibility to revert the transform demon-
strated in the above are invaluable results.
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Fig. 3 Spectrogram of (a) spoken /a/ with relevant
intonation and (b) pitch-compensated signal ob-
tained by means of time-varying frequency warping.

Another application is in the field of signal
detection. Suppose that we have a signal showing a
time-varying pitch characteristic and buried in high
level noise. If the signal is locally monochromatic, or
harmonic, we are able to compensate for a known
frequency law. While detection of the source signal
requires a time-frequency representation, by revert-
ing the signal to the constant pitch case we may
identify the signal by means of the periodogram,
which, by averaging will reduce the variance of the

estimate. Due to coherent averaging, the narrow
band in the periodogram containing all the energy of
our signal will stand clearly against noise. This al-
lows for the detection of signals in noise even at very
low SNR, e.g., -15 dB.

Finally, for musical purposes, microdetuning,
i.e., a slight transposition of the frequency content of
the signal, proved very efficient in the constant pa-
rameter case. In the time-varying case, a natural or
synthesized sound may be modified according to a
specified frequency law for vibrato or other effects.
By adding this signal to the original one can intro-
duce flanging, phasing, chorus and more general
effects. Acoustical results are in some cases very
impressive.
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