Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

RADIAL BASIS FUNCTION NETWORKS FOR CONVERSION OF SOUND SPECTRA
Carlo Drioli

Centro di Sonologia Computazionale (CSC-DEI), University of Padua, Italy
cd@cscl.unipd.it

ABSTRACT All the reported applications realizes high-level trans-
. . . .., formations by combination of simpler effects like time scal-
In many high-level signal processing tasks, such as pitch.

shifting, voice conversion or sound synthesis, accurate spec!ng’ pitch shifting, amplitude envelope scaling, spectral pro-

tral processing is required. Here, the use of Radial Basis >>"9: This work focuses on the spe_ctr_al processing |te_m,
. . . and proposes a new frequency-domain filtering model suit-
Function Networks (RBFN) is proposed for the modeling of . . . .
. able for the sinusoidal representation of sound. The iden-
the spectral changes (oonversionkrelated to the control . . .
. . . .. tification of the model parameters relies on a learning pro-
of important sound parameters, such as pitch or intensity. ) .

. . : X . cedure based on collections of real data which represents,
The identification of such conversion functions is based on c  example. a given musical instrument. The method is
a procedure which learns the shape of the conversion from roven topbé usgeful in preserving the s éctral characteris-
few couples of target spectra from a data set. The general-p P 9 P .
o . . . ; .~ tics of sounds processed by transformations such as pitch
ization properties of RBFNs provides for interpolation with shifting o intensity scalin
respect to the pitch range. In the construction of the train- 9 y 9.
ing set, mel-cepstral encoding of the spectrum is used to
catch the perceptually most relevant spectral changes. The
RBFN conversion functions introduced are characterizedby 2. SOUND ANALYSIS AND RESYNTHESIS
a perceptually-based fast training procedure, desirable inter- FRAMEWORK

olation properties and computational efficiency. . L . . .
P prop P y The investigation relies on the well known sinusoidal model

of the signal (SMS) [6]. The analysis algorithm acts on

1. INTRODUCTION windowed portions (here calleédames of the signal, and
In the field of speech and audio processing a large number oforoduces a time-varying representation as sum of sinusoids
applications have been proposed up to the present which ar¢here callecpartials). Assuming that the number of partials
based on the sinusoidal representation of the signal. TimeH is constant for all frames, for thigh frame the result of
and pitch scaling have been widely explored, especially in the sinusoidal modeling is a set of triplgh, (7), ar (i), ¢ (7))
the speech processing field, and the problem of correctly(h = 1, ..., H) of frequency, magnitude and phase parame-
reproduce the spectral characteristics has been stressed [1{ers describing each partial, and a residual noise component
Recently a new spectral processing approach has been prathat will not be considered in this work. H is taken suf-
posed by Stylianou et al. [2], where a conversion function ficiently high to provide the maximum needed bandwidth,
was build from training samples and was used to convert theand zero magnitude is assigned to the exceeding partials for
spectral features of a first speaker in the spectral features othe spectra with lower bandwidth.

a second speaker who uttered the same sentence. The sinusoidal representation allows to control some of

Among the applications related to music, expressive- o pasic sound parameters, such as pitch and intensity, by
ness processing of musical performance and sound synthegimmy shifting or scaling the frequency and magnitue of

sis have recently gained an increasing interest. In [3, 4] they,o partials. However, without an accurate spectral com-

problem of controlling the high-level musical attributes of ansation which reflects the sound characteristics, the result
a recorded performance by means of expressiveness modss 5 transformation performed with a constant magnitude

els and suitable sound processing techniques is faced. I0q4jing is an unrealistic sound. The proposed spectral pro-
the work by Horner and Beauchamp [5], additive synthesis essing method relies on learning from real data the spectral
based orbT'F'T" analysis are used as the engine for sound yansformations which occurs when such a musical parame-

generation purposes, and a dynamic filter is used t0 gain réyg changes. With this perspective, a perceptually weighted

alistic results with respect to pitch and intensity variations. representation of spectral envelopesis introduced in the next
This work was supported bJELECOM ITALIAunder the research  S€Ction, so that the perceptually relevant differences are ex-

contractCantieri Multimediali ploited in the comparison of spectral envelopes.
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2.1. Representation of spectral envelopes call nowep, = |C(Ap)| = |C(mel(fr))| the hth partial

- . . . magnitude (in dB) of the mel-cepstrum spectral envelope,
To move from the original sinusoidal description to a per- JAC = IAC Y (h = 1 ) with AC, — (o2
ceptual domain, the original spectral envelope is turned to@n ={AG} (h=1,....H) wi G

1 .
the mel-cepstrunspectral representation, by application of ¢ '), the difference between two mel-cepstrum spectral en-
the regularized discrete cepstrum method [2]: for a given si- velopes. By comparison of two different spectral envelopes

nusoidal parametrization, the magnitudes} (h = 1...H) is possible to express the deviation of each partial in the
of the partials are expressed in the log domain and the fre-multiplicative formr, = 10exp[AC}/20], and we call
quencies f,} (h = 1...H) in Hz are converted to Mel fre- ~ conversion patterthe set{r,} (b = 1,--- , H) generated

quencieg A, } with the formula = mel(f) ~ 1127 log(1+ by the comparison of two spectral envelope.

f/700). The real mel-cepstrum parameters(i = 0,..., M) 2.2 Spectral conversion functions
are finally computed by minimizing the following least squares
(LS) criterion In this section, the parametric model for the conversion func-

tions is presented as well as the parameter identification
H principles. The conversion is expressed in terms of devi-
(IC(An)| — 2010g;0(an)) (1) ations of magnitudes, normalized with respect to the frame
h=1 energymy, from the normalized magnitudes of a reference
with spectral envelope. The reference spectral envelope can be
taken from one of the tones in the data set. If the tone in
M T\ the data set are notes with a classical attack-sustain-release
[CN)| = mo +2 Z mi cos( QBH) (2) structure, we will always consider the sustain average spec-
=1 tral envelopes, where the average is generally taken on a suf-
whereM is the number of cepstral coefficients, is the ficient number of frames of the sustained part of the tones.
frame energy, andy; = min{mel(f), mel(F,/2)} with Once the spectrum conversion function has been identified,

F, being the sampling frequency. The normalization factor the reference tone can be seen as a source for the synthe-
By ensures that the upper limit of the band corresponds to aSis of tones with different pitch or intensity, and correct
value of 1 on the normalized warped frequency a)ig.\)|, spectral behaviour. Moreover, we are interested in keep-
the new warped and smoothed version of the spectral enveing also the natural time-variance of the source tone, as well
|0pe, is more reliable to catch the perceptua”y meaning_ as its attack-sustain-release structure. To this purpose, we
ful differences among spectra of different sounds. Figure 1 Make the simplifying hypothesis that the conversion func-
shows the smoothed and warped spectral envelope for a saxtion identified with respect to the sustained part of notes

ophone tone. The aim of this transformation is to find the can be used to process every frame of the source tone. In
other words, the law which describes the spectral behaviour

8 of the sustained part of a note, is assumed to well describe
or the behaviour in the remaining attack and release part of
the note. These assumption has proven to be satisfactory in
. most cases, on the base of informal listening tests conducted
il on the processed tones.

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ We now make the following assumption on the structure
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sor e Due to the changing nature of the spectrum with the
pitch A of the tone, the conversion function is as-
sumed to be dependent on the pitch of the note. From
the above consideration the function will then be a
mapF : R — R¥ whereH is the maximum num-
ber of partials in the SMS representation.
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e The conversion function can be decomposed itHits
componentsF(Ao) = [Fi(Xo),...Fu(Ao)], and for

Figure 1: Sustain average spectral envelope of a saxophone . -
each functionF;(\,) we assume the following para-

note (upper figure), and frequency warped mel-cepstrum en-

velope (lower figure) metric form:

U
perceptually relevant deviations by comparing the smoothed Fi(Xo) = Z Wi - G(Xo;ai) 3
and warped versions of different spectral envelopes. We i=1
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whereG(f; q;) denotes a radial basis function with (i = 1,...,U). The problem of identifying the parame-
parameter vectot;, W = {W; ;}i=1..v,j=1... IS tersW; ; of eq. (3) can thus be stated in the closed form
aU x H matrix andU is the number of radial basis T,,; = G * W, the LS solution of which is known to be
units used. The radial functions used as hidden unitsW = T,,; G+ with Gt pseudoinverse df.

can be of various kind. Here, a cubic fofi{z; u) = To summarize the principal motivations why we adopted
(Jlz — ull)? is used. the radial basis function network model, we emphasize that

The conversion functions represents the behaviour of thechRBFNSdCr?n learn frlf_’m examplfs, have fa_st t;ﬁmt'.?g pro-
sound spectrum in an original space whose dimension jgceaure, and hageneralizingoroperties, meaning that itwe

equal in number to the number of partial used to describeUS€ @ training set ol tones having pitch values of <
the spectrum. It is quite intuitive that the number of vari- AP < - < AlY, the resulting conversion function will
ables involved is often redundant and should be reduced. Tdfurnish a coherent result in the whole interig]™ , A{™].
this purpose, singular value decompositi®&vD is used.

Let R, be theN x H matrix containing a conversion 3. APPLICATIONS

pattern in each row, one for each of thenotes in the data  The method will be demonstrated in this section by using a
set (including the reference note) The singular value decom-conversion function to realize pitch transformations which
position theorem states thRt can be decomposed into the preserves the spectral identity of an instrument. The pro-
form Rnxw = UnxnSnxu Vi, WhereU andV are  cedure for the training set construction is now reviewed.
Un|tary matrices.S is a N x H pseudo dlagonal matrix From a data set oV notes we want to constru® con-
whose non-zero elements, called singular values, are nonyersion patterns (including an all-zeros pattern) comparing
negative and by convention are given in decreasing order. the sustain spectral envelope of each note with that of the
The singular values in matri are used to compute the  note selected asource whose pitch is modified each time
rank of the decomDOSEd matriX, which is the index of the to match the others. To this purpose, the SMS represen-
last non-zero element. When the decomposed matrix is Notation of the source note undergoes a modification which
square, as in our case, the rankSovill not be higher than jncludes the scaling of the frequencies of partials, and op-
the lower dimensionJ{), and a rank lower thaiV is indi-  tionally the interpolation of magnitudes to preserve his for-
cated by an abrupt decrease of the magnitude between twenant structure. This option gives the possibility to use the
adjacent non-zero elements in the diagonal. If we decidea-priori knowledge on the nature of sound to improve the
to use the firs> components, the new set of target conver- jdentification process. Voice, for example, is known to be
sion paths will be given bRy« = UnxpSpxpVh, characterized by a formant structure which is, for a given
where the unwanted columns and/or rows of the Orlglnal Vowe| approximate|y constant with respect to p|tch varia-
matrices are not considered in the computation (note thattions, It is quite intuitive that, in such a case, preserving
for P = N, V is a base for the space spanned by the rowsthe formants can lead to a conversion pattern set with re-
of RandisR = R). LetF = USbetheN x Pnewmatrix  duced magnitude range. We calaveform preservinghe
which represents the spectral conversion patterns, aMd let procedure where no formant preserving interpolation is per-
be the matrix to return to the initial conversion patterns: if formed, otherwise the procedure is calfedmant preserv-
we use the matri¥' to train the RBFN, the dimensionality ing. In Figure 2, the two procedures are compared with
of the conversion functiotf is reduced fronH to P with respect to a set of voiced sung notes. In Figure 3, the con-
P < N < H and the output of the RBFN will need to be version patterns and the result of the RBF network identi-
multiplied by V' prior to be applied to a spectral envelope. fication is shown for a set of saxophone notes. The use of
Let now face the problem of identifying the RBFN pa- the conversion function permitted to produce pitch shifted
rameters. As usually needed by the neural networks learnsynthetic tones whose spectral envelope reflects that of the
ing procedures, the original data are organized in a trainingnotes in the data set, at least in the sustain part of notes. To
set. In our case, the pitch values of the training set notes arg:ompare the synthetic tones with the real ones, we used the
stored in the input training vectd;,, = [A{",..., A{M], spectral centroidf,. = (X0, fa - an)/ (X1, an), which
so that each element corresponds to a row of the output mais known to be a good index of spectral similarity. Figure 4
trix T,,: = F, representing the spectral envelope conver- shows the effect of the conversion function used to correct
sion patterns. The centesof the radial basis functions the spectral envelope of a saxophone tone pitch shifting.
are iteratively selected with the OLS algorithm [7] which The same approach seen for pitch shifting can be used
places the desired numbér of units (with ' < N)in to control other sound parameters implying spectral correc-
the positions that best explains the data. Once the radiakion, like intensity. Let consider to compare couples of tones
units with centersuy, ..., uy have been selected, the im-  having same pitch and different intensities, $aythe min-
age of T, through the radial basis layer can be computed imum and,; the maximum intensity (no pitch shifting is
asG =[G - Gy, G; = [G(A f)l),ul) G(/\(()N),ul)]T now implied in the construction of the conversion pattern
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Figure 2. Conversion patterns generated from 7 voiced
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Figure 3: a) The 7 waveform preserving conversion patterns

notes performing the same vowel: comparison between theresulting from 7 sax notes. b) Interpolating surface provided
waveform preserving procedure and the formant preservingby the RBFN

procedure

set). IfD()) is the conversion function that allows to switch
from Iy, to I,,,, the resynthesis formula that gives an inten-
sity levelI € [I,,,,I)y] 1S an = ADyp(NI) - ap, Whereay,

is the magnitude of théth partial of an origin tonej is
the pitch of that origin tone, and Dy, (A, I) = D(A) - a(I).
The functiona(I), ranging froml/D()\), for I = I, to1,

for I = I,,,, weights the effect of the conversion function,
and can be approximated with a logarithmic function.

4. DISCUSSION AND CONCLUSIONS

A spectral processing model suitable for the sinusoidal rep-
resentation of sound has been proposed. The identific
tion procedure is characterized by a fast perceptually base
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igure 4: Spectral centroid: effect of the conversion func-

({on for pitch shifting

learning procedure and the possibility of learning from sound
examples has been stressed. Moreover, due to its low com-
putational cost, the model is suitable for real time applica-
tions such as expressive processing or sound synthesis. The
method has been applied to pitch shifting with spectral cor-
rection, and the spectral centroid of the synthesized sound4]
has been compared with the spectral centroid of the real tar-
get sound, showing the effectiveness of this approach.
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