
Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99),
NTNU, Trondheim, December 9-11, 1999

DAFx99

Identification and Modeling of a Flute Source Signal

Sølvi Ystad

CNRS - Laboratoire de Mecanique et d’Acoustique
31, chemin J. Aiguier 13402 Marseille Cedex 20 FRANCE

ystad@lma.cnrs-mrs.fr

Abstract

This paper addresses the modeling of the source signal of
a flute sound obtained by «removing» the contribution of
the resonator. The resulting sound has then a more
regular spectral behavior and can be modeled using
signal models. The decomposition of the source signal
into a deterministic and a stochastic part has been made
using adaptive filtering. The deterministic part can then
be modeled by non-linear synthesis models, the
parameters of which are obtained using perceptive
criteria. Linear filtering are used to model the stochastic
part of the source signal.

1. Introduction
When modeling sounds two main classes of

models can be used, namely physical and signal models.
The choice of the model depends on what the sound
model is to be used to and on the «complexity» of the
sound producing system. When interfaces are to be
constructed to pilot a synthesis model with physically
related parameters, physical models are very useful.
However, when the physics is too complicated or
demands measurements which are difficult to realize,
signal models have to be used or can be mixed with
physical models.

The work I describe here is part of my PhD
project the aim of which was to construct a digital flute
[Ystad, 1998]. The idea was to add sensors and a
microphone to a traditional flute, making it possible to
extend the performance possibilities of the traditional
instrument while conserving the playing techniques.

Physical models such as the waveguide model
wereused to model the wave propagation inside the
resonator. This gave very satisfying results for
resynthesis of transient sounds. However, for sustained
sources this model was insufficient. I realized that the
signal to be injected into the resonator- namely the
source signal -  had to be studied separately. Although,
froma physical point of view, the resonator and the
source cannot be separated, this procedure gave good

results in our case. To model the source I decided to use
a signal model, since the physical phenomena occurring
when the air jet interacts with the embouchure are not
fully understood.

In this article I first describe how the source
signal was extracted from the flute sound, then I explain
how it was separated into a deterministic and stochastic
part, and how these parts were modeled separately.

2. Extraction of the source
As mentioned in the introduction, the resonator

of the instrument was modeled by a waveguide model
[Ystad, 1998]which consists in a recursive all-pole filter.
The sound outputy  of thismodel can be written:

y(t) = (x * h)(t) ,
where h(t)  represents the impulse response of the
resonant system andx(t)  represents the source signal. By
removing the resonant systemfrom the sound, we obtain
the source signal to be modeled. If h

−1(t)  such as

(h* h−1)(t) = δ(t)  exists, the source x(t)  can be obtained
by deconvolution, that is:

x(t) = (y* h−1 )(t)

This operation is legitimate since the transfer function of
the resonant system has no zeros.

Figure 1 shows the spectrum of the source
obtained by deconvolution for a flute sound. In this case
we can see that the source signal contains both spectral
lines and a broadband noise (whichin what follows
respectively will be called the deterministic and the
stochastic contributions). It is important to emphasize
that the source signal contains no resonances anymore
since they are removed by the deconvolution.
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Figure 1: Spectrum of the extracted source

3. Splitting the deterministic and the stochastic
contributions

To separate the deterministic and thestochastic
contributions of the source signal, I first constructed an
estimate of the deterministic part by selecting the
corresponding spectral components. Further on, this
deterministic contribution was used as a reference signal
for an adaptive filter designed to extract the stochastic
contribution. The LMS (Least Mean Square) algorithm
was chosen for this purpose [Widrow, 1985]. This
method is often used for active noise control, but is less
known in connection with sound modeling. The
stochastic contribution of a sound can then befound by
removing the part of the original source signal which is
correlated to the deterministic reference signal. In this
case we suppose that the deterministic and the stochastic
contributions of the source are not correlated.

3.1 Modeling of the deterministic part
In many cases, sounds generated by an excited

resonant system behave nonlinearly since the evolution
of the spectrum is not a simple amplification.This is the
case for most musical sounds for which the dynamic way
of playing dramatically acts on the resulting sound.
However, this non linear behavior is often related to the
excitation, even though some non linearities sometimes
appear during propagation [Gilbert et al.,1997]. I have
only considered non linearities generated by the
excitation system. In order to model the deterministic
part of the non linear source signal, I chose to use the
waveshaping synthesis [Arfib, 1979][Le Brun, 1979]
since this method makes itpossible to generate complex
spectra from easy calculations using a small number of
operations. As mentioned earlier, the source signal does
not contain resonances because of the deconvolution
with the resonator. This makes the waveshaping
synthesis well adapted.

3.1.1 Waveshaping synthesis
The waveshaping synthesis consists in distorting

a sinusoidal function with a variable amplitude I(t) by a
non-linear function γ. The synthetic sound is then given
by:

s(t)=γ(I(t)cos(ω0t))

The variable amplitude I(t) called distortion index should
be chosen so that the timbre of the synthetic sound varies
in the same way as the timbre of the real sound as the
dynamic level changes.

The first step consists in constructing a non-
linear function so that the «richest»spectrum obtained by
playing the instrument corresponds to a wave-shaping
index I=1  . This spectrum is obtained when playing
fortissimo (ff). The function γ  corresponding to the flute
is represented in Figure 2.

Figure 2:Waveshaping function for a flute sound.

One note that the value of the functionγ is different from
zero when the argument is zero. This means that if the
input of the non-linear system is zero, the output will be
non-zero. This phenomena can cause saturation problems
and a bad use of the dynamics provided by the digital
representation. One can avoid this difficulty by forcing
the function γ to be zero when the argument is zero. This
can be done by modifying the signs of the coefficients of
the decomposition of γ into Chebychev polynomials
(Tk(x)) . Only even coefficients have an influence on γ(0)

, since the value of Tk(0)  is zero when k is odd, and

(−1)k / 2  when k is even.One can then minimize the value

of γ(0) by modifying the signs of the even k’s, and then
use the coefficient of T0 to cancel γ(0). Altering the signs

of the coefficients which corresponds to altering the
phase of the sound does not modify the sound since it is
periodic. Furtheron, the mean value of the signal should
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also be minimized to minimize the DC bias when the
index of distortion is non- zero. Since this value is
related to the integral of the non-linear function, this
corresponds to minimizing this integral on the subset (-
I,I)  corresponding to the current index. To minimize this
integral, one can make the function fluctuate as much as
possible. This can be done by acting on the signs of the
coefficients of the non-linear function. This time the
signs of the odd coefficients should be modified, since
the signs of the even coefficients were modified to
cancel the DC bias. A criterion for finding the signs of
the coefficients leading to a minimum DC bias is to
minimize γ (±1) . Figure 3 represents the same non-linear
function as above, obtained this way.

Figure 3:Waveshaping function with g(0)=0 and γ (±1)

minimized.

A great disadvantage of the global synthesis
techniques is that the representation of signals is not
complete, meaning that one can not reconstruct any
spectral evolution by changing the distortion index.
Nevertheless, it can be estimated so that the
reconstructed signal satisfies perceptive criteria. In the
following section I give some examples of the non
linearities measured on the flute signal and describe how
the distortion index can be estimated using perceptive
criteria.

3.1.2 Perceptive criteria
The second step in modeling the deterministic

part of the source signal of a flute consists in estimating
the wave-shaping index and to link it to a measurable
value such as the driving pressure. In the first register
there is an important exchange of energy between the
first spectral components, while the other components
increase rather monotonically with the energy of the
driving pressure. This causes a problem when using the
spectral centroid criterion [Beauchamp, 1982], since the

brightness changes very little with increasing driving
pressure, corresponding to small changes in the
waveshaping index [Ystad, 1998]. This means that the
spectral centroid criterion is not convenient for flute
sounds. In fact, this criterion is suitable for sounds whose
spectral components globally increase and not for sounds
whose spectrum dramatically changes during the play.

Another criterion should therefore be used to
find the waveshaping index of a flute as a function of the
driving pressure. For a flute sound the most important
exchange of energy appears between the first and the
fifth or sixth components. More importance should
therefore be given to these components than to the higher
ones. The tristimulus criterion therefore turns out to be
well adapted to a flute sound, since it divides the
spectrum into three groups: one where the evolution of
the fundamental component is considered, one where the
evolution of the second, third and fourth components is
considered, and one where the evolution of the rest of the
components is considered [Pollard et al., 1982]. By
minimizing the difference between the tristimulus of the
real sound and the tristimulus of the synthetic sound the
evolution of the waveshaping index as a function of the
driving pressure is found. As a result, in the flute case,
the waveshaping index should vary from I=0.5 to I=1 as
the logarithm of the driving pressure increases from a
pianissimo to a fortissimo level.

In order to equalize the changes in amplitude
induced by the variations of the distortion index, the
output signal must finally be adjusted by a post
correction.

3.2 Modeling the stochastic part
In this section the stochastic part of the source

signal is characterized so that the resynthesis satisfies
perceptive criteria. Stationary and ergodic processes are
here considered since such processes generally
correspond to steady state sounds of musical instruments.
This non deterministic part has been extracted using the
LMS algorithm described above.

The probability density functionfB(x)  is related
to the histogram of the values x taken by the noisy
process B [Schwartz, 1970]. It can be easily estimated as
soon as the random process can be separated from the
deterministic one, which is generally the case for source
signals. The histogram of the flute noise is symmetric
and follows an exponential law. This means that the
noise to be generated when modeling a flute sound
should have the following probability density function:

fe(x) =
λ
2

e− λ x

At this stage, one may notice that the probability density
function of a process is not invariant by linear filtering;
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except in the case of the normal law (Gaussian
probability density function). Nevertheless, if the
correlations induced by the filtering are weak, then the
probability density function is almost unmodified. This is
the case for the flute signal where the non deterministic
part of the source corresponds to a slight low-pass
filtering of a white noise.

As an example Figure 4 shows the power
spectral density of the stochastic part of the source of a
flute sound.

Figure 4: Power spectral density ofthe stochastic part of
the source of a flute noise.

The stochastic part of the source signal can now
be modeled by linear filtering of a white noise. This
model together with the model of the deterministic part
of the source signal gives a general model of the source
signal based on signal modeling.

4. Conclusion
In this paper I have shown how a source signal

can be extracted from a real sound by «removing» the
resonance due to the resonator. Such a signal can be
easily modeled using non-linear signal models the
parameters of which can be obtained by perceptive
criteria. By combining the source model with the
physical model simulating the behavior of the waves
during propagation in the medium, very general sound
models can be constructed.
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