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ABSTRACT

In this paper we present a technique for detecting the pitch of
sound using a series of two forward Fourier transforms. We use an
enhanced version of the Fourier transform for a better accuracy, as
well as a tracking strategy among pitch candidates for an increased
robustness. This efficient technique allows us to precisely find out
the pitches of harmonic sounds such as the voice or classic musical
instruments, but also of more complex sounds like rippled noises.

1. INTRODUCTION

Determining the evolutions with time of the pitch of sound is an
important problem. This is indeed extremely useful for controlling
synthesizers from this pitch information and absolutely necessary
for pitch-synchronous algorithms such as PSOLA techniques [1].

Various methods have been proposed for the determination of
the pitch as a function of time (pitch tracking). They use either
the autocorrelation factor [2], other physical [3, 4] or geometric
[5] criteria, least-square fitting [6], pattern recognition [7] or even
neural networks [8]. Arfib and Delprat use in [9] the inverse FFT
of the sound spectrum modulus limited to the positive frequency.
In this article, we propose a new composition of two Fourier trans-
forms, thus introducing the “Fourier of Fourier” transform of great
interest for pitch extraction.

After a brief introduction to sounds and their pitches in Section
2, we introduce in Section 3 our new transform. This transform al-
lows us to extract accurate pitch candidates. We present in Section
4 an efficient and accurate pitch-tracking algorithm based on this
transform. We show how to choose the right pitch candidate most
of the time in order to reach an acceptable level of robustness. Fi-
nally, we give some results – in terms of performance, accuracy,
and robustness – in Section 5.

2. SOUNDS AND PITCHES

Pitch is not a physical parameter, but a perceptive one. There is
a close link with frequency, but this relation is rather complex.
For a single sinusoid, Equation 1 gives the relation between the
frequency F and the pitch P in the harmonic scale:

P(F) = Pref+O log2

�
F

Fref

�
(1)

where Pref and Fref are, respectively, the pitch and the correspond-
ing frequency of a tone of reference. In the remainder of this paper
we will use the values Pref = 69 and Fref = 440 Hz. The constant
O is the division of the octave. An usual value is O = 12, leading

to the classic dodecaphonic musical scale. With these values, P is
the MIDI pitch, where 69 corresponds to the A3 note, 70 to A#3,
etc.

2.1. Harmonic Sounds

For an harmonic sound, the perceived pitch corresponds to a kind
of greatest common divisor (gcd) of the frequencies of the har-
monics, that is the fundamental. The fundamental coincides with
the frequency of the first harmonic. But this first harmonic may be
missing, or “virtual”.

2.2. About Noise

For a narrow-band noise, the pitch corresponds to the frequency of
the middle of the band. For a rippled noise, the pitch corresponds
to the gcd of the peaks in the spectral envelope, even if the first
peak is missing.

3. “FOURIER OF FOURIER” TRANSFORM

In our FTn analysis method [10, 11], we proposed to take advan-
tage of two Fourier transforms computed in parallel. The resulting
analysis precision [12] has recently been used for accurate pitch
detection [13]. We show here that the use of two Fourier trans-
forms in sequence is of great interest too.

More precisely, we consider the magnitude spectrum of the
Fourier transform of the magnitude spectrum – limited to positive
frequencies – of the Fourier transform of the signal. Let us de-
note by “Fourier of Fourier transform” this combination of the two
Fourier transforms. Note that this transform is not the same as the
well-known “cepstrum”, which is the (inverse) Fourier transform
of the logarithm of the spectrum resulting from the Fourier trans-
form.

This transform is well-suited for pitch-tracking, that is for com-
puting the fundamental frequency of the sound, even if it is missing
or “virtual”. For example, if we consider an harmonic sound, its
Fourier transform has a series of peaks in its magnitude spectrum
corresponding to the harmonics of the sound, at frequencies close
to multiples of the fundamental frequency F . Some harmonics
may be missing, even the fundamental itself. Anyway, the Fourier
of Fourier transform of an harmonic sound shows a series of peaks,
and the first and most prominent one corresponds to the funda-
mental frequency F of the harmonic sound, and its amplitude is
the sum of the amplitudes of the harmonics of the sound. Figure 1
illustrates this.

In the spectrum resulting from the first Fourier transform (FT),
the index of a bin iFT is related to the analyzed frequency f . More

DAFX-1



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

amplitude

frequencyF

amplitude

binkF

Figure 1: The power spectrum of an harmonic sound (left) to-
gether with the power spectrum resulting from the Fourier trans-
form of this first spectrum (right). There might be missing harmon-
ics (dashed).

precisely, if Fs is the sampling rate and N the size of the Fourier
transform, we have:

iFT = N f=Fs (2)

When considering an harmonic sound whose fundamental is F ,
the magnitude spectrum shows a series of uniformly-spaced peaks
(unless some harmonics are missing). The distance between two
consecutive harmonics is F , which corresponds to a period of ∆
bins where:

∆ = NF=Fs (3)

In the spectrum resulting from the Fourier transform of the magni-
tude spectrum of the first Fourier transform (FT(FT)), the greatest
local maximum of magnitude (apart from the one corresponding
to bin 0) is located at the bin corresponding to index:

iFT(FT) = N=(2∆) (4)

In Equation 4 we consider that the size of the second Fourier trans-
form is again N. This is no mandatory though. It is then possible
to recover the fundamental frequency from the value of this index:

F =
Fs=2

iFT(FT)
(5)

The same reasoning also works for single sinusoids or rippled
noises (even if some ripples are missing). Figure 2 illustrates this.
As a consequence, the Fourier of Fourier transform turns out be be
extremely well-suited for determining the pitch of these sounds,
as well as their volume. We have also verified this for natural
sounds, as shown in Figure 3. It is important to note that the am-
plitude corresponding to the iFT(FT) index is close to the sum of
the amplitudes of the harmonics constituting the sound. One can
also obtain instead a good approximation of the RMS (Root Mean
Square) amplitude, by replacing the amplitudes by their squares
in the magnitude spectrum prior to the second Fourier transform,
and by replacing the amplitudes by their square roots in the magni-
tude spectrum resulting from this second transform (see [14]). The
result must be scaled by a 1=

p
2 factor though.

4. PITCH-TRACKING ALGORITHM

We have seen previously that the Fourier of Fourier transform –
the magnitude spectrum of the Fourier transform of the magnitude

amplitude
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1=F

amplitude

binkF

Figure 2: The power spectrum of a rippled noise (left) together
with the power spectrum resulting from the Fourier transform
of this first spectrum (right). There might be missing ripples
(dashed).

spectrum of the Fourier transform of the signal – is well-suited for
pitch tracking, that is for computing the fundamental frequency of
the sound, even if it is missing or “virtual”.

4.1. Using the Order-1 Fourier Transform

We propose to use the Fourier of Fourier transform to perform the
detection of the pitch. A very important feature is that we may
use the FTn method [10, 11] for n = 1 – also called the order-1
Fourier transform or simply the “derivative algorithm” – instead
of the classic Fourier transform for a better accuracy for the pitch
detection.

More precisely, if we want to determine the pitch at a certain
time t, then we consider a small portion of temporal signal centered
at t. This temporal frame is multiplied by the Hann analysis win-
dow, and then analyzed using the order-1 Fourier transform. With
this transform, the spectral peaks are extracted with an enhanced
precision in comparison to the classic Fourier transform.

With this technique, the short-term magnitude spectrum has
then to be reconstructed from the spectral peaks prior to the second
Fourier transform. In fact, this is done by a simple sampling of the
spectrum. For a greater accuracy, a convolution of the peaks with
the spectrum of the Hann window can be used as a preliminary.
After that, the classic Fourier transform is used, and the spectral
peaks are extracted. The resulting n spectral peaks corresponds to
frequencies (see Equation 5) that are pitch candidates.

4.2. Pseudo-partial Tracking

We have seen that the fundamental frequency of the sound is given
– in theory – by the greatest local maximum of magnitude (apart
from the one corresponding to bin 0) in the spectrum resulting
from the Fourier of Fourier transform. As a consequence, the pitch
should be the frequency of the pitch candidate with the greatest
amplitude.

The problem is that for some sounds this maximum of energy
is detected at the wrong place from time to time. This often leads
to jumps among octaves and results in a poor robustness. We pro-
pose to apply a peak-tracking strategy similar to partial tracking
(see [12]), except that this time we deal with “pseudo-partials”,
that is partials detected in the spectrum resulting from the Fourier
of Fourier transform. When obtain a set of partials, as shown in
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Figure 3: Fourier of Fourier. From top to bottom are the original
signal (singing voice, sampled at Fs = 44100 Hz), its magnitude
spectrum, and the magnitude spectrum resulting from the Fourier
transform of the previous magnitude spectrum (N = 2048, but only
the first 256 bins are displayed). One can clearly see in this spec-
trum the prominent peak corresponding to the fundamental fre-
quency of the original sound.
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Figure 4: The strongest partial (P2) among the dominant partials
(P1, P2, and P4). P3 is dominated by P2.

Figure 4. Each partial corresponds to a certain pitch candidate,
and contains the evolutions in time of its frequency and amplitude
parameters. In order to detect the right pitch, we have to choose
the right partial in this set.

When two partials overlap at a certain time t – such as P1 and
P2 in Figure 4 – the partial with the greatest amplitude is said to
be dominating. If this partial is longer and louder than the other,
we forget the dominated partial. In Figure 4, we remove P3 be-
cause it is always dominated by P2. Once all dominated partials
have been removed, we consider the strongest partial, which is the
partial who is dominating for the longest period. In Figure 4, P2 is
the strongest partial. The frequency of the strongest partial gives
the evolutions in time of the fundamental frequency of the initial
sound.

5. RESULTS

We have implemented the above algorithm in our InSpect analy-
sis software package [15]. This implementation is made of three
main parts (see Figure 5). The first part (dashed box on this fig-
ure) is a short-term analysis module: the Fourier of Fourier trans-
form, which computes the magnitude of the Fourier transform of
the magnitude of the Fourier transform of the sound signal. The lo-
cal maxima (peaks) in the resulting short-term “spectra” are then
tracked from frame to frame using a classic partial-tracking al-
gorithm (second part). The third part consists in selecting the
strongest partial (see Section 4) among all these tracks. The evolu-
tion in time of the frequency of this partial coincides with the pitch
– as a function of time – of the initial sound.

5.1. Performance

This algorithm is much faster than the well-known autocorrela-
tion method. Arfib and Delprat use in [9] the real part of the in-
verse FFT of the sound spectrum modulus limited to the positive
frequency. This is strictly equivalent to the autocorrelation of the
windowed part of the signal, but much faster. Our method is as fast
as this one. Both methods require the computation of two Fourier
transforms.

5.2. Accuracy

Perhaps surprisingly, our method is more accurate than the one
used by Arfib and Delprat. Let Fref be the exact fundamental fre-
quency and F its measured value. The relative error e is given by:

e = jF�Frefj=Fref (6)
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Figure 5: Algorithm overview.

Since our algorithm – as many others – fails in the case of a single
sinusoid, let us take as a reference for our tests the sound consist-
ing of the fundamental (with amplitude 0.75) and its first harmonic
(with amplitude 0.25), with a sampling rate of Fs = 44100 Hz.
The number of samples per analysis frame is N = 1024. Figure 6
shows that the relative error for the Fourier of Fourier transform
goes from approximatively 1% to 6% for fundamental frequencies
between 440 Hz to 1660 Hz. With the method used by Arfib and
Delprat, we have measured that the relative error goes from ap-
proximatively 5% to 12% for the same frequency interval. The
difference between the two methods may seem quite small. But
even this small difference of 6% corresponds to approximately one
half-tone. . .

The accuracy of the Fourier of Fourier transform can be in-
creased by using the order-1 Fourier transform instead of the first
Fourier transform (see Section 4). It is then possible to tune the
accuracy (or, on the contrary, the performance) by adjusting the
size of the second Fourier transform.

However, if we consider the relative error measured on a sin-
gle sinusoid with the classic Fourier transform (see Figure 7), we
notice that this error is lower than for the Fourier of Fourier trans-
form for frequencies above approximatively 1000 Hz. It might be
wiser to use the classic Fourier transform instead of the Fourier of
Fourier transform in order to detect high pitches. Moreover, if we
consider the same relative error measured for the order-1 Fourier
transform (see Figure 7), we clearly see that this error is very low,
even for low frequencies. This opens up new horizons for other
pitch-detection algorithms.
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Figure 6: Accuracy of the Fourier of Fourier transform. The rela-
tive error in percents is given for fundamental frequencies between
440 Hz and 1660 Hz (2 octaves).

5.3. Robustness

By considering the peak with the greatest amplitude in the Fourier
of Fourier transform, it is possible to perform the pitch detection in
real time. The problem is that the resulting algorithm is not robust.

The technique consisting in constructing partials and select-
ing the strongest of them (see Section 4) has proven to be a very
robust way to obtain the pitch of the sound. We have successfully
recovered the pitches of many natural sounds like saxophones, gui-
tars or singing voice for example. With this technique, there are
no more jumps among octaves. The problem is that the resulting
pitch-detection algorithm does not work in real time anymore.

6. CONCLUSION AND FUTURE WORK

In this article, we have presented a method for pitch detection
based on a combination of two Fourier transforms. We have pro-
posed a way to enhance the accuracy of the detected pitch – by us-
ing the order-1 Fourier transform – as well as a way to improve the
robustness of the detection algorithm – by selecting the strongest
pitch candidate. We have implemented the above algorithm in our
InSpect analysis software package [15], and it has proven to be
very accurate and robust in practice on natural sounds (voice, clas-
sic musical instruments, and even some kinds of noise).

During this research, we have identified the need for a standard
set of tests in order to compare the numerous pitch-tracking algo-
rithms. Further research should include the generalization of the
pitch-detection methods for polyphonic sounds, thus leading to the
extraction of multiple pitches, which is of great musical interest.
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Figure 7: Accuracy of the classic Fourier transform (left) and the order-1 Fourier transform (right). The relative error in percents is given
for frequencies between 110 Hz and 1660 Hz (4 octaves).
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