
 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-1

DIGITAL SYNTHESIS BY PLUG-IN METHOD IN JAVA MEDIA
FRAMEWORK ENVIRONMENT

Jiri Schimmel Rostislav Fitz

Department of Telecommunications Department of Computer Science and Engineering
FEECS FEECS

Brno University of Technology Brno University of Technology
schimmel@utko.fee.vutbr.cz rfitz@asyc.cz

ABSTRACT

This paper deals with the implementation of real-time digital
musical sound synthesizers by the Plug-In method in the Sun
Microsystems Java Media Framework environment. This
environment use the Plug-In technology as well as the DirectX or
VST environments, but the implementation methods are different.

1. JAVA MEDIA FRAMEWORK

Java is object-oriented multi-platform programming language
developed by the Sun Microsystems company that is used mainly
for Internet applet production.
The Java Media Framework (JMF) is an application programming
interface (API) for incorporating time-based media into Java
applications and applets. The JMF 1.0 API (the Java Media
Player API) enabled programmers to develop Java programs that
presented time-based media. The JMF 2.0 API extends the
framework to provide support for capturing and storing media
data, controlling the type of processing that is performed during
playback, and performing custom processing on media data
streams. In addition, JMF 2.0 defines a plug-in API that enables
advanced developers and technology providers to more easily
customize and extend JMF functionality.

1.1. High-Level Architecture

Devices such as tape decks and VCRs provide a familiar model
for recording, processing, and presenting time-based media.
When you play a movie using a VCR, you provide the media
stream to the VCR by inserting a video tape. The VCR reads and
interprets the data on the tape and sends appropriate signals to
your television and speakers. JMF uses this same basic model. A
data source encapsulates the media stream much like a video tape
and a player provides processing and control mechanisms similar
to a VCR. Playing and capturing audio and video with JMF
requires the appropriate input and output devices such as
microphones, cameras, speakers, and monitors.
A data source encapsulates the media stream much like a video
tape and a player provides processing and control mechanisms
similar to a VCR. Playing and capturing audio and video with

JMF requires the appropriate input and output devices such as
microphones, cameras, speakers, and monitors.
Data sources and players are integral parts of JMF's high-level
API for managing the capture, presentation, and processing of
time-based media. JMF also provides a lower-level API that
supports the seamless integration of custom processing
components and extensions. This layering provides Java
developers with an easy-to-use API for incorporating time-based
media into Java programs while maintaining the flexibility and
extensibility required supporting advanced media applications
and future media technologies.

Figure 1. High-level JMF architecture

1.1.1. Managers

The JMF API consists mainly of interfaces that define the
behaviour and interaction of objects used to capture, process, and
present time-based media. Implementations of these interfaces
operate within the structure of the framework. By using
intermediary objects called managers, JMF makes it easy to
integrate new implementations of key interfaces that can be used
seamlessly with existing classes. JMF uses four managers:
Manager, PackageManager, CaptureDeviceManager, and
PlugInManager.
To write programs based on JMF, you'll need to use the Manager
create methods to construct the Players, Processors,
DataSources, and DataSinks for your application. If you're
capturing media data from an input device, you'll use the
CaptureDeviceManager to find out what devices are available
and access information about them. If you're interested in
controlling what processing is performed on the data, you might

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-2

also query the PlugInManager to determine what plug-ins have
been registered.

1.1.2. Media Streams

A media stream is the media data obtained from a local file,
acquired over the network, or captured from a camera or
microphone. Media streams often contain multiple channels of
data called tracks. For example, a Quicktime file might contain
both an audio track and a video track. A track's type identifies the
kind of data it contains, such as audio or video. The format of a
track defines how the data for the track is structured. Media
streams can be categorized according to how the data is
delivered:
• Pull - data transfer is initiated and controlled from the client

side.
• Push - the server initiates data transfer and controls the flow

of data.

1.2. Media Processing and Presentation

Most time-based media is audio or video data that can be
presented through output devices such as speakers and monitors.
An output destination for media data is sometimes referred to as a
data sink. In most instances, the data in a media stream is
manipulated before it is presented to the user. The tracks are then
delivered to the appropriate output device. If the media stream is
to be stored instead of rendered to an output device, the
processing stages might differ slightly.

Figure 2. JMF processor model and JMF player model

In JMF, the presentation process is modelled by the Controller
interface. Controller defines the basic state and control
mechanism for an object that controls, presents, or captures time-
based media. It defines the phases that a media controller goes
through and provides a mechanism for controlling the transitions
between those phases. The JMF API defines two types of
Controllers: Players and Processors. They are constructed for a
particular data source and are normally not re-used to present
other media data.
• Player processes an input stream of media data and renders

it at a precise time. A DataSource is used to deliver the input
media-stream to the Player.

• Processors can also be used to present media data. A
Processor is just a specialized type of Player that provides
control over what processing is performed on the input
media stream.

A Processor can send the output data to a presentation device or
to a DataSource. If the data is sent to a DataSource, that
DataSource can be used as the input to another Player or
Processor, or as the input to a DataSink. While the processing
performed by a Player is predefined by the implementor, a
Processor allows the application developer to define the type of
processing that is applied to the media data. This enables the
application of effects, mixing, and compositing in real-time. The
processing of the media data is split into several stages:
demultiplexing, pre-processing, transcoding, post-processing,
multiplexing and rendering (see Fig. 3).

Figure 3. Processor stages

Demultiplexer extracts individual tracks of media data from a
multiplexed media stream, Mutliplexer performs the opposite
function, it takes individual tracks of media data and merges them
into a single multiplexed media stream. Codec performs media-
data compression and decompression. Each codec has certain
input formats that it can handle and certain output formats that it
can generate. Effect filter modifies the track data in some way.
Effect filters are classified as either pre-processing effects or post-
processing effects, depending on where they are applied.
Renderer is an abstraction of a presentation device.
For more information about JMF 2.0 see [1].

2. ANALOG MODELLING SYNTHESIS

The synthesisers are electronic musical instruments that simulate
sounds of acoustic musical instruments using various methods of
sound synthesis or create wholly new sounds that we could not
find in nature. Analog modelling synthesizers are digital
electronic musical instruments that simulate vintage analogue
synthesisers that have been the first electronic instruments. These
instruments consist of particular blocks whose mutual
connections and parameters adjusting, which generate various
sounds, are user-controlled. The sound generator of analog
synthesizers combines the additive and the subtractive synthesis
with the PWM, RM, and FM modulation synthesis (see [3] for
details).

2.1. Analog Modelling Synthesizer Architecture

Every analog modelling synthesizer consists of 4 blocks: sound
generator, effect processor, control logic, and MIDI interface.
MIDI (Musical Instruments Digital Interface) is proposed for
communication between digital musical instruments. It transfers
all information that describes sound. The synthesizer control

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-3

logic generates control signals for all the other synthesizer units
according to data from the MIDI interface.

2.2. Additive Synthesizer

The additive synthesizer consists of an even number of Voltage-
Controlled Oscillators VCO (most often two or four). The
oscillator pairs function as input signals of the RM module and at
the same time they can be switched to the FM mode and create
one FM operator (see Fig. 4). The voltage-controlled oscillator
inputs are signals that determine the oscillator frequency, i.e. tone
pitch and pulse width when generating the square signal for the
pulse width modulation (PWM). The outputs are signals of both
oscillators and the ring modulator output signal.

VCO 1
f

PWM
SYNC

+

VCO 2
f

PWM
SYNC

RMFM

sync

VCO1/FM out

VCO2 out

RM out

Pitch 1

Pitch 2

PWM 1

PWM 2

Sinus
Saw
Square
Triangle

Sinus
Saw
Square
Triangle

Figure 4. Structure of a block of synthesizer oscillators

The oscillators generate basic signal waveforms, such as the
sinus, square, saw, and triangle signal in the acoustic signal
frequency range. The Simulink model of that oscillator is in Fig.
5. The Trigger signal, signal for frequency control, and signal for
the control of the width of square signal (pulse width modulation)
are the inputs.

Figure 5. Simulink model of sound generator oscillator

The oscillator parameters are the transposition and the fine tune.
They are designed for mutual harmonic and non-harmonic de-
tuning of oscillators. The transposition sets harmonic de-tuning in
the +/-24 semitone range, the fine tune sets non-harmonic de-
tuning in the +/-50 cent range. Since 1 cent = 1/100 of semitone,
the following equation holds for the resulting frequency of the
oscillator

c

cs

ccs fff
100
2.100/2.2.

12

0
/12/12

0

+

== (1)

where f0 is the original frequency, s is the transposition size in
semitone, and c is fine tune size in cent. If the synthesizer
consists of two oscillators only, transposition and fine tune
settings with one oscillator only is sufficient.

Figure 6. Simulink model of time base for sound oscillators

The time behaviours of generators are time-dependent, therefore
they need time bases. Time base generates a linear time vector
with steps of 1/fS. Function generators need a triggered time base
that generates the time vector in the required time interval only.
Sound generators need special type of time base, because the
Trigger signal (see Fig. 5), which is determined from key playing,
ends after the Note Off MIDI event is received, i.e. after the key is
released. But the oscillators have to generate sound also hereafter
because the sound still runs in the Release period. The time base
according to Fig. 6 is suitable for these purposes because it runs
also after the impulse on the Trigger input terminates and it resets
itself with the rising edge, i.e. when a new tone is played.

2.3. Subtractive Synthesizer

The subtractive synthesizer block follows this amplifier. It is a
bank of parametric, Voltage-Controlled Filters (VCF). These
filters are connected in series or in parallel. The most often used
filters are the low-pass and the high-pass filter with adjustable
resonance, and the band-pass and the band-stop filter with
adjustable bandwidth.

Figure 7. Parametric filter in circuit with distortion

Signal is admitted into the time-varying IIR filter. The
coefficients of this filter are computed on the basis of slider
settings that represent individual filter parameters. Various types
of filters differ only in their transfer function, whose numerator

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-4

and denominator are composed according to the three parameters
that correspond to the frequency, gain, and bandwidth/slope
settings. More information about parametric filters and their
transfer functions can be found in [2] and [4].
To producing further sound colours some synthesizers use a filter
in circuit with distortion with feedback, similar to guitar
distortion [2][5]. The Simulink model of that filter is in Fig. 7.
Two distortion types are used: limitation and rectification of
signal. The number of filter parameters increases by two, Drive
and Feedback, which set the distortion amount. This expands the
synthesizer sound capability and the results are very interesting.

2.4. Analog Modelling Synthesizer Model

The Simulink model of a simple analog modelling synthesizer is
in Fig. 8. The synthesizer is single-channel and monophonic. It
contains two oscillators with ring modulator and noise generator,
one low-frequency oscillator (LFO), which controls oscillator
pulse width modulation, two ADSR envelope generators (AEG
and FEG), one parametric filter with distortion, and modulation
effect. The MIDI source block, which is the model of a very
simple sequencer, works as a MIDI note source. It converts
information about the beginning, length, number, and Velocity of
note to MIDI events, which it sends at the moment of note
beginning and note end. The LFO, AEG, and FEG blocks are
described in detail in [2].

3. DIGITAL SYNTHESIZER IMPLEMENTATION IN
JMF ENVIRONMENT

3.1. Implementing JMF Plug-Ins

If you extend JMF functionality by implementing a new plug-in,
you can register it with the PlugInManager to make it available
to Processors that support the plug-in API. To use a custom
Player, Processor, DataSource, or DataSink with JMF, you
register your unique package prefix with the PackageManager.
When implement digital musical effects we need to create the

custom Effect Plug-In. When we implement digital synthesis
algorithms, we need to create the custom Effect Plug-In as well as
the custom DataSource and custom Multiplexer Plug-In.

3.1.1. Implementing Protocol Data Source

A DataSource is an abstraction of a media protocol-handler. You
can implement new types of DataSources to support additional
protocols by extending PullDataSource, PullBufferDataSource,
PushDataSource, or PushBufferDataSource. If you implement a
custom DataSource, you can implement Demultiplexer and
Multiplexer plug-ins that work with your custom DataSource to
enable playback through an existing Processor, or you can
implement a completely custom MediaHandler for your
DataSource.
A DataSource manages a collection of SourceStreams of the
corresponding type. When you implement a new DataSource,
you also need to implement the corresponding source stream:
PullSourceStream, PullBufferStream, PushSourceStream, or
PushBufferStream.
So that the Manager can construct your custom DataSource, the
name and package hierarchy for the DataSource must follow
certain conventions. The fully qualified name of your custom
DataSource should be:

<protocol package-prefix>.media.protocol.<protocol>.DataSource

The protocol package-prefix is a unique identifier for your code
that you register with the JMF PackageManager as a protocol
package-prefix. The protocol identifies the protocol for your new
DataSource.

3.1.2. Implementing Effect Plug-In

An Effect plug-in is actually a specialized type of Codec that
performs some processing on the input Track. Effect is a single-
input, single-output processing component and the data
manipulation that the Effect performs is implemented in the
Process method. When you implement an Effect, you need to:

Figure 8. Simulink model of analog modelling synthesizer

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-5

• Implement getSupportedInputFormats and
getSupportedOutputFormats to advertise what input and
output formats the effect supports.

• Enable the selection of those formats by implementing
setInputFormat and setOutputFormat.

• Implement process to actually perform the effect
processing.

Figure 9. JMF model of digital synthesizer according to Fig. 8

3.1.3. Implementing Multiplexer Plug-In

A Multiplexer takes individual tracks of media data and merges
them into a single multiplexed media-stream. A Multiplexer is a
multi-input, single-output processing component. It reads data
from a set of tracks and outputs a DataSource. The main work
performed by a Multiplexer is done in the implementation of the
process method. The getDataSource method returns the
DataSource generated by the Multiplexer. When you implement a
Multiplexer, you need to:
• Implement getSupportedOutputContentDescriptors

to advertise what output formats the Multiplexer supports.
• Enable the selection of the output format by implementing

setOutputContentDescriptor.
• Implement process to actually merge the individual tracks

into an output stream of the selected format.

3.2. Implementing Digital Synthesizer using JMF Plug-Ins

When realizing digital synthesizer in the JMF environment we
divided the model according to Fig. 9 into three parts: the
oscillators and LFO part, the mixer part, and the filter/VCA/effect
processor part. The oscillators are actually signal sources, i.e. a
data stream. That is why we used a PullBufferStream interface
when we implemented these oscillators and the LFO.

public class GeneratorPullBufferStream implements
PullBufferStream

A Read method is implemented in this class, which is called
when data are read from the stream. Within this method performs
signal generation is performed.

public void read(Buffer buffer)

Streams also contain information about the data format. The
mixer block is formed by the Processor, whose input is a
GeneratorDataSource data source. This class extends the
PullBufferDatSource

class GeneratorDataSource extends PullBufferDataSource

A GetStreams method is implemented in this class, which refers
to GeneratorPullBufferStream objects. The Processor contains a
demultiplexer, two effects plug-Ins, and a multiplexer. The
Processor selects the demultiplexer according to the input
streams from the DataSource. The Demultiplexer divides the
input stream into two tracks that contain output signals of both
generators from GeneratorPullBufferStream. The Effect Plug-Ins
only adjusts the amplitude of these signals. The output
multiplexer merges both tracks and sums them with the noise
generator and RM outputs.
The other parts of the synthesizer model according to Fig. 9 are
parts of the other Processor. A demultiplexer is on its input
again, this time with one output track. Individual blocks are
realized via the effect plug-ins while a Renderer plug-in is on the
output. We obtain a suitable Renderer for the given data format
(if it is registered) from the Plug-In Manager. It can be a
JavaSoundRenderer for raw audio data, which is part of the
com.sun.media package.

Figure 10. Graphic user interface of the JMF digital synthesizer

REFERENCES

[1] Java Media Framework Application Programming Interface
Guide. Sun Microsystems, Inc. 1999.

[2] Schimmel, J., Fitz, R., and Oboril, D. “Digital Synthesis and
Processing by Plug-In Method in VST and Java Media
Framework Environments”. Student Member Scholarly
Works at the 110th International Convention of The AES,
Student Delegate Assembly, at Amsterdam, 2001.

[3] Schimmel, J. “Modern Types of Analog Modelling
Synthesizers”. Proceedings of ATP 2000 conference, Brno,
2000. (in Czech)

[4] Smekal, Z. et al., Partial research report on the solution of
international project No OC G6 10 for the year 1999, 1999.

[5] Smekal, Z. et al., Partial research report on the solution of
international project No OC G6 10 for the year 2000, 2000.

