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ABSTRACT 

Audio signals are often stored or transmitted in a compressed 
representation, which can pose a problem if there is a 
requirement to perform signal processing; it is likely it will be 
necessary to convert the signal back to a time domain 
representation,  process, and then re-transform. This is time-
consuming and computationally intensive; it is potentially more 
efficient to apply signal processing while the signal remains in 
the transform domain. We have implemented a scheme whereby 
linear processing of the traditional type often instinctively 
understood by those working in the audio field may be applied to 
signals stored in a wavelet domain representation. Results are 
presented which demonstrate that the method produces the same 
output – to within the limits of machine precision – as time-
domain processing, for less computational effort than would be 
required for the full explicit process through the time domain and 
back again. The potential benefits for linear effects processing 
(for example, EQ and sample-level delays and echoes) and also 
for non-linear processing such as dynamics processing, will be 
introduced and discussed. 

1. INTRODUCTION 

In many audio applications, some form of processing (linear such 
as high pass filtering, or non-linear such as de-noising) may have 
to be performed on the signal, and it has been established [1] that 
there are potential efficiency gains if such processing can be 
performed in the transform domain. Wavelet methods have 
already proven popular for non-linear applications such as de-
noising. Here we deploy them in a new paradigm for linear signal 
processing (such as, in the first instance, FIR filtering or simple 
delays) with the aim of being operable in real-time on signals 
which are already available only in the wavelet domain.  
 
Other researchers [2][3][4] have also demonstrated the 
possibilities afforded to audio signal processing through 
consideration of wavelet domain analysis or processing. Our 
particular objective is the implementation of a signal processing 
system based on the wavelet model, where the processing applied 
is the same as would be applied to a time-domain audio signal. A 
major requirement is that a wavelet representation of the signal 
be available or derivable at every sample instant [5]. In a naive 
implementation, this would necessitate performing a wavelet 
transform on some segment of the signal for each sample; a crude 
and inefficient approach. What has been implemented is a means 
by which a wavelet representation of all potential shifted 

versions of any signal may be obtained without such excessive 
computation or storage requirements. We discuss two distinct 
formulations of our approach. in order to establish whether it is 
appropriate to process in the transform domain. Our first 
formulation is based on the work of Liang and Parks [6], which 
enables wavelet representations of shifted versions of a signal to 
be generated from a more extensive transform of the unshifted 
original. Our alternative approach recasts the problem as one of 
linear algebra.  

2. LINEAR PROCESSING IN THE WAVELET DOMAIN 

The proposed technique is applied to signal blocks of fixed 
length N, and is formulated as a block convolution. Assume a 
discretized signal x (of length N), convolved with FIR filter h 
(impulse response of length M) to produce output signal y (of 
length N+M-2). Thus: 
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where x(n-i) is a shifted version of x(n) and X is the MxK matrix 
whose columns are shifted versions of the signal vector. The 
wavelet transform may be represented as a matrix operation. If 
the wavelet transform of x is 
 

xWW N
x .=      (2) 

 
where WN is an N×N matrix, and Wy is similarly defined, though 
of dimension L×L where L=(N+M-2), then we may write 
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Because the wavelet transform is linear, from (3) we obtain 
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which can be rewritten as 
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Thus the wavelet transform of the convolution of x and h can be 
computed by an appropriately weighted sum of the wavelet 
transforms of shifted versions of x. To implement this in practice 
requires a wavelet transform domain representation of the vector 
x at each time sample, and thus an N×N matrix of time-shifted 
wavelet domain data is required, compared with the length N 
vector of data needed for time domain processing. Increases in N 
and/or M exacerbate the impact of this problem. Thus it is 
necessary to obtain a wavelet transform domain representation of 
a shifted version of the input signal x without resort to explicit 
transform of signal blocks at each time sample. 

3. WAVELET TABLE IMPLEMENTATION 

3.1. Theory 

Wavelet coefficients might be considered analogous to discrete 
samples of some periodic function within each decomposition 
level, each shift of the time-domain signal similarly shifting the 
sampling instants of this “wavelet coefficient function”. Liang 
and Parks [6] took advantage of this to exploit redundancy in 
wavelet transformation. Based on mathematical work by Beylkin 
[7], the process has two steps: firstly, obtain the wavelet 
coefficients for all shifted versions of the signal, and secondly, 
select those wavelet coefficients which best characterise the 
signal according to some selected cost function. Liang and Parks 
report that it is possible to obtain the wavelet transforms of all 
circularly shifted versions of an N-point signal without having to 
explicitly transform a set of compound unit-shifted frames. The 
complexity is of order N log(N) compared to order N for the 
single frame wavelet transform and N2 where the transform is 
explicitly determined for each shifted version of the frame. 
 

At each decomposition stage, the input is passed through high- 
and low-pass filters, and then the output is downsampled by a 
factor of two. The outputs of the high-pass filter are called the 
differences dj and the outputs of the low pass filter the averages 
sj. The averages are input to the next stage of the filterbank. The 
operator of downsampling by two is a linear operator of period-
two, which means that if the input is shifted by 2k, k ∈ Z, the 
coefficients of the output will be shifted by k samples. Therefore 
the output at the first stage for even shifts is obtained simply by 
shifting the output for the original input, and the output for the 
odd shifts is obtained by shifting the output for the shift-by-one 
version of the original input. At each stage, therefore, it is only 
required to calculate the output for two shifts: the original input 
and its shift-by-one. The coefficients of the differences and 
averages are obtained by 
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We compute on each scale j, (1 ≤ j ≤ L), 2j vectors of differences 
and 2j vectors of averages. If we denote the current scale as 0 
and the next scale as 1, then 
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and stepping between the scales we double the number of vectors 
of averages and differences while at the same time halving the 
length of each of them. For all scales j, (1 ≤ j ≤ L),and shifts i, (1 
≤ i ≤ N-1), tables are computed of size jx(i+1) which give direct 
access to the required coefficients. 
 
N.B. The work of Cohen, Malah and Raz [8] is similar. Utilising 
the wavelet packet decomposition (WPD) approach, they used a 
cost function to estimate the best wavelet basis within each level 
and at each node of the decomposition. The resultant 
transformation has been proven to be shift-invariant; thus the 
process and decision are similar to those of Liang and Parks, 
arrived at via a different approach. Cohen et al’s SIWPD (shift-
invariant wavelet packet decomposition) does not perform the 
automatic downsampling of the standard WPD, but selects those 
coefficients which minimise some chosen cost function. That 
decisions are taken within each decomposition level as to 
whether or not to apply a unit shift prior to transformation 
suggests, though, that the decision trees and wavelet bases 
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selected are unique to each frame and highly dependent on the 
status of each signal component within the given frame.  

3.2. Implementation 

The wavelet transform of the signal is available in matrix form as 
a look-up table of order N (j+1), in what might be termed a 
“wavelet table”. The advantage of this approach is that the 
wavelet coefficients of all shifted versions of a frame are 
obtainable for an increase in required information - effectively, 
bandwidth - of order j+1 (in the examples presented in this 
paper, j+1=7). 
 

 
 

Figure 1: Reconstructed signal compared with original 

 
Figure 1 shows a 2048-point signal, formed of a superposition of 
four sinusoids and white noise. The ‘reconstructed signal’ of this 
figure is that of a signal transformed to and from the wavelet 
table domain with signal blocks of size 256, using Daubechies-4 
wavelet filters and decomposing through 6 levels. The resultant 
errors are of the order of machine precision. 
 
In Figure 2 we see the results when a simple 3-tap low-pass FIR 
filter is applied to the signal while it is in the wavelet table 
domain, compared to the FIR filtering of the time domain signal. 
One of the potential problems of the implementation is illustrated 
– a discontinuity across boundaries between signal blocks is 
introduced, in that it is only after a block boundary that the 
‘shifted’ wavelet coefficients are updated to utilize the data from 
the newer block. Such a discontinuity means that boundary 
(block-end) artefacts are anticipated. 
 
Thus the wavelet-domain filtered signal matches the time-domain 
filtered signal closely, except near block boundaries where the 
“block-end” effects become significant. The weakness in this 
initial approach lay in the assumption that a linear shift along a 
signal could be modelled using a circular shift approach. This is 
a feature of the “wavelet table” transform itself - Liang and 
Parks’ work is based upon a circulant shift of the signals, and the 

circulant shift in itself causes the algorithm to behave in an 
unpredictable manner. To compensate for this, we modified the 
approach using results from [9], in which an improved wavelet 
packet transformation of audio signals was effected by utilising 
samples from preceding blocks in order to eliminate block-end 
artifacts – a lapped wavelet transform. We doubled the length of 
the wavelet transform block, while maintaining the 
“reconstruction” block at the same size. 
 

 

Figure 2: Signal filtered in time and wavelet domains 

 
As can be seen in Figure 3, the block-end artifacts are eliminated, 
the only residual problem being a short glitch at the start of the 
signal when there is no data available for the filter to operate on; 
this can be easily eliminated in any practical implementation. 
 
 

 
Figure 3: Filtered signals using “over-sampled” algorithm 
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4. LINEAR ALGEBRAIC IMPLEMENTATION 

Another way to consider the problem is to see it from a purely 
algebraic point of view; in order to implement the filtering 
procedure, one must adjust the ordering of wavelet coefficients.  
The standard subband ordering is {sJ, dJ, dJ-1, … , d1}, and 
within each subband the coefficients are ordered chronologically. 
It is more efficient to take into account the periodicity of the 
wavelet transform, and to group together coefficients that share a 
time localization at different scales. This is done by interleaving 
the wavelet coefficients recursively: starting from the dJ and sJ 
sequences, one constructs another sequence uJ with alternated 
coefficients uJ = {… dJ[k], sJ[k], dJ[k+1], sJ[k+1] …}. 
Recursively, uj-1 is obtained by alternating coefficients from dj 
and from uj. The interleaved sequence is then u1, which has N 
coefficients. 
 
In the general case, let us consider the expansion of the signal 
x[n] in an (as yet unspecified) orthonormal basis 

NkkwW ...1}{ == : 
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Let us call x~ the filtered version of x by the FIR filter h, and 
α~ the corresponding coefficients in W. If we call 

NkkwW ...1}~{
~

== the basis formed by the filtered set of vectors, 

we have the following relation: 

∑ ∑
= =

==
N

k

N

k

kkkk nwnwnx
1 1

][~][~][~ αα  (13) 

Taking the left scalar product of both members of this last 
equality by a given vector

0kw of W gives: 
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where .,. is the canonical scalar product over RN. This can be 

rewritten as a matrix-vector multiplication: if we denote by 

A(resp. A
~

) the N×1 column vector formed by the α(resp.α~ ) 
coefficients, and M the N×N matrix which (i,j) coefficient is 

given by jiji wwM ~,, = , then eq.(7) is equivalent to  

 
MAA =

~
    (15) 

 
From (15), it follows that filtering in the wavelet domain can be 
accomplished by a simple matrix multiplication (the matrix M 
can be pre-computed). As the a priori computational load is then 
of order N2, one may wonder what the advantages are to doing so 
rather than doing the inverse transform, filtering the signal, and 
coming back in the wavelet domain, since all three operations 
can be done with fast (order N or N  log(N)) algorithms. In the 
specific case where W is a wavelet basis, the matrix M has few 
non-zero coefficients, and this considerably reduces the 
complexity of the matrix multiplication. The input signal is high- 
and low-pass filtered (perfect reconstruction is obtained with 
QMF filters), and sub-sampled by a factor 2, to obtain the two 
sub-signals d1 and s1 respectively. This procedure is repeated 

recursively J times on the low-pass sub-signals sj  to obtain the 
sub-signals dj+1 and sj+1. 
 
In order to implement the above filtering procedure, one has to 
choose the ordering of wavelet coefficients.  The standard 
subband ordering is {sJ, dJ, dJ-1, … , d1}, and within each 
subband the coefficients are ordered chronologically. It is more 
efficient to take into account the periodicity of the wavelet 
transform, and to group together coefficients that share a time 
localization at different scales. This is done by interleaving the 
wavelet coefficients as shown in Figure 4. This  re-ordering  is 
done recursively: starting from the dJ and sJ sequences, one 
constructs another sequence uJ with alternated coefficients uJ = 
{… dJ[k], sJ[k], dJ[k+1], sJ[k+1] …}. Recursively, uj-1 is 
obtained by alternating coefficients from dj and from uj. The 
interleaved sequence is then u1, which has N coefficients. 
 

 

Figure 4: Interleaving the wavelet coefficients (J=4) 

With this ordering of wavelet basis functions {wi}, one can 
compute the matrix M with the scalar products between filtered 
and unfiltered wavelets. Filtering in the (interleaved) wavelet 
domain is made as follows (Figure 5): from the sequence of 
interleaved wavelet coefficients of the original signal x take a 
segment of length lm (hop size of 2J  between segments), 
transpose it to a column vector and left-multiply by the matrix m: 
the result is the set of (interleaved) wavelet coefficients of the 
filtered signal x~ . Spurious boundary effects are easily suppressed 
by proper zero-padding of the initial sequence x. The total 
number of multiply operations for the filtering of the whole 
signal is reduced to N × lm.  
 

 

Figure 5: Filtering in the (interleaved) wavelet domain 
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5. DELAY IN THE WAVELET DOMAIN 

To demonstrate the potential of our implementations in the field 
of digital audio effects, we first of all implemented one of the 
simplest effects to understand and implement in the time domain, 
that of delay. We sought to compare delay implemented using 
our wavelet processing with that implemented in the time domain 
and with an intelligent delay applied to the wavelet coefficients 
in each level of the decomposed (transformed) signal. 
 

 

Figure 6: Input signal for digital delay 

 
The signal of Figure 6 – designed with a high level of harmonic 
content – was fed into our wavelet table implementation and 
delayed by a variable number of samples. All subsequent figures 
show (a) signal delayed in the time domain, (b) signal delayed in 
the wavelet domain, by one or other of the methods mentioned, 
(c) error between the two. 
 
Figure 7 illustrates the effect for a delay of 128 samples, and 
shows that while much of the harmonic content of the signal has 
been retained, a noticeable degree of residual error has been 
introduced into the signal. Figure 8, on the other hand, clearly 
demonstrates no such problems with the wavelet table 
implementation, which delays the signal accurately with residual 
errors negligible. 
 
One might anticipate that the results of Figure 7 are a reasonable 
approximation because the rounded delays within each wavelet 
decomposition level are closest to accuracy when the delay is a 
power of two. Hence, for the results of Figure 9 we applied a 
delay of 127 samples in the wavelet domain, and the resulting 
errors are even more significant; this would correspond to 
considerable, noticeable unwanted distortion of an audio signal, 
whereas using the wavelet table method (Figure 10) shows no 
such problems. 
 
The conclusion to be drawn from this is that there is potential for 
use of our methods to process wavelet domain audio signals; 
here we demonstrated the possibilities afforded by simple 
filtering and delays here, but it is possible to extrapolate these 
conclusions to any form of linear processing, and possibly to 
non-linear processing also. 
 

 

Figure 7: Signal produced by delay of wavelet coefficients 

 

 

Figure 8: Signal produced by wavelet domain processing 

 

 

Figure 9: Signal produced by delay of wavelet coefficients 
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Figure 10: Signal produced using wavelet domain processing 

6. CONCLUSIONS 

The wavelet table approach has been successfully applied to 
simple digital audio processing tasks, and it operates effectively 
when incorporating the over-sampled (‘extended block’) 
modification. Similarly, the linear algebraic implementation has 
been demonstrated to successfully apply linear DSP tasks to 1-D 
signals such as audio signals. This implementation has the 
further potential advantage that it is possible to obtain an 
approximation of x~ by restricting m to a sub-matrix containing 
the largest coefficients; in most cases the coefficients in the 
columns near the left and right sides of m have a very small 
amplitude. Such scalability in complexity can in itself justify the 
use of the wavelet domain for filtering signals.  
 
In assessing success or applicability of this approach, it is 
necessary to consider whether this 2x(j+1)-fold increase in 
required information (bandwidth), and the resultant increase in 
complexity of the encoding and decoding, are not so excessive as 
to negate the advantages of being able to process the signals in 
the wavelet domain. The wavelet table implementation hinges 
upon an increase in required information (bandwidth), and the 
resultant increase in complexity of the encoding and decoding 
are evident drawbacks of the method. However, both this 
approach and the matrix algebraic formulation are more efficient 
implementations of the core idea than the basic requirement to 
transform signals back into the time domain prior to linear signal 
processing. Investigation is also ongoing into whether it is 
possible to extrapolate the wavelet table domain from the 
standard, non-time-shifted wavelet coefficients [11]. 
 
It is possible to extrapolate further potential uses for our 
implementations – the potential exists for echo, reverb and 
chorusing effects, for instance, to be deployed on wavelet 
domain signals. Similarly, non-linear processing is possible; 
consider dynamics processing (compression and expansion) as an 
example. At the moment multiband dynamics processing is a 
widely understood and utilised technique; multiscale dynamics 
processing is a potentially similar concept. However, in normal 
circumstances with the signals presented within a regularized 
“block” of data, the temporal resolution on the dynamic range 
adjustment is limited; the new schemes presented in this paper 
could incorporate finer temporal resolution. 
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