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ABSTRACT

Common problems with current methods of musical note onset
detection are detection of fast passages of musical audio, detection
of all onsets within a passage with a strong dynamic range and
detection of onsets of varying types, such as multi-instrumental
music. We present a method that uses a subband decomposition
approach to onset detection. An energy-based detector is used on
the upper subbands to detect strong transient events. This yields
precision in the time resolution of the onsets, but does not detect
softer or weaker onsets. A frequency based distance measure is
formulated for use with the lower subbands, improving detection
accuracy of softer onsets.

We also present a method for improving the detection func-
tion, by using a smoothed difference metric. Finally, we show that
the detection threshold may be set automatically from analysis of
the statistics of the detection function, with results comparable in
most places to manual setting of thresholds.

1. BACKGROUND

Note onset detection aims to find the start of musical events from
the audio signal itself. It is an essential component of many larger
systems such as automatic musical transcription schemes, non-
linear time scaling [1], and many new audio effects and editing
tools, such as ’beat detective’[2] from Digidesign. It is also com-
mon for many synthesis applications to require isolation of the at-
tack portions of notes.

Despite some proposed solutions, it remains an unsolved, and
often over-simplified, problem. Traditional methods such as high
frequency detection rely on the assumption that all note onsets con-
tain high frequency energy [3]. The assumption that, for most in-
struments, a note will contain more high frequency energy at its
onset is fair to make. However, in the case of real world audio
examples where there may be high notes with considerable high
frequency energy at their onset in the same region as low notes
with weak high frequency energy, the lower notes become almost
impossible to detect from the detection function. This work ad-
dresses this problem directly.

If we consider the nature of musical signals, there is a range of
different types of instrument onsets. Figure 1 shows short sections
of signals from a guitar and a violin. The guitar is a string in-
strument that is played percussively, leading to ’hard’ note onsets,
appearing as wide-band noise in the spectogram. For this type of
instrument, high frequency content is a useful detection method.
However, the violin in this figure is an example of a bowed string
instrument, with a ’soft’ onset. The strings are excited because of
the stick-slip caused by the friction of the bow. In this case, the

notes are being excited constantly, hence there is little, or no, de-
cay. Here, the change in frequency content, particularly at lower
frequencies, is our best guide to note onsets. Most everyday musi-
cal signals contain a range of hard and soft onsets.

Figure 1: Spectogram of solo guitar (upper) and solo violin
(lower) signals. The guitar has a hard percussive attack, whereas
violin onsets have a much softer onset.

To overcome this, several proposals use energy content in in-
dividual frequency bands to search for possible onsets [4],[5]. This
improves results; however using the same energy content algo-
rithm across all frequency bands is not necessarily the best method.
This suggests low notes would be just as easily detected as high
notes, which is not the case.

Consider high frequencies: there are often short bursts of en-
ergy with large gaps between, relative to frequency. At lower fre-
quencies, the notes decay more slowly, and occur at a faster rate
relative to frequency, suggesting basic energy detection will not be
as effective.

There are some ’grey area’ issues with note onset detection
that require consideration. Notes which fade-in, rather than have a
hard onset, are problematical for most methods of onset detection.
Likewise, glissando (smooth transitions between notes) can lead
to cases of wrong detection. Both these issues are improved by the
multiresolution hybrid scheme offered here, with more slowly oc-
curring onsets appearing in the longer-windowed lower subband.

It is also worth noting that there are some differences between
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note onset detection and transient detection, such as [6],[7]. The
former is concerned with detecting the beginning of musical events,
whilst the latter aims to isolate fast changes. Although the results
produced may be similar, as there are usually fast changes at note
onsets, transient detection alone will not detect notes with softer
onsets, such as slower attacks.

Our aim is to produce a note onset detection scheme that yields
good results for the full range of musical instruments and attacks,
regardless of signal, at a low computational cost. Further to this,
the detector should require no user inputs such as manual threshold
setting or information on the signal or instrument type.

For this reason we propose using a hybrid scheme of transient
energy detection in the high frequency subbands, with an FFT-
based distance measure used to detect note changes at low fre-
quencies. This facilitates detection of both the hard and soft onsets
shown in figure 1.

2. SUBBAND HYBRID DETECTION SCHEME

The signal is split into a number of frequency subbands for in-
dividual onset detection analysis. This is implemented using a
constant-Q conjugate quadrature filter bank, as described in [8],
with 5 bands from 0-1.1kHz up to 11-22kHz. From individual
analysis of each subband, it is clear that the highest band contains
weak onset information for almost all signals. To save computa-
tion this band (> 11kHz) is not used. The next three subbands
representing the range from 1.2-11 kHz contain noticeable bursts
of energy for a range of note onsets. The lowest subband does not
have the same strong bursts of energy at note onsets - however,
there are noticeable differences in the frequency content at note
changes. From this, we propose using standard energy content
analysis only for the upper subbands (1.2-11kHz). This yields ex-
cellent detection only for those signals with wideband-noise based
onsets, and also yields results which are accurately localized in
time. The subband energy, SE(n), is given by:

SE(n) =
nh∑

m=(n−1)h

|x(m)|2 (1)

where m is the time index, n is the hop number and h is the hop
size. h may be short(≈ 128 samples) as the downsampling of
the subband scheme means it varies in each band. This effectively
yields the temporal envelope of the signal, sub-sampled by a factor
h relative to the samplerate of the subband. In the upper subbands,
note onsets can be detected from jumps in energy, using the differ-
ence:

ons(n) = SE(n) − SE(n− 1) (2)

This has the advantage that it is computationally efficient, whilst
yielding good results for a range of signals. In section 3 we show
how this idea can be extended further using a one sided smooth-
ing function. However, at a cost of an additional short-time Fourier
transform (STFT) in each upper subband, we can utilize a transient
energy measure [9]. Considering basic phase vocoder principles,
it is expected that, for steady state frequency components, the in-
stantaneous frequency should be approximately equal in adjacent
frames. The transient energy, TE(n), is therefore given by:

TE(n) =
∑

k∈Ktr

|X(k, nh)|2 (3)

where Ktr is used to denote the set of transient frequency bins,
ktr , given by:

φ(ktr, (n− 2)h) − 2φ(ktr, (n− 1)h) + φ(ktr, nh) < Ttr (4)

The subband transient energy term then replaces the subband en-
ergy terms in equation (2). This eliminates any upper steady state
components such as high frequency partials, or high pitched notes,
but at a much greater computational cost. Implementations us-
ing both subband energy and transient subband energy have been
tested, and the transient energy approach is found to eliminate
some of the detection function noise in recordings with greater
high frequency content. However, in the upper subbands this im-
provement is not significant, and to reduce computation may only
be used for the mid-frequency content.

For the lower two frequency bands (0-2.5kHz, representing
the range of musical notes up to D#7) we propose the use of a
distance measure between the vectors created for each frame of
an FFT. This is based on a standard Euclidean distance measure,
EDM :

EDM =

N/2∑

k=1

{|X(k, nh)| − |X(k, (n− 1)h)|}2 (5)

However, it is clear from equation (5) that fast decay will have
the same effect as a note onset. Whilst this may be desirable for
location of attack transients, as in [3] where a similar distance mea-
sure is used, our aim is to locate note onsets for musical analysis,
editing and effects. Hence, we take only positive values. Putting:

dXn(k) = X(k, nh) −X(k, (n− 1)h) (6)

we then have the distance measure:

DM =
∑

{k;dXn(k)>0}
dXn(k)2 (7)

A normalization term is incorporated so that softer onsets are de-
tected alongside harder onsets:

DM =

∑
k;dXn(k)>0 dXn(k)2

∑N/2
k=1 |X(k, (n− 1)h)|2

(8)

Frequency domain smoothing improves results by limiting ef-
fects of instabilities. This produces a detection function that varies
from a standard energy measure in that it looks at the average over
one frame of the increases in energy content within each FFT track.
In the lower frequency band, this detects all changes in note, but at
a cost of poorer time resolution. Hence, each method is a trade-off
between correct detection and good time localization of detected
onsets.

At higher frequencies, the measured frequencies of the partials
are not stable enough for using a distance measure, as illustrated by
the minimal improvement offered by the transient energy function.
Note that there is some frequency domain overlap (in the 1.2-2.5
KHz subband) between the methods, increasing data for analysis,
however, this allows for the region where there is still noticeable
energy bursts, but also slowly decaying pitch information.

A key advantage to using a subband filterbank of this type is
the good time resolution in the upper subbands, to locate hard on-
sets, whilst there is good frequency resolution at low frequencies,
making a distance measure more useful. It would be desirable to
tie this to psychoacoustic principles as the ear acts as a filterbank,
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Figure 2: Block Diagram of Proposed Onset Detection Scheme.
GO and G1 represent the low pass and high pass CQF filters re-
spectively.

however, it has been shown [10] that the time localisation of sound
onsets is not frequency dependant above 200Hz, but appears to be
linked to the bandwidth of the signal at the onset.

A block diagram of the overall hybrid subband scheme is shown
in figure 2.

3. DETECTION FUNCTIONS

The detection function from each subband now takes the form of
an energy/distance measure over time. Within this signal, we are
interested in the sharp increases. For this reason, the derivative
of the energy/distance measure we have calculated in the previous
section would typically be used. However, immediately after an
onset, there are often noisy regions leading to multiple detections.
One common solution is to low pass filter the energy/distance,
however, this leads to a blurring of the position of onsets, as well
as a smoothing of weaker onsets.

We propose using the difference between the current frame,
and several previous frames. Adapting equation (2) this detection
function is now given by:

ons(n) =

A∑

a=1

SE(n) − SE(n− a)

W (a)
(9)

where W (a) is a weighting function of the integer a.
This gives a meaningful interpretation in the time domain,

however, by re-arranging, we see that this produces a detection
function that is based on the difference between the signal, and a
smoothed version of itself:

ons(n) = K.SE(n) −
A∑

a=1

W−1(a)SE(n− A) (10)

where

K =
A∑

a=1

W−1(a) (11)

Note that K is a constant term outside the summation, and may
therefore be ignored. From this it is clear that the weighting func-
tion W−1(a) acts as filter coefficients of a filter. If no weighting

function is used, this is the equivalent of low pass filtering with
a fast transition band, which increases with the number of coeffi-
cients, A. This clearly gives too much weighting to energy terms
which occur a long time before the onset. The weighting terms,
W−1(a) tested were linear and exponential. In the linear case of:

ons(n) = SE(n) −
A∑

a=1

(1 − a

A
)SE(n− a) (12)

Compared to the case with no weighting function, this gives a
greater weighting to the subband energy terms before the poten-
tial onset location. In filtering terms, this is a low pass filter with
smoother roll off than the previous case.

This was compared to the exponential weighting function given
by:

ons(n) = SE(n) −
A∑

a=1

SE(n− a)

a
(13)

Exponential weighting now gives much greater emphasis to more
recent energy values, whilst allowing previous values to have some
effect. This function produces the clearest detection function re-
sults. In filtering terms, the signal is low pass filtered with a very
smooth roll-off, as most of the energy is in the first filter coeffi-
cients. This also reduces the effect of the choice of A (A = 30 in
our implementation).

This approach to detection function smoothing maintains bet-
ter time-localization of the onsets than basic low pass filtering,
whilst minimizing multiple detections of onsets (see Figure 3).

Figure 3: Guitar signal spectogram (top) with 5.5kHz-11kHz
subband energy measure over time (upper middle). Traditional
derivative-based detection function (lower middle), compared to
proposed detection function (bottom).

4. AUTOMATIC THRESHOLD SETTING

The thresholding of onset detection functions is problematical for a
number of reasons. Firstly, the detection functions tend to be noisy,
unless they are extensively low pass filtered, leading to a loss of
weaker transients, and poorer time resolution. Secondly, detection
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function magnitudes tend to vary considerably over the range of
real world signals. Further to this, within one short segment of a
signal, there may be a range of different types of onsets. For these
reasons, detection thresholds tend to be set manually in many onset
detection applications. However, there are many cases where this
is not practical. For example, when implementing audio effects
requiring detection of note onsets, the user should not be required
to set an onset detection threshold for each signal. This is also
a considerable problem where real time applications are desired.
By using the statistical properties of the detection function, we
propose a method for automatic setting of a threshold. Figure 4
shows a typical histogram of the detection function described in
the previous section.

The onsets are defined as the outliers within the histogram,
whereas the no-onsets content should be closer to zero. The detec-
tion function histogram may be viewed as a combination of two
probability density functions:

p(tr) ∼ N(0, σ2
tr) (14)

p(nt) ∼ N(0, σ2
nt) (15)

where p(tr) is probability of a transient, and p(nt) is probability
of not a transient. Where transients are present in the signal, it is
expected that:

σtr >> σnt (16)

The no-onset probability function will have a high peak at its ap-
proximately zero mean, with a narrow distribution. Conversely,
the onset detection probability distribution will have a low peak at
zero, representing those cases where onsets produce a low detec-
tion function amplitude, with a wide distribution. The combination
of these produces a histogram like that of figure 4.

Figure 4: One-sided histogram (lower) of 2.25-5.5kHz subband
detection function of audio signal (upper).

The ideal threshold is therefore at the point where the data is
more likely to be an onset. We proposed two methods allowing
this. The first of these used a mixture of two Gaussians, fitted
using the EM algorithm, as described in [[11]]. However, this ap-
proach proved costly in terms of computation when compared with
our second approach. The second uses the second derivative of the

histogram as an approximation of the first method in order to re-
duce computation.

The aim is to find the point where all greater values in the de-
tection function represent note onsets. If we study the proposed
model shown in figure 5, the threshold should be set at the posi-
tion where the combined pdf curve takes the characteristic of the
transient component. This occurs at the maximum of the second
derivative.

The threshold can be set in this manner for any size window
of data. However, due to the variety of content within a signal,
windows of approximately 5 seconds are used in this scheme.

We intend to extend the scheme to use the statistics of the sig-
nal to find regions where onsets are not present within a subband,
such that the onset probability should be zero. This may offer a
solution to some of the problems outlined in the results section.

Figure 5: Approximate model of pdfs for transients(with wide vari-
ance) and non-transient by fitting two Gaussians (top), with their
total shown as a dotted line. The first derivative is shown below,
with the second derivative as the bottom plot. The threshold is set
at the maximum in the second derivative.

5. COMBINING SUBBAND INFORMATION

Subband information may be combined and onsets detected in the
combined function such as:

Sall = S1(t) + S2(t) + S3(t) + S4(t) (17)

If peak picking is applied to this function, it does not solve the
problem of weaker onsets remaining undetected, even though they
may be strong within a certain frequency band. For this reason, we
choose to detect onsets from the subband detection functions, and
combine the results.

After peak-picking and thresholding each subband detection
function, we have a range of detected onsets. Each output of the
subband scheme produces positions of onsets. In many cases, on-
sets are present in multiple, although not all, subbands. If all these
are taken, we obtain:

P (t) = PS1(t) + PS2(t) + PS3(t) + PS4(t) (18)

DAFX-36



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

where P (t) is a signal length vector containing one at onsets and
zeros elsewhere, S1 denotes the highest subband, and PSx(t) is
a signal length zero vector containing one at onsets detected in
subband x and zeros elsewhere.

However, many onsets will appear in more than one subband,
with some difference in position cause by the resolution differ-
ences between subbands and the intrinsic differences between the
two methods of the hybrid scheme. For this reason, we take a
short window of 50ms and take a maximum of one onset for each
window. All other onsets within this window are then discarded.

This approach is adopted rather than position averaging as
time resolution is improved in the upper subbands, whilst detec-
tion accuracy is improved in the lower subband in this scheme.
As the higher frequency subbands have the best time resolution, a
higher band always takes precedence over a lower band, optimiz-
ing the results obtained. This is done by weighting the output of
each subband:

P (t) = αPS1(t) + βPS2(t) + γPS3(t) + PS4(t) (19)

where α, β, and γ are weighting terms such that:

α > β > γ (20)

and γ > 1. P (t) is windowed such that only the greatest weight
onset is kept within the 50ms window. The remaining onsets are
discarded.

A second reason for using a weighting scheme of this nature is
that it may be tuned so that only ’hard’ or ’soft’ onsets are selected.
In [1] we presented a time-scaling algorithm which required phase
to be locked at hard onsets. Here it is essential that all note on-
sets are detected, whilst hard and soft onsets are treated separately.
This onset weighting scheme has been successfully applied to the
time-scaling algorithm. Hard onsets can be defined as those with
a greater value for P (t) within the 50ms window before any sub-
band onsets are discarded. This can be inferred because hard on-
sets should appear as strong across several subbands. It is docu-
mented that human listeners detect transients more easily as their
bandwidth increases [10].

6. RESULTS

The proposed onset detection scheme was tested with a range of
signals. A variety of instruments, as well as performance and mu-
sical styles were tested. For each signal tested, onset points were
assigned by a listener beforehand. Due to the time consuming na-
ture of this, short musical segments (approx. 12 seconds) were
used in these tests.

An onset is considered accurately detected if the measured on-
set falls within 50ms of the pre-determined onset position. An
onset is undetected if no onset is measured within the 50ms win-
dow. If an onset is detected outside the 50ms window around a
pre-determined onset position, it is considered a false detection.
From [4], the measure of onset accuracy used is given by:

Accuracy =
Nt −Nud −Nfd

Nt
.100 (21)

where Nt represents total number of actual onsets in the signal,
Nud represents number of onsets undetected by algorithm, and
Nfd represents number of false detections.

For each signal, the test was run twice. In the first case, the
algorithm was tested with automatic threshold setting, and no user

setting of parameters. This represents the black box case that is re-
quired for an onset detection scheme to be incorporated into larger
systems. In the second case, the same algorithm was tested with
user defined thresholds for each of the subbands.

The signals which were used to test the algorithm were:
Jazz1 - Solo Jazz Guitar signal containing both single notes and
chords played with a wide range of dynamics.
Jazz2 - Solo Jazz Guitar signal containing fast passages of notes.
Dido - Pop music example with voice, guitar, keyboards, bass and
drums.
Piano1, Piano2- Solo piano signals containing both single notes
and chords played with a wide range of dynamics
Opera - Classical signal containing only bowed strings.

Figure 6: Results of note onset detection for a range of signals.
For each signal results are shown with both automatic threshold
setting (light grey) and manual threshold setting (dark grey).

As shown in figure 6, this approach to onset detection was
found to yield high quality results with above 90 percent accuracy
for a range of musical signals. In particular it performed equally
well for both hard and soft note onsets, across the whole frequency
spectrum. The results showed considerable improvements on stan-
dard energy methods in the detection of softer, low notes, improv-
ing missed detection rates with little increase in false alarms. Very
fast legato passages cause the most errors, however, this is also the
case with human perception.

The key problem shown in these results is for the automatic
threshold setting for those signals where onset information is weak
in certain subbands. In this case, the automatic threshold is set low,
leading to massive over-detection. This problem is illustrated by
the Opera test signal results. By increasing the threshold from the
automatic threshold to a high threshold in the upper subbands, the
results increase from 13% to 84% accuracy. We have looked at
ways to overcome this problem such that subbands are ignored if
they appear to contain weak onset information. This is essentially
a measure of whether the signal appears to be purely noisy, or con-
tain some outlier information, as explained in section 4. However,
this is intended for further investigation in future work.
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7. CONCLUSIONS

A musical onset detection scheme has been proposed which takes
advantage of subband decomposition, a hybrid approach to detec-
tion, an improved detection function approach and automatic set-
ting of detection thresholds. It goes some way to solving the prob-
lem of whether energy or frequency content approaches should be
used exclusively, by applying each to the frequency bands within
which they are most relevant.

The algorithm was found to yield good results for a wide range
of musical signals, with no threshold or parameter setting require-
ments. Further improvements were made with human input, how-
ever this kind of approach is unrealistic for most applications re-
quiring note onset detection.

It may be the case that other note onset or transient detection
schemes, such as the statistical approach of [12] could offer yet
further improvements, and a deeper investigation into other ap-
proaches is intended as future work. The idea of a scheme that
offers 100% detection rate for all signals is still a long way off.
Whether it will ever be possible is a matter for discussion. How-
ever, assigning note onsets accurately is often a difficult and time
consuming task for human listeners.

8. ACKNOWLEDGEMENTS

Thanks to Laurent Daudet for his comments and suggestions.

9. REFERENCES

[1] C. Duxbury, M. Davies, and M. Sandler, “Improved Time-
Scaling of Musical Audio Using Phase Locking at Tran-
sients,” in Proc. AES 112th Convention, 2002.

[2] Digidesign, “Pro tools 5.1.1 software specifications,”
http://media.digidesign.com/products/docs/prd 1057 2041.pdf.

[3] P. Masri, Computer Modeling of Sound for Transformation
and Synthesis of Musical Signals, PhD Thesis, University of
Bristol, 1996.

[4] A. Klapuri, “Sound Onset Detection by Applying Psychoa-
coustic Knowledge,” in Proc. IEEE Conf. Acoustics, Speech
and Signal Proceesing (ICASSP,’99), 1999.

[5] F. Jaillet X. Rodet, “Detection and modeling of fast attack
transients,” in Proc. Int. Comp. Music Conf. (ICMC,’01),
2001.

[6] L. Daudet, S. Molla, and B. Torresani, “Transient detection
and encoding using wavelet coefficient trees,” in Proc. of the
GRETSI’01 conference, 2001.

[7] T.S. Verma, S. Levine, and T.H.Y. Meng, “Transient Model-
ing Synthesis: A flexible analysis/synthesis tool for transient
signals,” 1997.

[8] A. Haddad, Ed., Multiresolution Signal Decomposition,
Academic Press, 1992.

[9] C. Duxbury, M. Davies, and M. Sandler, “Extraction of Tran-
sient Content in Musical Audio using Multiresolution Anal-
ysis Techniques,” in Proc. Digital Audio Effects Conference
(DAFX,’01), 2001.

[10] B.C.J. Moore, An Introduction to the Psychology of Hearing,
Academic Press, fourth edition, 1997.

[11] C. M. Bishop, Neural Networks for Pattern Recognition,
Clarendon Press, 1995.

[12] Thornburg H. and Gouyon F., “A Flexible Analysis-
Synthesis Method for Transients,” in Proc. of the Interna-
tional Computer Music Conference (ICMC2000), 2000.

DAFX-38


