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ABSTRACT

This paper makes a survey of the numerous analysis methods pro-
posed in order to extract the frequency, amplitude, and phase of
sinusoidal components from stationary sounds, which is of great
interest for spectral modeling, digital audio effects, or pitch track-
ing for instance. We consider different methods that improve the
frequency resolution of a plain FFT. We compare the accuracies in
frequency and amplitude of all these methods. As the results show,
all considered methods have a great advantage over the plain FFT.

1. INTRODUCTION

Several methods have been proposed in order to extract sinusoidal
components by improving the frequency resolution of a plain FFT.
With these methods it is possible to accurately recover the fre-
quency, amplitude, and possibly phase of all harmonic components
of the sound.

We describe in Section 2 six methods for extracting sinusoidal
components from stationary sounds. We show in Section 3 how
it is possible to improve these methods even further. Finally, we
make a comparison of these analysis methods in Section 4 and we
discuss the results of several important tests.

2. DESCRIPTION OF THE METHODS

To improve the frequency resolution of the FFT, different meth-
ods are reported in the literature. The methods use different ap-
proaches for the frequency analysis of sound signals. In the fol-
lowing subsections we give brief descriptions of the used meth-
ods. Table 1 shows an overview of the methods with the window
functions and method numbers used in the following sections.

No. Method window

1 plain FFT Hann

2 parabolic interpolation
parabolic main lobe (dB) in
freq. domain

3 triangle algorithm triangle in freq. domain
4 spectral reassignment Hann
5 derivative algorithm Hann
6 phase vocoder Hann

Table 1: Overview of the different methods and used window func-
tions.

2.1. Plain FFT without Post-processing

The input frame s(n) is windowed by x(n) = s(n) � w(n) with a
window function w(n). We use a Hann window1 before perform-
ing the FFT. Then the FFT X(k) of the windowed input frame is
calculated. The FFT magnitude Xm(k) = jX(k)j is set to zero
if it is below a small threshold. The modified FFT magnitude is
searched for local maxima. For all detected maxima km we calcu-
late the estimated sine frequencies and amplitudes as

f̂0 = km
fS

N
(1)

â0 = 2
Xm(km)P
N�1

n=0
w(n)

(2)

where fS is the sampling frequency and N is the FFT length.
In Equation (2) we have to scale the FFT magnitude bywmax =

jW (0)j=2, W (k) being the discrete spectrum of the analysis win-
dow w(n), since a sine of amplitude 1 leads to a modulated win-
dow with a maximum of wmax.

2.2. Parabolic Interpolation

In the magnitude spectrum2 jX(ej
)j, the shape of the main lobe
of most analysis windows looks like a parabola in the dB scale.
For each spectral peak, the parabolic interpolation uses, after the
FFT (see above), the main bin and its left and right neighbors in a
curve-fitting process with a parabola, using the Brent method [1]
to estimate the maximum of the parabola. In order to increase the
precision of the parabolic interpolation, zero-padding can be used
as in SMS [2, 3].

In the FFT magnitude a search for local maxima is performed.
With the FFT magnitude in dB, XdB(k) = 20 log10(jX(k)j); for
each detected maximum (at FFT index km) we define

A1 = XdB(km � 1); A2 = XdB(km); A3 = XdB(km + 1): (3)

Fitting a parabola f(k) through these three points yields the fre-
quency difference in FFT bins

d =
1

2

A1 �A3

A1 � 2A2 +A3

(4)

by detecting the position of the maximum of the parabola. The
corrected amplitude is the value of the parabola at its maximum

AdB = f(km + d) = A2 �
d

4
(A1 �A3): (5)

1In this paper we use the original name of the window designed by
the Austrian meteorologist Julius von Hann. It is also often referenced as
“Hanning” window.

2Considering the discrete-time Fourier transform with the normalized
frequency 
 = 2�f=fS .
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Then, the difference

�AdB = f(km + d)� f(km + 1 + d) (6)

is compared to the corresponding difference of the reference win-
dow spectrum �Aref = WdB(0) � WdB(1). If j�AdB � �Arefj
is above a certain threshold, the peak is omitted since it is sup-
posed that the FFT maximum is not produced by a sinusoid in the
original signal.

Although several windows may be used with this method as
for example a truncated Gaussian or a Hann window, we designed
a special window. This new window w(n) is shown in Figure 1(a),
Figure 1(b) shows its Fourier transform. The main lobe of this
window is very close to an exact parabola, Figure 1(c) depicts the
error between the original Fourier transform and the polynomial
fit using the three main lobe FFT points. An example with an
analyzed sinusoid at FFT bin 10.3 is considered in Figure 1(d):
the FFT data (circles) an the fitted parabola are shown.
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Figure 1: Window for parabolic interpolation using an FFT length
of N = 1024. (a) window function w(n) in time domain, (b)
discrete-time Fourier transform and FFT values (circles) of w(n),
(c) error by fitting a parabola through the FFT data, (d) FFT
values (circles) and fitted parabola for a sinusoid at FFT bin
k0 = 10:3 .

The performance of this method highly depends on the win-
dow function used. Probably a further optimized window can be
designed to improve the accuracy of this method.

In our survey, we do not use the amplitude value from Equa-
tion (5) for this method, but the amplitude correction as explained
in Section 3 is applied. This gives better results in comparison to
the original amplitude estimation.

2.3. Triangle Algorithm

The triangle algorithm [4] is named after the shape of the used
window function in the frequency domain. This window can be
described by two lines in the frequency domain. A multiplication
of a sinusoid with the corresponding window function in the time
domain results in a modulated (shifted) triangle in the frequency
domain.

After applying an FFT to the windowed frame, the FFT mag-
nitude is searched for local maxima. For each detected maxi-
mum two triangle lines are fitted through the FFT data in the least
squared error sense. At the intersection point of the two lines
the amplitude and frequency of the sinusoidal component are esti-
mated.

In this survey we use a window function whose FFT data de-
scribe a triangle with a slope length of S = 2. Thus, the triangle
slope has a length of two FFT bins. We have therefore a quite
small main lobe width. Figure 2 shows the used window function
in the time and frequency domains and one example for analyzing
a sinusoid.
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Figure 2: Window for triangle algorithm using an FFT length
of N = 1024. (a) window function w(n) in time domain, (b)
discrete-time Fourier transform jW (ej
)j and FFT values jW (k)j
(circles) in dB, (c) jW (ej
)j and jW (k)j in linear scale, (d)
discrete-time Fourier transform jX(ej
)j, FFT values jX(k)j
(circles), and fitted triangle (dashed) for a sinusoid at FFT bin
k0 = 10:3 .

As explained in [4], for each triangle line S�1 FFT points are
used to reduce the influence of noise. In the special case of S = 2,
for each line only one FFT point is used. For this reason, these two
points are lying ideally on the computed triangle lines.

Since we use another triangle slope length as considered in
[4], we use the correction of the amplitude values as explained
in Section 3. For the triangle slope length used, this amplitude
correction gives better results than the use of a polynomial which is
original to the triangle algorithm [4]. For the smaller window main
lobe width also the search for local maxima in the FFT magnitude
has been simplified compared to the search described in [4].

2.4. Spectral Reassignment

In usual time-frequency representations, the values obtained when
decomposing the signal on the time-frequency atoms are assigned
to the geometrical center of the cells (center of the analysis win-
dow and bins of the Fourier transform). Auger and Flandrin pro-
pose in [5] to assign each value to the center of gravity of the cell’s
energy. The method uses the knowledge of the analytic first deriva-
tive w0(n) of the analysis window w(n) in order to adjust the fre-
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quency inside the FFT bin. For example, if the analyzed frequency
leads to a maximum of magnitude at FFT bin km, frequency reas-
signment is given by the following equation:

f̂0 = km
fS

N
� Im

�
Xw0 (km)

Xw(km)

�
�
fS

2�
(7)

where Xw(k) and Xw0 (k) are the FFTs of the signal using w(n)
or its first derivative w0(n) as the analysis window, respectively.
We will use the Hann analysis window for w(n).

This method is used by Fitz [6] and Peeters [7] for example.
Borum and Jensen also present in [8] the use of a similar method
for analysis / synthesis.

2.5. Derivative Algorithm

The n-order Fourier analysis [9, 10] shows that it is possible to
greatly improve the precision of the classic Fourier analysis by
taking advantage of the first n signal derivatives. For n = 1, this
method is also known as the derivative algorithm. An approxima-
tion of the derivative of the input signal s(n) is obtained by

s
0(n) = fS [s(n)� s(n� 1)]: (8)

Both s(n) and s0(n) are windowed and then two FFTs are applied.
The accurate frequency of each spectral peak is given by

f̂0 =
fS

�
� arcsin

 
1

2fS

��X1(km)
��

jX0(km)j

!
(9)

where Xn(k) denotes the FFT of the n-th signal derivative (so
X
0(k) = X(k)). The accurate amplitude â0 can then be deter-

mined from the approximate amplitude together with the devia-
tion �f = jf̂0 � kmfS=Nj of the computed frequency f̂0 from
the FFT bin frequency

â0 = 2

��X0(km)
��

jW (ej2��f=fS))j
: (10)

This requires the knowledge of the (continuous) power spectrum
W (ej
) of the analysis window w(n). This method shows excel-
lent results when w(n) is the Hann window.

2.6. FFT with Phase Vocoder Approach

In this method [11, p. 337] the phase information of two FFTs
is used to improve the frequency resolution of a plain FFT. For
a harmonic signal the fundamental frequency is the derivative of
the phase after the time. From the input signal s(n) two frames
with a hop size of R samples are taken, and after applying a win-
dow to each frame the FFTs of the two frames are computed. The
magnitude of the first FFT is searched for local maxima. For each
detected maximum km the phases '1 and '2 of the two FFTs are
evaluated at this position. With the unwrapped phase '2u of the
second FFT the obtained fundamental frequency is

f̂0 =
fS

2�
�
'2u � '1

R
: (11)

In this paper we apply a Hann window before the FFT calculations
and we use a hop size of R = 1 sample.

3. AMPLITUDE CORRECTION WITH WINDOW MAIN
LOBE

In this section we explain in detail the amplitude correction with
the window main lobe which is original to the derivative algorithm
[9, 10]. Systematical errors of amplitude or frequency depending
on the position of the detected frequency between two FFT bins
may also be corrected by modeling the error with a polynomial.
This error correction is part of the original triangle algorithm [4].
With the used methods we obtain best results with the described
amplitude correction using the window main lobe. Thus, this am-
plitude correction is applied to all used analysis methods except
for the plain FFT.

The derivative algorithm corrects the amplitude by using the
shape of the window main lobe, see Equation (10). This technique
can be applied to other analysis methods in order to improve their
precision in amplitude – provided that their precision in frequency
is good. More precisely, the spectrum of a windowed, stationary
sinusoid is the spectrum W (ej
) of the window function w(n),
centered about the frequency of the sinusoid, scaled according
to the amplitude of the sinusoid, and rotated to the instantaneous
phase of the sinusoid at the center of the time-window w(n). Un-
fortunately, this spectrum W (ej
) is also sampled at frequencies
corresponding to the bins of the discrete Fourier transform, thus it
is evaluated at frequencies 
k = k

2�
N

with the FFT length N and
k being the integer-valued FFT-index.

As a consequence, when the frequency of the sinusoid does
not exactly correspond to one of the bins of the discrete Fourier
transform, the amplitude jX0(km)j measured for the sinusoid at
bin km is not the amplitude of the sinusoid. In order to determine
its exact amplitude, Equation (10) must be used. The spectrum
W (ej
) of the analysis window w(n) can often be computed an-
alytically. In the case of the periodic Hann window of size N

w(n) =
1

2

�
1� cos

�
2�n

N

� �
; 0 � n < N (12)

we can express the window by

w(n) =
1

2

�
1� cos

�
2�n

N

��
� r(n) (13)

with the rectangular window3

r(n) =

�
1 ; 0 � n � N

0 ; otherwise.
(14)

The discrete-time Fourier transform of r(n) is

R(ej
) =
NX
n=0

e
�j
n =

1� e
�j
(N+1)

1� e�j

; e

j
 6= 1 (15)

= e
�j
N=2 �

sin(
N+1
2

)

sin(

2
)

: (16)

Expressing the window function by

w(n) =
1

2
r(n)�

1

4
e
j2�n=N

r(n)�
1

4
e
�j2�n=N

r(n) (17)

we get the discrete-time Fourier transform

W (ej
) =
1

2
R(ej
)+

1

4
R(ej(
�

2�

N
))+

1

4
R(ej(
+

2�

N
)): (18)

3Although r(N) = 1 we get a length-N window with w(N) = 0.
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Thus, in case of using the Hann window (12), the corrected am-
plitude is obtained by evaluating Eq. (10) with W (ej
) given in
Eq. (18).

3.1. Use of a Look-up Table

For more complicated window functions, instead of using an ex-
pression of W (ej
), a look-up table with the values of jW (ej
)j
for 0 � 
 <

2�
N

(equivalent to the width of one FFT bin) can be
computed. For example, using M = 213 = 8192 points in this
frequency range works well. The table is computed with an FFT
of length M �N , thus by padding (M�1) �N zeros to w(n); only
the first M points of the FFT result are then used for the look-up
table. With the values of the look-up table

Wt(m) = jW (ejm
2�

MN )j ; m = 0; : : : ;M � 1 (19)

and with the estimated frequency difference �k (in FFT bins, nor-
mally �k < 1) the amplitude correction is performed by

m0 = minfround(�k �M);Mg (20)

â0 = 2
jX(km)j
Wt(m0)

: (21)

3.2. Example

Now we consider an example with a sinusoid of amplitude a0 =
0:8 at FFT index k0 = 10:3, s(n) = a0 cos(2�k0n=N), with
the FFT length N = 1024. After weighting by a Hann window,
x(n) = s(n) � w(n), the Fourier transform is

X(ej
) =
a0

2
W (ej(
�2�k0=N)) +

a0

2
W (ej(
+2�k0=N)) (22)

Figure 3 shows the FFT magnitude jX(ejk2�=N )j as circles while
the dashed line shows the modulated Hann window
a0

2
jW (ej(
�2�k0=N))j. Both values are divided by

wmax =
1

2

N�1X
n=0

w(n) (23)

which is the maximum of jX(ej
)j if using a sinusoid of ampli-
tude 1.

The derivative algorithm detects a maximum at FFT bin km =

10 and the corrected bin frequency k̂0 = 10:2997 giving a differ-
ence of �k = k̂0 � km = 0:2997. For the amplitude we have

Xmax = jX0(km)j=wmax = 0:7546 (24)

Wmax =
1

2
jW (ej2��k=N)j=wmax = 0:9434 (25)

â0 =
Xmax

Wmax
= 0:7999: (26)

Thus, instead of taking the amplitude value at the FFT maximum,
we recover almost perfectly the original amplitude value by using
the estimated frequency of the sinusoid. This amplitude correction
method requires therefore a good frequency estimation.
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Figure 3: Spectra of sinusoid at FFT index k0 = 10:3 and use of
the Hann window. FFT data (circles) and modulated Hann win-
dow (dashed line).

4. SIMULATION RESULTS

In this section we present the results of different tests. In Section
4.1 first the used measurements are explained while the following
subsections describe the different tests.

In the first test (Section 4.2) we use stationary single sinusoids
that do not change their frequency during one analysis frame. We
use also single sinusoids with additive white noise. As a second
test (Section 4.3) we use two stationary sinusoids with varying
frequency difference to evaluate the frequency resolution of the
different analysis methods. As a third test (Section 4.4) we use
non-stationary signals such as sine sweeps, tremolo and vibrato
sinusoids whose amplitude and/or frequency change continuously
over time. Finally (Section 4.5) we use more complex signals with
a high number of harmonics. All tests use a sampling frequency of
fS = 44:1 kHz and an FFT length of N = 1024.

4.1. Measurements

4.1.1. Frequency and Amplitude Error

For the frequency, we consider the error produced by the method
in number of halftones [11, p. 349]. Considering a sine at FFT bin
k0 (as fractional number) resulting in the absolute frequency error
�k0, the frequency error factor is


0 =
k0 +�k0

k0
> 1: (27)

With the halftone factor 
ht =
12
p
2 we get the error in percent of

number of halftones as

�fht = 100
log(
0)

log(
ht)
: (28)

Please notice that humans can recognize a frequency error of 6% of
a halftone if they are trained in listening (see [12] for information
on the human auditory system).

For the amplitude we use the error in dB

�adB =

����20 log10
�
â0

a0

����� (29)

where a0 and â0 are the reference and estimated amplitudes, re-
spectively.
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For both frequency and amplitude error measurements we take
the mean value �, the standard deviation � and the maximum value
over all frames of the simulation.

4.1.2. Decision of Detected Peaks

For reference signals containing more than one sinusoid it is of
interest to measure if all sinusoids are detected by the different
methods. For this task, we added some post-processing after the
extraction of spectral peaks. To decide whether a detected peak
corresponds to a sine in the reference signal or not, the following
procedure is used for all reference sines of one analysis frame:

� Use only peaks whose frequencies vary at maximum by one
FFT bin width from the reference frequency.

� Among the remaining candidates, use only peaks whose
amplitudes vary at maximum by 3 dB from the reference
amplitude.

� Among the remaining candidates, choose that one with the
smallest amplitude and frequency error compared to the ref-
erence sinusoid.

Now the last candidate is supposed to be the extracted sinusoid.
The peaks omitted by this procedure are classified as “misdetected
sines”. Table 2 presents some measurements regarding the number
of detected spectral peaks per analysis frame.

N peaks
Mean number of detected spectral peaks per
frame.

Nmissed

Mean number of spectral peaks per frame that
are in the reference signal, but not detected by
the algorithm.

Nmiss

Mean number of misdetected spectral peaks per
frame. Thus, the mean number of spectral peaks
per frame that are detected by the algorithm, but
not present in the reference signal.

Table 2: Measurements for the detection of spectral peaks.

Notice that for frequency and amplitude errors only those sines
are used which correspond to the reference sines according to the
above described procedure.

4.2. Stationary Single Sinusoids

In our first test, we use sines with constant amplitude and fre-
quency during one frame. We generated a number of L = 2090
sines with frequencies f0 between 215 and 4321 Hz, and with
a sine amplitude of a0 = 1. With the frequency in FFT bins
k0 = f0=fS � N we get the position between two FFT bins as
kfrac = k0 � bk0c. Fig. 4 shows the probability functions of f0
and kfrac, respectively. Thus, we emphasize the low frequencies
according to their appearance in natural sounds.

We use pure sines and sines with additive Gaussian white noise
with an SNR = 12 dB. The results for the frequency and ampli-
tude errors are shown in Tables 3 and 4. When using pure sines,
each method detects exactly one sine in all frames. For the sines
with added noise, Table 5 shows the mean number of detected si-
nusoids in each frame for the different methods. The maximum
amplitude of misdetected sines is in the range of �26 to �22 dB
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Figure 4: Probabilities of reference frequencies and of positions
between two FFT bins.

pure sines SNR = 12 dB
No. � � max � � max
1 28.11 28.12 149.76 28.12 28.14 151.69
2 0.054 0.118 1.096 0.851 1.037 9.725
3 0.006 0.016 0.136 0.725 0.849 7.798
4 0.048 0.115 1.097 0.623 0.768 8.061
5 0.048 0.115 1.100 0.624 0.769 8.045
6 0.048 0.115 1.099 0.623 0.768 8.046

Table 3: Frequency error in percentage of halftones for pure sines
and for sines with white noise at SNR = 12 dB.

pure sines SNR = 12 dB
No. � � max � � max
1 0.470 0.428 1.424 0.482 0.420 1.545
2 0.001 0.001 0.008 0.076 0.056 0.334
3 0.000 0.000 0.001 0.072 0.054 0.321
4 0.001 0.002 0.017 0.067 0.050 0.292
5 0.001 0.002 0.017 0.067 0.050 0.293
6 0.001 0.002 0.017 0.067 0.050 0.292

Table 4: Amplitude error in dB for pure sines and for sines with
white noise at SNR = 12 dB.

No. 1 2 3 4 5 6

N peaks 140.1 40.8 52.2 139.4 118.9 134.9

Table 5: Mean number of detected sines per frame for sines at
SNR = 12 dB.

for all methods. From these results the advantage in frequency and
amplitude precision of methods 2–6 over the plain FFT is obvious.

For pure sines, method 3 (triangle algorithm) produces the best
results for both frequency and amplitude accuracy. In the noisy
case, methods 4–6 have slightly better results, although the maxi-
mum frequency error is also a little better with method 3. Methods
2 and 3 have the advantage that the number of misdetected sinu-
soids is much lower compared to the other methods, see Table 5.

This test shows very similar results for methods 4–6, which all
require two FFTs and use the phase information in some way.
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4.3. Two Stationary Sinusoids with Varying Frequency Differ-
ence

In this test we use in each analysis frame two sinusoids. One sinu-
soid is at FFT bin k0;1 = 10:3 (444 Hz) while the second sine is
at k0;2 changing from 5 to 16 (215–689 Hz). We use only frames
where the two sinusoids have a frequency difference greater than
one percent of a halftone (to omit the superposition of two sines
with the same frequency). The test signal has a length ofL = 1099
analysis frames.

Table 6 presents the results for two sinusoids which both have
an amplitude of 1, and Figure 5 shows the estimated spectral peaks
for all methods of the performed test.

No. 1 2 3 4 5 6

N peaks 1.72 1.29 1.40 1.71 1.71 1.68

Nmissed 0.36 0.79 0.71 0.35 0.35 0.38

Nmiss 0.17 0.13 0.14 0.15 0.15 0.15

�fht 51.43 6.79 8.92 12.98 12.95 12.49

�fht,max 178.6 73.0 188.2 175.7 178.6 176.0

�adB 0.68 0.21 0.17 0.30 0.31 0.29

Table 6: Results for two sines with varying frequency difference.
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Figure 5: Estimated spectral peaks over the frequency difference of
two sinusoids. The bottom graph in each plot indicates the number
of detected peaks.

From the presented results it is easy to see that methods 1
and 4–6 have a frequency resolution of appr. two FFT bins, while
method 2 needs a distance of more than 3 FFT bins, and method
3 has a frequency resolution of appr. 3 FFT bins. The frequency
resolution is also reflected by the results of Npeaks and Nmissed in
Table 6. In that table, the mean frequency and amplitude errors
for methods 2 and 3 are better than for the others, but for the error
measurements only the detected sinusoids are used. Thus, alto-
gether methods 4–6 give the best results for this test.

Please notice that the frequency resolution depends also on the
amplitudes of the used sines.

4.4. Non-Stationary Single Sinusoids

In this test we use a single sine signal whose amplitude and/or
frequency is changing continuously over time. We consider four
test signals: sweep, tremolo, vibrato, and combination of tremolo /
vibrato. For all test signals we use a signal duration of �s = 2 sec-
onds.

In general we have the amplitude a(t) over time and the fre-
quency f(t) over time leading to the continuous-time signal

s(t) = a(t) cos(2�'(t)) (30)

whose phase '(t) has to satisfy

f(t) =
d'(t)

dt
; (31)

thus the frequency is the derivative of the phase.
For the sine sweep we have a constant amplitude a(t) = a0

and the frequency increases linearly from f0 to f1 which leads to

f(t) = f0 +
f1 � f0

�s
� t (32)

s(t) = a0 cos

�
2�

�
f0t+

f1 � f0

2�s
t
2

��
: (33)

We use a0 = 0:8, f0 = 440 Hz and f1 = 880 Hz.
For a tremolo sound the amplitude is oscillating and the sine

frequency f(t) = f0 is constant which results in

a(t) = a0 + a1 sin(2�ftt) (34)

s(t) = a(t) cos (2�f0t) : (35)

The oscillating amplitude a1 is also called tremolo depth, and its
frequency ft is the tremolo frequency. We use a0 = 0:8, f0 =
440 Hz, a1 = 0:15 and ft = 5 Hz.

In a vibrato sound the amplitude a(t) = a0 is constant, and
the sine frequency f(t) is oscillating which gives

f(t) = f0 + f1 cos(2�fvt) (36)

s(t) = a0 cos

�
2�

�
f0t+

f1

2�fv
sin(2�fvt)

��
: (37)

Here f1 is the vibrato depth, and fv is its frequency. We use a0 =
0:8, f0 = 440 Hz, f1 = 10 Hz and fv = 10 Hz.

For the combined tremolo / vibrato sound, both amplitude
and frequency are oscillating according to Equations (34) and (36)
which leads to

s(t) = a(t) cos

�
2�

�
f0t+

f1

2�fv
sin(2�fvt)

��
: (38)

For this test signal we combine the parameters given above, thus
a0 = 0:8, f0 = 440 Hz, a1 = 0:15, ft = 5 Hz, f1 = 10 Hz, and
fv = 10 Hz.

For the analysis we use a hop size of 64 samples, thus the
analyzing frames overlap by 1024�64 = 960 samples. This leads
to a number of L = 1363 analysis frames. As reference amplitude
and frequency values their mean values during one analysis frame
are used. Tables 7, 8, 9, 10 show the results of amplitude and
frequency error for the four test signals.
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freq. err. in % of halftones ampl. error in dB
No. � � max � � max
1 29.31 18.32 80.30 0.474 0.421 1.423
2 0.043 0.050 0.325 0.001 0.001 0.005
3 0.010 0.007 0.035 0.001 0.000 0.001
4 0.025 0.027 0.176 0.001 0.001 0.007
5 0.031 0.028 0.195 0.001 0.001 0.005
6 0.028 0.027 0.183 0.001 0.001 0.007

Table 7: Frequency error in percentage of halftones and amplitude
error in dB for a sine sweep.

freq. err. in % of halftones ampl. error in dB
No. � � max � � max
1 36.35 0.00 36.35 0.266 0.016 0.292
2 0.046 0.022 0.074 0.017 0.009 0.036
3 0.078 0.038 0.153 0.016 0.008 0.030
4 0.088 0.060 0.234 0.014 0.007 0.026
5 0.114 0.071 0.273 0.014 0.007 0.026
6 0.088 0.060 0.235 0.014 0.007 0.026

Table 8: Frequency error in percentage of halftones and amplitude
error in dB for a tremolo sound.

freq. err. in % of halftones ampl. error in dB
No. � � max � � max
1 35.47 24.29 69.78 0.407 0.402 1.113
2 1.654 0.809 2.745 0.003 0.003 0.010
3 1.541 0.771 2.615 0.003 0.002 0.006
4 1.336 0.674 2.384 0.005 0.003 0.012
5 1.339 0.676 2.396 0.005 0.003 0.013
6 1.336 0.674 2.385 0.005 0.003 0.012

Table 9: Frequency error in percentage of halftones and amplitude
error in dB for a vibrato sound.

freq. err. in % of halftones ampl. error in dB
No. � � max � � max
1 35.47 24.29 69.78 0.412 0.397 1.113
2 1.656 0.810 2.746 0.017 0.010 0.034
3 1.549 0.777 2.795 0.015 0.009 0.029
4 1.332 0.671 2.365 0.014 0.010 0.027
5 1.339 0.675 2.464 0.014 0.009 0.028
6 1.333 0.671 2.369 0.014 0.010 0.027

Table 10: Frequency error in percentage of halftones and ampli-
tude error in dB for a sound with both tremolo and vibrato.

For the sine sweep, method 3 (triangle algorithm) gives the
best results for amplitude and frequency evaluation. The other
methods (except the plain FFT) give only slightly higher errors.

In case of the tremolo sound, method 2 (parabolic interpo-
lation) produces the smallest frequency error although the other
methods (except plain FFT) produce only slightly higher errors.
The amplitude error is almost the same for all methods (except
plain FFT).

For the vibrato sound, again all methods (except plain FFT)
produce quite similar results. This time, methods 4–6 are better

than the other methods for the frequency error. As expected, the
produced frequency error is higher as for the tremolo sound, while
the amplitude error is smaller for all methods.

If using both tremolo and vibrato, the results of the previous
simulation are almost exactly recovered. Thus we have the fre-
quency error of the vibrato sound and the amplitude error of the
tremolo sound. Methods 4–6 show almost the same results and are
favored a little bit over the other methods.

4.5. Harmonic Natural-Like Sounds

In our last test we use signals which are very close to natural sig-
nals. In order to evaluate the different methods we need refer-
ence values for the amplitudes and frequencies of the sinusoids
contained in the signals. For this reasons it is not possible to use
recorded natural sounds. For our survey we use sounds which are
synthesized from amplitude and frequency values that change ev-
ery 64 samples. We use also a hop size of 64 samples for analyzing
these sounds. The used sounds are:

� human voice: L = 989 frames, 40.06 sines per frame

� saxophone: L = 1947 frames, 30.46 sines per frame

� guitar: L = 4722 frames, 11.75 sines per frame

Tables 11, 12, 13 show the results containing the measure-
ments introduced in Table 2.

No. 1 2 3 4 5 6

N peaks 38.4 33.3 30.5 38.4 38.4 38.3

Nmissed 8.30 10.16 11.68 7.79 7.80 7.85

Nmiss 6.63 3.37 2.07 6.11 6.11 6.06

�fht 12.51 4.42 4.46 4.59 4.59 4.59

�fht,max 209.5 65.8 68.5 73.2 74.5 73.4

�adB 0.86 0.75 0.71 0.77 0.77 0.77

Table 11: Results for natural-like sound of human voice.

No. 1 2 3 4 5 6

N peaks 29.9 27.6 24.7 29.9 29.9 29.9

Nmissed 2.49 4.13 6.46 2.20 2.22 2.20

Nmiss 1.89 1.23 0.71 1.60 1.62 1.60

�fht 7.48 1.27 1.27 1.26 1.37 1.26

�fht,max 86.7 28.3 4.8 29.4 29.8 29.5

�adB 0.92 0.72 0.68 0.73 0.72 0.73

Table 12: Results for natural-like saxophone sound.

For all methods (except plain FFT) the frequency and ampli-
tude accuracies do not differ very much. But the number of missed
peaks differs for the methods due to their frequency resolution.
Regarding the number of detected sines, methods 4 to 6 produce
the best results (lowest number of Nmissed). Please notice again,
that the amplitude and frequency errors are only calculated for
those peaks which correspond to sines in the reference signal. For
this reason, methods 2 and 3 sometimes give better results for fre-
quency and amplitude, but they do not detect as much sines as the
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No. 1 2 3 4 5 6

N peaks 11.7 11.0 9.8 11.7 11.7 11.7

Nmissed 0.10 0.76 2.00 0.09 0.09 0.10

Nmiss 0.06 0.03 0.03 0.06 0.06 0.06

�fht 27.94 0.83 0.76 1.72 1.73 1.70

�fht,max 193.2 31.7 15.5 42.3 42.4 42.1

�adB 0.66 0.21 0.19 0.23 0.23 0.23

Table 13: Results for natural-like guitar sound.

other methods. But also the number of misdetected peaks is higher
with methods 4 to 6.

The amplitude values of the missed or misdetected peaks are
quite similar for all methods. Table 14 shows a summary of the
amplitude values in dB for the three considered signals. It seems
that for the used signals most of the missed peaks have a very low
amplitude, and the methods use a threshold for omitting any signal
content below this threshold (normally �80 dB). Only few of the
missed spectral peaks have a quite high amplitude. These peaks
are not detected due to the frequency resolution of the different
methods.

missed misdetected (miss)

signal mean max mean max

voice -71. . . -68 -13 -61. . . -54 -16

saxophone -75. . . -70 -17.5 -63. . . -57 -14

guitar -68. . . -64 -22 -64. . . -51 -19

Table 14: Amplitude values in dB of missed and misdetected peaks
for all methods.

5. CONCLUSION

Spectral analysis and more precisely sine extraction is a key point
in many applications such as spectral modeling, pitch tracking or
digital audio effects in general.

In this paper we compared six of the most used spectral ana-
lysis methods. All of these methods – based on the FFT – are very
fast, but their precisions in frequency and amplitude are not equi-
valent. This study can be used as a reference for anyone willing
to implement such a method, thus facilitating the choice of the
method which is the most adapted to one’s specific need.

As summary of our simulations, the methods based on the
phase information of the FFT, namely the spectral reassignment,
the derivative algorithm, and the phase vocoder approach (method
numbers 4, 5 and 6 in our survey) give the best results regarding
frequency resolution while having very small frequency and am-
plitude errors. It is interesting to notice that these three methods
give almost the same results in the performed tests. It is subject
of our current research to show that these three methods may be
equivalent even from their theoretical foundations, at least when
the Hann analysis window is used.

6. REFERENCES

[1] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flan-
nery, “Minimization or maximization of functions,” in Nu-
merical Recipes in C (The Art of Scientific Computing), chap-
ter 10, pp. 402–405. Cambridge University Press, USA, 2nd
edition, 1992.

[2] Xavier Serra, A System for Sound Analysis/ Transformation/
Synthesis Based on a Deterministic plus Stochastic Decom-
position, Ph.D. thesis, CCRMA, Department of Music, Stan-
ford University, 1989.

[3] Xavier Serra, “Musical sound modeling with sinusoids plus
noise,” in Musical Signal Processing, C. Roads, S.T. Pope,
A. Piccialli, and G. De Poli, Eds., chapter 3, pp. 91–122.
Swets & Zeitlinger, Lisse, the Netherlands, 1997.

[4] F. Keiler and U. Zölzer, “Extracting sinusoids from harmonic
signals,” Journal of New Music Research, Special Issue:
”Musical Applications of Digital Signal Processing”, vol.
30, no. 3, pp. 243–258, Sept. 2001.

[5] F. Auger and P. Flandrin, “Improving the readibility of time-
frequency and time-scale representations by the reassign-
ment method,” IEEE Transactions on Signal Processing, vol.
43, no. 5, pp. 1068–1089, 1995.

[6] Kelly R. Fitz, The Reassigned Bandwith-Enhanced Method
of Additive Synthesis, Ph.D. thesis, University of Illinois,
1999.

[7] Geoffroy Peeters and Xavier Rodet, “SINOLA: A New Anal-
ysis/ Synthesis Method using Spectrum Peak Shape Distor-
tion, Phase and Reassigned Spectrum,” in Proc. ICMC, Bei-
jing, China, October 1999, ICMA, pp. 153–156.

[8] Stefan Borum and Kristoffer Jensen, “Additive Analysis/
Synthesis Using Analytically Derived Windows,” in Proc.
DAFx-99, Trondheim, Norway, December 1999, Norwegian
University of Science and Technology (NTNU) and COST,
pp. 125–128.

[9] Sylvain Marchand, “Improving Spectral Analysis Precision
with an Enhanced Phase Vocoder Using Signal Derivatives,”
in Proc. DAFx-98, Barcelona, Spain, Nov. 1998, Audiovisual
Institute, Pompeu Fabra University and COST, pp. 114–118.

[10] Myriam Desainte-Catherine and Sylvain Marchand, “High
Precision Fourier Analysis of Sounds Using Signal Deriva-
tives,” JAES, vol. 48, no. 7/8, pp. 654–667, July/August
2000.

[11] D. Arfib, F. Keiler, and U. Zölzer, “Source-filter processing,”
in DAFX – Digital Audio Effects, U. Zölzer, Ed., chapter 9,
pp. 299–372. J. Wiley & Sons, Chichester, 2002.

[12] E. Zwicker and H. Fastl, Psychoacoustics: Facts and Mo-
dels, Springer Verlag, 1990.

DAFX-58


	1  Introduction
	2  Description of the Methods
	2.1  Plain FFT without Post-processing
	2.2  Parabolic Interpolation
	2.3  Triangle Algorithm
	2.4  Spectral Reassignment
	2.5  Derivative Algorithm
	2.6  FFT with Phase Vocoder Approach

	3  Amplitude Correction with Window Main Lobe
	3.1  Use of a Look-up Table
	3.2  Example

	4  Simulation Results
	4.1  Measurements
	4.1.1  Frequency and Amplitude Error
	4.1.2  Decision of Detected Peaks

	4.2  Stationary Single Sinusoids
	4.3  Two Stationary Sinusoids with Varying Frequency Difference
	4.4  Non-Stationary Single Sinusoids
	4.5  Harmonic Natural-Like Sounds

	5  Conclusion
	6  References

