
Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

IMPLEMENTATION STRATEGIES FOR ADAPTIVE DIGITAL AUDIO EFFECTS

Verfaille V., Arfib D.

LMA - CNRS
31, chemin Joseph Aiguier
13402 Marseille Cedex 20

FRANCE
fverfaille, arfibg@lma.cnrs-mrs.fr

ABSTRACT

Adaptive digital audio effects require several implementations, ac-
cording to the context. This paper brings out a general adaptive
DAFx diagram, using one or two input sounds and gesture control
of the mapping. Effects are classified according to the perceptive
parameters that the effects modify. New adaptive effects are pre-
sented, such as martianization and vowel colorization. Some items
are highlighted, such as specific problems of real-time and non
real-time implementation, improvements with control curve scal-
ing, and solutions to particular problems, like quantization meth-
ods for delay-line based effects. To illustrate, musical applications
are pointed out.

1. INTRODUCTION

The use of digital audio effects has been developing for the last
thirty years. They are extensively used for composition, master-
ing, real-time interaction, movies sound effects, etc. Several im-
plementation techniques are been used, such as sample-by-sample,
block-by-block treating, FIR and IIR filtering, delay lines, etc.
New and adaptive effects may need new implementation schemes,
even if they inherite from classical implementation schemes. In
our case, introducing an automatic control level inside the effect
adds complexity to the implementation. Moreover, implementa-
tion has to be though carefully, depending on wether the effect is a
real-time or a differed-time effect. The adaptive step added to the
real-time effect provides a higher interaction between the effect’s
control and the musician. Features scaling is needed to allow the
performer to explore musical and gestural spaces in different ways.

2. ADAPTIVE DIGITAL AUDIO EFFECTS

Adaptive digital audio effects (ADAFx, [1]) are effects which con-
trol values vary in time according to features extracted from the
sound and mapping laws ([2], [3] pp.476-8). A general diagram
is given in Fig.1. A first input sound is used for feature extraction
(low-level and higher level, perceptive parameters). The mapping
between features extracted and effect control values includes non-
linearities as well as linear combinations; it can be modified by
gesture parameters. The effect is applied to a second input sound.
When the two input sounds are identical, the effect is called auto-
adaptive; otherwise, it is called cross-adaptive. The gesture con-
trol on the mapping allows a higher control level, since it permits
a gesture mapping on the feature mapping.

Figure 1: Adaptive digital audio effects diagram: cross-ADAFx
uses two different sounds whereas auto-ADAFx uses one sound.
Gesture control is inserted in the mapping.

2.1. Mapping functions

Let us consider K features, namely Fk(t); t = 1 : : : nT . Noting
FM
k = maxt2[1;nT ] (Fk(t)) and Fm

k = mint2[1;nT ] (Fk(t)), an
improved mapping function of the one proposed in [1] gives the
expression of control curve C(t):

C(t) = �m + (�M ��m)Hicc (L(t)) (1)

L(t) =
KX
k=1

akPK
k=1 ak

Hicc

�Fk(t)�Fm
k

FM
k �Fm

k

�
(2)

with ak the weight of the kth feature and the minimum �m and
maximum �M values of the effect control parameter.

Let us now remind a few adaptive effects, processing percep-
tive parameters of sound [4].

2.2. Effects on the sound level

Effects such as compressor, noise gate, expander, limiter change
the output level according to the input level: they perfectly il-
lustrate the adaptive step in the mapping chain presented below.
Knowing the input sound level, we modify the output sound level
according to a non-linear law. But what happens when we change
the output sound level using another sound feature than the input
sound level, with a different law? For example, using the voici-
ness feature as input control and a mapping law such as sin(), we

DAFX-21



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

obtain an effect that makes the vowels disappear and leaves only
consonants.

2.3. Effect on time duration

Adaptive time-stretching [1], for instance using the phase vocoder
processing [3], allows fine changes in time duration (a kind of
re-interpretation of musical sentences) as well as strong changes
(where the sound or musical sentence seems completely different).

To keep psycho-acoustic features such as vibrato, roughness,
transition types, one should first analyse the sound. For example,
in the case one wants to keep the vibrato aspect of the natural pitch
shift produced by a singing voice or an instrument, it is necessary:
first to extract the vibrato depth and rate [6] (for example using a
likelihood model to detect sine waves [7]), second to apply a pitch-
shift to erase the vibrato, third to apply the time-stretching, and
fourth to apply a pitch-shift according to the vibrato parameters.

2.4. Effect on pitch

We used a Matlab implementation [3] of the pitch shifting using
the Cepstrum technique [8]. We chose it because it is fast, since it
uses Fast Fourier Transform implementation.

The adaptive pitch-shift is a simple pitch shift with the shift
ratio given by a curve: the new pitch is then:

P(t) = C(t):H0(t) (3)

with H0 the pitch of the original sound.
The adaptive vibrato, applied according to a harmonicity in-

dicator value, is an automatic pitch modulation with a specific rate
in [4; 8] Hz and a specific depth in [�1

2
; 1
2
] tone, given by two

control curves. It is important to pay attention to phase continuity
of the modulation when the rate varies, otherwise the pitch may
jump unpleasantly. Let r(tk) be the rate control curve and d(tk)
the depth control curve of the vibrato. The resulting pitsh-shift
ratio �(tk) is given by:

�(tk) = 1 +
d(tk)

2
sin [2� r(tk) t+ �(tk)] (4)

P(t) = �(t):H0(t) (5)

with �(tk+1) = �(tk) + 2� tk [r(tk)� r(tk+1)]. Moreover, a
more complex adaptive vibrato can be designed using a transition
type detector, in order to apply the vibrato only on stable parts of
the sound [9].

A third example is the pitch-change. Using the control curve
C(t) as a target pitch curve, the pitch-change is achieved by apply-
ing a pitch-shift with the following ratio:

�(t) =
C(t)
H0(t)

(6)

where H0(t) is a corrected pitch curve for which zero values are
replaced by the mean of non zero values of H0.

2.5. Effect on timbre

Adaptive filtering effects: when talking about “adaptive filter-
ing”, we first think about methods to estimate the parameters of
a filter [10]. For example, in the field of telecommunications,
adaptive filtering is used to minimize the feedback in a two chan-
nels communication system where the output of one channel (the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
4

6

8

10

12

Vibrato rate's control curve: trunc(RMS)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

Vibrato depth's control curve: RMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.5

0

0.5

Pitch shift (tones)

Figure 2: Control curves for the adaptive vibrato: rate r(tk) (first
figure), depth d(tk) (second figure) and the resulting pitsh-shift
ratio 
(tk) (third figure).

phone) is near to the input of the second channel (the microphone).
However, what we deal about is adaptive filtering effects, namely
filters which properties (coefficients, bandwidth, formants, etc)
evolve in time according to the mapping proposed. This is for mu-
sical purpose, and does not imply the use of the same techniques.
We implemented adapted vocal-like filters, photosonic filters, wha
filters (cf.[11] for the description of these filters), in real-time and
it sounds great. In a way, it is a generalisation of the auto-wha,
which is a wha-wha effect triggered by attack detection.
Robotization, whisperisation, granular adaptive delay are other
known effects on timbre (already presented in a non-real time im-
plementation [1]).
Martianization consists of an adaptive vibrato, with the rate and
amplitude driven by continuous features outside of usual vibrato
range. The rate r varies in [0; 14] Hz and the amplitude around 1
octave instead of 1/2 tone. This effect gives wide variations in the
pitch of a voice, loosing easily the sense of the message.
Vowel colorization or abusively called “vowel change” consists in
recognizing the spectral shape of a vowel thanks to the cepstrum
[8] of a Short-Time Fourier Transform, and replacing it by whiten-
ing the input signal and applying another spectral shape. The new
spectral shape comes from reference vowel sounds, and the rules
for changing are given by the user: combinatory rule, random rule.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-80

-60

-40

-20

X
(f

)/
dB

Original short-time spectrum

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-80

-60

-40

-20

C
ep

st
ru

m
(f

)/
dB

Original and target cepstrum

Cep(X)
Cep(Y)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-80

-60

-40

-20

Y
(f

)/
dB

f/Hz →

Synthesis short-time spectrum

Figure 3: Original STFT, original cepstrum, target cepstrum and
synthesis STFT.

DAFX-22



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

Since vowel recognition and transformation is still a big challenge,
we developped a simple and efficient enough vowel recognition
scheme for musical transformations. It is still a work in progress:
we will soon compare the efficiency of the proposed vowel recog-
nition method with more complex and robust ones.

The recognition scheme is basically based on autocorrelation
between reference cepstra and an analysis cepstrum. We compute
the Short-Time Fourier Transform (Nf = 2048 points, with a 256
samples hop size) on a sliding Hanning window, and extract the
spectral shape S(t) with the cepstrum technique (typically with
a quefrency of 50). Let vi 2 f"a"; "e"; "i"; "o"; "u"g be one of
these five french vowels, and Sref(vi) be reference spectral shapes
for the vowels. The vowel number is noted nv .

For each reference spectral shape S(t) used to calibrate the
algorithm, we compute the correlation:


(t; vi) =

NfX
f=1

S(t; f)� Sref(vi; f) (7)

The calibrating sound is composed of the 5 vowels with known
start and end frame numbers [t�vi ; t

+
vi
], so we can compute the cor-

relation means 
ref (vi), the normalized correlations 
refvj
(vi) and

the normalized means 
refvj
(vi):



ref (vi) = < 
(t; vi) >t2[t�vi ;t

+
vi

]
(8)



ref
vj

(vi) =

ref (t; vi)


ref (vj)
; t 2 [t�vi ; t

+
vi
] (9)



ref
vj

(vi) = < 

ref
vj

(vi) >
t2[t�vi ;t

+
vi

]
(10)

We define the distance d1vj (t; vi) between an analyzed vowel and
each reference vowel:

dvj (t; vi) =

vuut nvX
j=1

 

vj (t; vi)� 
refvj

(vi)


refvj
(vi)

!2

(11)

The associated “quasi-probability” function pvj (t; vi) is the nor-
malized inverse of the squared distance:

pvj (t; vi) =
(dvj (t; vi))

�2Pnv
j=1 (dvj (t; vi))

�2 (12)

Being able to recognize which vowel is in the sound, we also
need a vowel detector. The one we use is a threshold on the maxi-
mum value of 
(t; vi):

detec(t) = max
i

(
(t; vi)) > Tdetec (13)

This is a little bit rough, since the values of detec are 0 or 1. The
algorithm replace a spectral shape S(t) by the spectral shape of a
vowel Svi is detec(t) = 1, and keep the original spectral shape
otherwise (a consonant is not replaced or transformed). If we
smooth the detec curve, the transition is more slow. That way,
in a differed-time algorithm, the changing starts during the end of
the consonant, since the process is not causal (we know the whole
detection curve before processing the colorization). However, for
real-time implementation, we will have to anticipate the recogni-
tion and start the changes more rapidly. This work is in progress.
Rules for vowel color changing: when the vowel is detected and
recognized, we can change it, for example according to a circular

Figure 4: Pseudo-probability of each vowel in the set
fa; o; i; u; eg. Notice that the “a” and the “e” are clearly re-
congized, and that the three other ones not (they could be better
recognized using a tracking method).

permutation, and apply a reference vowel to the whitened sound
(or extracted source). The vowel colorization is achieved.

Since our recognition scheme is not the best one, some er-
rors appear. We prefer talking about vowel colorization instead of
vowel changing at this stage of the project. Notice that to be effi-
cient, this effect must use very clear reference vowels. They can
be extracted from synthesis voice algorithms. We used the Voicer
model [11] to produce synthesis vowels.

2.6. Effect on panoramisation

We first implemented a panoramisation driven by features. The
left Ll and right level Lr are computed from control curves Ci(t).
Using only one control curve, the effect is just an adaptive constant
power panoramization (from Blumlein law [12], [3] pp.138-41),
with � = C(t) 2 [��

4
; �
4
] and:

Ll =

p
2

2
(cos � + sin �); Lr =

p
2

2
(cos � � sin �) (14)

Another effect is obtained by assigning two different control
curves to the channels:

Ll = C(1; t); Lr = C(2; t) (15)

This is no more a panoramisation, but the first step to spatiali-
sation: indeed two independant levels for left and right channels
gives left-right and front-back movements to the sound. Notice
that the Interchannels Cross-Correlation (ICC) is not taken into
account.

All the spatialisation perceptive parameters, such as the dis-
tance from the listener, elevation and azimuth, distance between
the source and the room walls, etc, can be driven by sound fea-
tures. A work in progress concerns the adaption of real-time spa-
tialisation models (the Ircam Spatializer or the Gmem Holophon).

3. IMPLEMENTATION STRATEGIES

Several implementation strategies for the effect itself have been
tested. First, we deal with the mapping stage of the process. We

DAFX-23



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

then present the frame-by-frame implementation, the block-by-
block implementation. Finally, we give solutions to the control
curve quantization problem and functions for adaptive scaling of a
control curve.

3.1. Mapping from sound features to control curve

The mapping explained in 2.1 has been implemented in Matlab
and Max/MSP. The Matlab interface is a GUI with three features,
that the user transforms to obtain a fixed mapping function L(t).
The Max/MSP interface uses four features as input, and gesture
control to change the weights ak between the four transformed
features, using an interpolator. The main difference is that the real-
time version allows transformations of the mapping (for example
going from a normal voice to a martian voice by moving a foot
controller), whereas the non-real-time does not.

3.2. General frame-by-frame implementation

The frame-by-frame implementation scheme is the simplest one.
Given constant frame lengths and frame hop sizes for analysis and
synthesis, one input frame is transformed in an output frame, over-
laped and then added to the output sound.

3.3. Block-by-block implementation

For non real-time processing using files, the frame-by-frame pro-
cess is expensive, due to numerous memory accesses. In order to
treat long sound files, we implemented (using Matlab) programs
treating block-by-block (reading, transforming and writing) a raw
formated sound file. The output format is the same: a raw file in
16 bits, with one or several channels stored as columns. More-
over, in a real-time process with small frames, the effect is usually
applied block-by-block with an overlap and with constant frame
length and frame hop size. However, for adaptive effects, this can
be easily generalised to varying frame length and frame hop size
treatments. We just have to care about the block overlap, that must
be greater or equal to the maximum frame length.

Figure 5: Block by block implementation of effects with varying
frame hop size and frame length. The buffer (or block) overlap
must be greater or equal to the maximum frame length.

Let us notice that the process itself is most of the time ap-
plied frame-by-frame, but data to process are given to the algo-
rithm block-by-block. This means that there are two computation
levels: one for the process itself (frame), one for the procedure
(block).

This block-by-block implementation has been applied in dif-
fered time (using Matlab) for pitch-shift, pitch-change, vibrato,
martianization, vowel colorization, robotization, whisperization,

level change effect (all of them in their adaptive version). Robo-
tization and level change effects have also been implemented in
real-time (using Max/MSP). The other ones will soon be available.

3.4. Frame-by-frame implementation of time-stretching

Concerning the non-real-time adaptive time-stretching implemen-
tation, the input frame is read in irregular places, and the output
frame is written in regular places. This gives a normalized out-
put sound, but adds difficulties to the block-by-block implementa-
tion. Indeed, one may use bigger analysis blocks than the synthesis
blocks, to permit big slowing downs. For example, to synthesize
a N samples block speeding up T times the original sound, the
analysis block length must be N � T .

3.5. Frame-by-frame implementation of delay-line based ef-
fects

With delay line based effects, problems appear when any delay
gain and/or delay time can be applied to a grain (for example with
the adaptive delay). Hence, we cannot simply implement a block-
by-block scheme without loosing precision on delay gain and de-
lay time, and have to use a frame-by-frame scheme. This is re-
ally slow, due to the fact that output data are directly added in the
output file by reading and overlapping the frames. The frame-by-
frame non-real-time implementation algorithm is:

for k=1:nb_delay(k)
p_out = p_in + k*delay_time(k);
fseek(fid_out, nOct*p_out, ’bof’);
DAFx_out = fread(fid_out, WLength, fOct);
DAFx_out = DAFx_out + delay_gain(k) * frame_in;
fseek(fid_out, nOct*p_out, ’bof’);
fwrite(fid_out, DAFx_out, fOct);

end

where delay_gain is an array with the possible values of delay
gain, and delay_time is the array of delay times attributed to a
value of the control curve.

It is not possible to implement it that way in real-time, since
it would be necessary to have an infinity of delay lines. However,
a block-by-block scheme can be implemented with a finite set of
delay lines; then we need to quantize the control curve. This is
explained in following subsection 3.6.

3.6. Feature quantization (needed for delay-lines based Fx)

When delay line effects are implemented as real-time processes
(using Max/MSP) or block-by-block (in real-time and differed-
time), the number of delay lines is limited. One way to best fit
to the ideal sound (obtained with the non-real-time grain-by-grain
implementation of granular delay) is to compute the quantization
segments and values, and when a delay line is empty, to change its
properties (length, gain) according to the most needed quantization
value. That way, the delay line is re-allocated.

The control curves have to be quantized, according to a nq =
20 or 30 values grid for example. The simplest solution is to use
an uniform grid [13]. Let us consider a control curve C bounded
by the interval [�m; �M ]. The quantization segments:

I(n; nq) = [iu(n; nq); iu(n+ 1; nq)]

have su(n; nq) = �m + n�1=2
nq

(�M � �m) for middle values

and iu(n; nq) = �m+ n�1
nq

(�M��m) for bounds. The uniform
quantified function is:

DAFX-24



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

Qu (t; nq) = su

�
arg min

n2f1:::nqg
jC(t)� su(n; nq)j; nq

�
(16)

Another solution consists in using a non-uniform quantization.
A first one is the non-uniform weighted quantization. It consists
in creating an histogram with nH > nq points of the control curve
and using the nq greatest peaks as quantization values. The his-
togram function is H(n; nH) =

PNT

k=1 11 C(k)2I(n;nH ) with the
associated density function D(n; nH) = su(n; nH) and 11 the
Heaveside function. The nq maximum values of H(n; nH) are
Æ(n); n = 1; ::; nq defined by:

Æ(n; nq) = D
�

max
k2S(n�1)

H(k; nH); nH

�
with the set:

S(n�1) =
�
i 2 f1 : : : nHg;H(i; nH) 2 fÆ(k; nH)gk=1:::n�1

	
That gives the weighted quantization function:

Qw (t; nq) = Æ

�
arg min

n2f1:::nqg
jC(t)� su(n; nq)j; nq

�
(17)

This quantization does not take into account the local maxima and
minima.

Musical sense can be given to a local peak value for the control
curve according to the effect. That is the reason why we developed
a second non-uniform quantization scheme taking into account
local extrema called the non uniform peak-weighted quantiza-
tion. After computing the nq � np weighted quantization values
Æ(n; nq � np), we compute np quantization values corresponding
to weighted values between the extrema of weighted quantization
values and local extrema. Let us define the smallest interval con-
taining all the weighted quantization marks:

Iextr = [min
n

Æ(n; nq � np);max
n

Æ(n; nq � np)] = [Æ�; Æ+]

We extract 2np local maxima P+(n) and minima P�(n) and
compute their distance to the nearest bound of Iextr:

d
�(n) = P�(n)� Æ

�

We then define the weighted quantization marks:

P�� (n) = Æ
� + �

�P�(n)� Æ
�
�

and their distance to the nearest bound of Iextr:

d
�
� (n) = P�� (n)� Æ

�

Finally, we classify them from the farest to the nearest to the inter-
val bounds, and out of this interval:

Pcl
� =

n
P�� (k); Æ� > 0; jPcl

� (i� 1)�mj > jPcl
� (i)�mj

o

with m = Æ�+Æ+

2
the mid value of the Iextr interval. The set of

quantization values becomes:

�(:; nq) = fÆ(n; nq � np)gn2f1:::nq�npg [
n
Pcl
� (i)

o
i2f1:::npg

The peak-weighted quantization function we then obtain is:

Qp;� (t; nq) = �

�
arg min

n2f1:::nqg
jC(t)� Æ(n; nq)j; nq

�
(18)

For � = 0, Qp;0 (t; nq) = Qw (t; np): no peak is taken into
account. For � = 1, local extrema are directly taken into account.
This means that near values to these peaks will be quantified to the
peak value, which may produce a lower quantization error. Good
values we used are � 2 [0:5; 0:8].

0 10 20

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Density
20 40 60 80 100 120 140 160 180 200

Non-uniform weighted quantification

to delay line n°

1
2
3

4

5
6
7

8

9
10

11
12

13
14
15

Figure 6: Allocating a grain to a delay line by non uniform
weighted quantization (right figure), using density function (left
figure).

The way to choose between one of the three quantization func-
tion (with several values for �) is not obvious. However, we can
give a few clues. Firstly, for small grids (ie. nq � 30), the granular
delay with a quantized delay time control is clearly different from
the frame-by-frame implementation. For example, comb filtering
effects may appear. We recommend at least 60 delay lines concern-
ing the delay time, and 20 concerning the delay gain. Secondly, the
user may listen to the results of several quantization methods and
control values: the musical effects can be very different, and there
is no a priori feeling of how a quantization will sound good.

3.7. Control scaling

In the case of changing ranges curve, the effect can focalize in a
zone of the control values when the sound parameter is confined in
a small area, or when the user explores a small area with gesture
transducer.

Let us consider the control curve C(t). We give several scaling
(or zooming) functions, noted Zl, defined by the general formula:

Zi(t) = Zi(C(t)) = C(t)� Y�i (t)

Y+
i (t)� Y�i (t)

(19)

with the Y+
i (t) = Y+

i (C(t)) and Y�i (t) = Y�i (C(t)) functions
defined as follows:

DAFX-25



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

C�T (t) = min
k2ft�T:::tg

C(k)

C+T (t) = max
k2ft�T:::tg

C(k)

Y�1 (t) = C�T (t) (20)

< C(t) >T =
1

T

tX
k=t�T

C(k)

M+ = max; M� = min

Y�2 (t) = M�

�
C(t); C

�

T (t) +< C(t) >T

2

�
(21)

Y�3 (t) = M�

�
C(t); C

�

T (t) + C(t� 1)

2

�
(22)

D�i (t) = Æ
�C(t) �jY+

i (t� 1)� Y+
i (t� 2)j�

E�(t) = �
�
h
1� e

�(t�t�a )
i

G�i (t) = 

�C(t) �Y+

i (t� 1)� Y�i (t� 1)
�

Y�4 (t) = M�
�C(t);C�a +D�4 (t)� E�(t) + G�4 (t)

�
with if Y�4 (t) = C(t); then C�a = C(t); t�a = t (23)

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Figure 7: Scaling in an area of the control parameter value with six
different scaling functions. The most interesting is not the curves
by themselves, but their different evolutions (six highest figures)
and the different controls they provide (lowest figure).

With Y�1 (t), the bounds of the grid are given by filtering the
local extrema values of the parameter, in a sliding frame. With
Y�2 (t), the filtered value and the mean value are taken into ac-
count. With Y�3 (t), the filtered value and the last value are used.
With Y�4 (t), an exponential curve is used E , as well as the deriva-
tive of the control curve D and the width of the last interval G.
According to the Æ�; �� and 
� values, we can weight any of
the three functions, and obtain really different control curves (cf.
Fig.7).

4. CONCLUSIONS

ADAFx implementation requires different strategies according to
the effect. The strategies can also differ for real-time implemen-
tation and non-real-time implementation. It is a large topic, with
many orientations to be developed. Quantization is presented in
the field of feature controls of delay-line based effects. Scaling
feature is provided to controls, in order to be able to focus in
a small range when the control parameter is confined in a small
range. Musical sense can be given, transformed with adaptive ef-
fects. Real-time control is developing since it is useful for adding
an expressivity level to the sound transformations.

5. REFERENCES

[1] Arfib, D., Verfaille, V., “A-DAFx: Adaptive Digital Audio
Effects”, Proc. Workshop on Digital Audio Effects (DAFx-
01), Limerick, Ireland, pp.10-4, 2001.

[2] Arfib D., “Des courbes et des sons”, Recherches et applica-
tions en informatique musicale, Paris, Hermès, pp.277-86,
1998.

[3] DAFX - Digital Audio Effects, ed. Udo Zölzer, John Wiley &
Sons, 2002.

[4] Amatriain X., Bonada J., Loscos A., Arcos J. L. and Verfaille
V., “Addressing the content level in audio and music transfor-
mations”, submitted for a special issue of the Journal of New
Music Research, 2002.

[5] Portnoff, M.R., “Implementation of the Digital Phase
Vocoder Using the Fast Fourier Transform”, IEEE Tran-
sactions on Acoustics, Speech and Signal Processing, 24(3)
pp.243-8, 1976.

[6] Arfib D., Delprat N., “Musical Transformations Using the
Modification of Time-Frequency Images”, Computer Music
Journal, 17(2), pp.66-72, 1993.

[7] Verfaille, V., Charbit, M., Duhamel, P., “LiFT: Likelihood-
Frequency-Time Analysis for Partial Tracking and Auto-
matic Transcription of Music”, Proc. Workshop on Digital
Audio Effects (DAFx-01), Limerick, Ireland, pp.82-6, 2001.

[8] Noll, A. M., “Short-time Spectrum and “Cepstrum” Tech-
niques for Vocal Pitch Detection”, J. Acoust. Soc. Am., 36(2),
pp.296-302, 1964.

[9] Rossignol S., Rodet X., Soumagne J., Collette J.-L. and De-
palle P., “Feature Extraction and Temporal Segmentation of
Acoustic Signals”, Proceedings of the ICMC, ICMA, 1998.

[10] Haykin, S., Adaptive Filter Theory, Prentice Hall, Third Edi-
tion, 1996.

[11] Arfib, D., Couturier, J.M. , Kessous, L., “Gestural Strategies
For Specific Filtering Processes”, Proc. Workshop on Digital
Audio Effects (DAFx’02), Hamburg, Germany, 2002.

[12] Blauert, J., Spatial Hearing: the Psychophysics of Human
Sound Localization, MIT Press, 1983.

[13] Zölzer, U., “Digital Audio Signal Processing”, pp.19-21, ed.
John Wiley & Sons, 1997.

DAFX-26


