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ABSTRACT

In the area of digital musical effect implementation, attention
has lately been focused on computer workstations designed for
digital processing of sound, which perform all operations with
audio signals in real time. They are in fact a combination of
powerful computer program and hardware cards with digital
signal processors. Thanks to the power enhancement of personal
computer core, performing these operations in the CPU is
currently possible. However, in most cases, digital signal
processors are still used for these purposes because digital
musical effect modelling is more effective and more precise with
the digital signal processor. In addition to this, processing in
digital signal processor saves the CPU computing power for
other functions.

1. INTRODUCTION

The first step in optimizing an algorithm is optimizing the
algorithm for the architecture of the digital signal processor
(DSP) used [1], most frequently of the Motorola DSP563xx
family. However, when we want to implement the algorithm on a
multi-processor DSP system, we have further possibilities that
depend on the given system architecture.

The optimization possibilities are presented on the algorithm
of the DSound VL2 non-linear musical effect that uses the non-
linear transfer characteristic of a tube amplifier with an ECC-83
tube in the starved-plate mode to enhance the musical signal
spectrum by adding the higher harmonics. The algorithm is
optimized for the TC Works Powercore system [2] with dynamic
allocation of resources.

2. NON-LINEAR SYSTEM WITH VARIABLE RATIO OF
HIGHER HARMONICS

2.1. Spectrum Components in Power Polynomial Approximation

When approximating the transfer characteristic with an nth-
order polynomial, the output voltage u2 depends on the input
voltage ( )tUu 011 cos ω=  according to the equation

( ) ( )tUatUaau nn
n 0101102 cos...cos ωω +++= , (1)

where a0 to an are the coefficients of approximation polynomial.

We can express output signal of the system using Fourier
series from which the amplitudes of individual harmonics can be
determined. If we establish Euler form of cosine function to
binomial series we get the general equation for establishing kth

harmonic of output signal
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where U2k is the amplitude of the kth harmonic of output signal,
U1 is the amplitude of the input signal, and an is the nth

coefficient of the polynomial that approximates the system
transfer characteristic.

2.2. Possibilities of Change of Higher Harmonics Ratio

Possibility to change higher harmonics ratio of signal is
important property of digital musical effects that use spectral
features of system with non-linear transfer characteristic.
According to analogue musical effects we can give a name
“Saturation” to parameter allowing this change.

2.2.1. Change of working point and range

Higher harmonics ratio of output signal depends on
polynomial section in which input signal is situated. Output
signal spectrum of such system with two saturation settings is in
Figure 1 and 2. However, change of input signal level causes
change of saturation and input signal range for that is polynomial
defined can be exceeded - it causes output signal limitation.

Figure 1: Output signal spectrum with lower saturation.
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Figure 2: Output signal spectrum with higher saturation.

2.2.2. Evaluation of polynomial coefficients

Other possibility is evaluation of polynomial coefficients
according to required harmonics ratio of output signal. If we
modify equation (2) and introduce the substitution Bk = U2k/U1
we get the relation
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where Bk is the ratio of kth harmonic amplitude with respect to
the first harmonic amplitude, U1 is the amplitude of the input
signal, and an is the nth coefficient of the polynomial that
approximates the system transfer characteristic.

If we itemize equation (3) for k = 0 ... m, we get a system of
m+1 equations with m+1 unknowns. The solution of this
equation system are coefficient values of the polynomial that
approximates the transfer characteristic of a non-linear system
and satisfies the requirements for higher harmonic amplitude
ratios with respect to the amplitude of the first harmonic. See [4]
for details. However, the question is how to compute required
higher harmonics ratios along one parameter (Saturation). Also
computing power of algorithm is relevant.

2.2.3. Change of first to higher harmonics ratio

System in Figure 3 holds higher harmonics mutual ratios
with change of saturation. System changes only higher harmonic
amplitude ratios with respect to the amplitude of the first
harmonic.

Figure 3: Non-linear system with change of saturation.

Input signal is subtracted from output signal after input signal
passes through non-linear system, so only higher harmonics are

obtained. According to (2) amplitude of the first harmonic U11
will be
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where U1 is maximum value of input signal. Amplitude of all
higher harmonics can be computed also according to (2). Signal
of the higher harmonics uA will be in point A in Fig. 5. In the
worst case its maximum value will be
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The equation holds for output signal u2 of the system in Figure 3

BA uDryuWetu ⋅+⋅=2 (6)

where uB= u1/U11. If we introduce variable Saturation=Wet/Dry
and assume U2 = U1, we can determine the Wet and Dry values
from (5), (6), and (7).

As can be seen from Figure 4 and 5 the higher harmonics
ratio changes independently with saturation settings and with
input signal amplitude.

a)

b)

Figure 4: Higher harmonics ratio of signal with amplitude of
1 and saturation of 1 (a) and 5 (b)
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a)

b)

Figure 5: Higher harmonics ratio of signal with amplitude of
0.5 and saturation of 1 (a) and 5 (b)

3. ALGORITHM IMPLEMENTATION ON FIXED-
POINT DIGITAL SIGNAL PROCESSOR

Fixed-point digital signal processors can work with numbers
in interval <-1,1-2n-1>, where n is data bus width. Input and
output signal, and constants must be in this range. Transfer
characteristic is used in whole range that is defined in input
signal interval <u1A,u1B> for which the output signal is in range
<f(u1A),f(u1B)>. It is useful if u1A=-u1B. Then we produce new
signal u1’= C.u1 by multiplying input signal by constant C1=(1-
2n-1)/u1B. For polynomial approximation we obtain equation
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ak’ = ak/C1k . (8)
Processor ensures limitation outside range in which the approxi-
mation polynomial is defined. It holds that f(u1A)=min(u2) and
f(u1B)=max(u2) if the approximation polynomial is creasing
function in whole range. According to (9) we obtain equation by
multiplying input signal by constant C2 = (1-2n-1) / max (f(u1A) ,
f(u1B))
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ak” = C2 . ak’ . (10)

If we change approximation polynomial coefficients using
equation (9) and (11) we ensure that polynomial is defined in
whole range of input signal and output signal will be in
arithmetic range of fixed-point DSP.
However, this does not ensure that coefficients are in <-1,1-2n-1>
range and they are not too small (it increases computing
inaccuracy). Equation (10) can be written in form
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where K = max(ak”)/(1-2n-1)  and  ak’’’= ak”/K. Block diagram of
modified algorithm is in Fig. 6.

Figure 6: Modified non-linear system with saturation

3.1. Parameter Choice and Data Transfer

The digital musical effect dedicated to a DAW system can be
divided into two parts - user interface and processing algorithm.
The algorithm processes the digital musical signal according to
variables that are obtained from the user interface. These
variables needn’t have a direct link to the algorithm variables. It
is necessary to compute algorithm variables according to the
settings of GUI parameters. However, this entails further (and in
many cases useless) load of the processing algorithm.

Computing the algorithm variables according to the GUI
parameters set can be performed directly in the user interface or
in the background DSP code. In the former case the load of the
host environment increases but only minimally because the
computation has to be performed only when a parameter
changes. A disadvantage is that a great number of variables has
to be transferred several times in succession in the case of
spontaneous parameter changes and the communication interface
may get saturated.

3.1.1. Algorithm Optimizing

Equation holds for output signal value u2 of the system in Fig. 6

( )11111112 )(. uUufKCuUCu SATDRY −⋅+⋅⋅= (12)

where u1 is input signal value, U11 is first harmonic amplitude
after input signal passes through non-linear system, f(u1) is
function that approximates transfer characteristic of non-linear
system, and CDRY, CSAT, and K are constants. This equation is too
complex. We have to optimize it so number of performed
mathematical operations is minimal. If we introduce substitutions
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we can write equation (13) in form

12112 )( ucufcu ⋅+⋅= (14)

If function f(u1) is polynomial of nth order, equation (15) is in
form
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If we introduce substitutions c3 = c1/2m and c4 = c2/(c1.2m) we
obtain system equation suitable for implementation on fixed-
point digital signal processor
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where 2m > max(c1) and ak are coefficients of polynomial that
approximates transfer characteristic of non-linear system. Only
c3 and c4 coefficients change in (17) with change of Saturation
parameter. This computation can be performed in plug-in
interface and only c3 a c4 values can be transferred into digital
signal processor memory. Next step is optimizing of nth-order
polynomial computation on digital signal processor. Polynomial
equation can be written in the form
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If we introduce state variables

10 =v , 11. −= kk vuv for k = 1.. n (18)

we can write equation (18) in the form
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Using equations (17), (19), and (20) we obtain equation of digital
musical effect algorithm based on signal passing through non-
linear system with transfer characteristic approximated by power
polynomial with possibility of change of higher harmonics ratio:
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where u1 is input signal value, c3 and c4 are constant dependent
on Saturation value, ak are approximation polynomial
coefficients, and vk are state variables.

3.2. Serial and Parallel Processing

The number of instruction cycles that one DSP can perform
during processing the elementary data blocks is most
constraining factor. Thus the computing power linearly depends
on the ratio of DSP clock rate and sampling frequency. Dividing
the algorithm into more processes can be used especially in
multi-processor systems with dynamical allocation of computing
power. We can spread algorithm processing onto more processes
that are in series or in parallel. The former case is suitable for
algorithms, which are composed of several subsequent blocks
(process 2 can process the data block that has been previously
processed by process 1, while process 1 processes a next data
block). The processing of N data blocks takes the time tb

( ) cyclecycleb tnKNnt ∑−+= 1 (21)

where n is the data block length, K is the number of serial
processes, ncycle is the number of instruction cycles of the given
process, and  tcycle is one instruction cycle period.

Parallel processing expects that the algorithm can be divided into
parallel branches. The time of processing N data blocks tb does
not depend on the number of processes

cyclecycleb tnNnt ∑⋅= . (22)

3.2.1. Algorithm Adaptation

The parallel division according to the audio channels is one
of the ways of parallel processing. Hardware DO cycle can be
used for processing more channels by one process if every
channel is processed by same algorithm. However, it linearly
increases DSP load and number of required instruction cycles
can exceed computing power of one DSP in the case of
multichannel digital audio effect. To avoid this problem, digital
audio effect can be divided into more DSP processes that process
smaller number of audio channels. These processes can share
memory with algorithm variables and polynomial coefficients
(see Figure 7). Control part of effect determines number of
processes according to load of individual DSPs and the number
of channels processed by individual processes.

c4 X data memory
c3

polynomial order ← shared memory pointer
number of channels ← individual memory pointer

aK Y data memory
:

a1

a0 ← shared memory pointer

Figure 7: DSP memory usage for more parallel prosesses

4. CONCLUSIONS

Algorithm described above is used in DSound VL2 multi-
channel valve interface. It processes as many channels as
actually needed (this save computing power) and it can establish
more processes if no DSP on Powercore board has enough
computing capacity for processing all channels. Polynomial
coefficients and order can be also changed during processing.
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