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ABSTRACT

We present two evolutions of the well known Exponentially
Damped Sinusoidal model, named HDS (Harmonic Exponentially
Damped Sinusoidal) model for single pitch signals and HDSM
for multi-pitch signals modeling. Additionally, we propose to
use an iterative high-accuracy algorithm to estimate the model pa-
rameters. Compared with full or fast implementations of high-
resolution methods (Matrix Pencil, ESPRIT, Kung’s algorithm,
...), this approach has a lower computational complexity and is
well adapted to the Harmonic Damped Sinusoidal models since
it takes into account the harmonic relations between the angular-
frequencies. In the context of low bit-rate audio coding, we show
the validity of this approach on several audio signals.

1. INTRODUCTION

Audio modeling with non-stationary models knows a growing in-
terest in the audio community. The EDS (Exponentially Damped
Sinusoidal) model is, probably, the best example of these non-
stationary models [1, 2, 3]. Moreover, we introduce the closely re-
lated Harmonic Damped Sinusoidal models for single-pitch (HDS)
and for multi-pitch (HDSM) signals modeling. These models can
be seen as a generalization of McAulay & Quatieri’s sinusoidal
model [4] in the sense that fast time variations of their amplitudes
are allowed.

Traditionally, the EDS model is associated to a High-Resolution
(HR) parameter estimation method, such as Matrix Pencil, ES-
PRIT or Kung’s algorithm. These methods grouped under the
generic designation of ”subspace methods” [5] are very efficient in
the context of audio modeling [6]. Unfortunately, they do not ex-
ploit the harmonic relations between the angular-frequencies and
have a high complexity cost of orders. Consequently, these meth-
ods become ineffective when the length of the analysis segment is
large. In this work, we present an alternative high-accuracy algo-
rithm to estimate the H/EDS model parameters with a lower com-
plexity. This approach is based on an iterative scheme, inspired
by the RELAX algorithm. The latter was, in a first time, proposed
in the context of the stationary sinusoidal modeling of general sig-
nals [7], SAR imaging [8] or audio signals [9]. Then, we extend
this approach to the non-stationary H/EDS model case. The final
method is a high-accuracy iterative algorithm of complexity order
of O(N log, N) or O(N) per iteration.

The paper is organized as follows : in section 2, we define the par-
tial parametric model and the Analysis by Synthesis (A/S) archi-
tecture. In section 3, we give the definition of the EDS, HDS, and
HDSM models. In sections 4 and 5, we describe our iterative algo-
rithm. In section 6, we begin by showing an example of multi-pitch

signals modeling with the harmonic model. After that, we com-
pare the performance of the proposed method with the more costly
Matrix Pencil (MP) algorithm by performing a “time-frequency”
analysis based on a pseudo-QMF filter-bank architecture. In sec-
tions 7 and 8, we compare the algorithmic complexity of this new
algorithm with the one of the MP algorithm and we point out the
advantages and the drawbacks of the proposed method. Finally,
we conclude in section 9.

2. PARAMETRIC MODELS AND ANALYSIS BY
SYNTHESIS ARCHITECTURE

Let r be the analysis segment index. We define the general expres-
sion for the k-th partial parametric model according to

My,
Tr(n,r) £ Z Am i (n,1) cos (Pm,k(n, 7)) 1)
m=1
where A,, 1 (n, ) is the generalized time-varying amplitude, M
is the modeling order, i.e., the number of sinusoids of the k-th
partial model. ®,,, 1(n,r) is the generalized time-varying phase.
After that, we give the expression of a parametric model

K-1
Zr(n,r) (2)
k=0

Z(n,r) =

where K is the number! of partial parametric models. The mod-
eling total order is M = >, M. The analysis process is
done through a uniform time segmentation of the audio signal ac-
cording to z(n,r) = x(n)he (n — rD) where hq(n) is a rect-
angular analysis window, D is the stride length and the syn-
thesis is made by using a Hanning window hs(n) as &(n) =
Zf‘:_ol Z(n,r)hs (n — rD) where R is the number of analysis
segment. Note that this Overlap and Add (OLA) technique is an
Analysis by Synthesis (A/S) architecture which verifies the perfect
reconstruction conditions, i.e., Ef;‘ol hs (n —rD) = 1.

3. DEFINITION OF THE H/EDS MODELS

The choice of the terms {A,, x(n,7), @ k(n,r)} characterizes
the model. By omitting the segment index, we can give the fol-
lowing definitions of the EDS model, the HDS model in case of
single-pitch signals and the HDSM model in case of multi-pitch
signals, according to

lpossibly K = 1.
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model label | K | A,.x(n) D, 1(n)
EDS =1 | amedm® W + Pm
HDS =1 | ame?™™ womn + ¢m
HDSM >1 | ampe™ " | wpmn + ¢k

where {wi}o<k<rx—1 is the set of fundamental angular-
frequencies and we have to satisfy Miwr < 7. We, also, de-
note, respectively, {am.k, ®m,k, dm,ix } the m-th amplitude, phase
and real damping-factor parameters of the k-th partial model. The
EDS, HDS and HDSM maodels have all exponentially time-varying
amplitude and the relations bending the angular-frequencies deter-
mine the choice of the model. Note that for the simplicity of the
notations, we systematically omitted the index k& when K = 1,
i.e., for the EDS and HDS models.

The EDS model is a more general model since it allows any kind of
relation between the angular-frequencies. The HDS model fixes a
harmonic relation for a single fundamental angular-frequency such
as wy, = mwyo. Finally, the HDSM extends this approach by con-
sidering multiple fundamental angular-frequencies, according to
Wm,k = mwg. This model can be seen as the sum of K HDS
models.

The EDS model can be used in the context where no informa-
tion on the audio signal z(n) is known. The HDS model is well
adapted to the single-pitch speech modeling and finally, the HDSM
is dedicated to the multi-pitch speech (multi-speaker) signals mod-
eling and to the representation of multiple harmonic musical in-
struments.

The complex plane for HDS poles (see figure 1-a) and for HDSM
poles (see figure 1-b) are represented on figure 1. The pole is
defined by z,, , = em*+m.k  Note that due to the varying-
amplitude, the modulus of the pole is not limited to the unitary
circle. Indeed, we have |z, x| = €2¥* and arg(zm ) = wem.
For the EDS model, the poles can take any value in the complex
plane.

32 3m2

@ (b)

Figure 1: complex plane (for several damping-factor values) (a)
HDS poles with wy = 0.7 (rad) and My = 4, (b) HDSM poles
with K = 2, wo=0.7, w1 =03, My =4 and M, = 8.

Note that our approach is quite different of the one in [10] since
we consider for each harmonic angular-frequency a damping-
factor parameter. This assumption is more consistent with the real
structure of speech and audio signals. Moreover, in [10], only the
single-pitch case is considered.

4. ITERATIVE METHOD FOR THE EDS, HDS AND
HDSM MODELS

Our approach is based on an iterative M -order decomposition of
the audio signal xz(n). We introduce the residual audio signal
xe(n) at the ¢-th iteration, according to

1>

ze—1(n) — ace™™ cos (wen + ¢r) 3
2

z(n) — Z a;e%™ cos (win + ¢;).

Jj=1

ze(n)

The last expression is obtained by initializing the first residual to
the audio signal. Note that there exists a mapping between ¢ and
the couple (m, k) according to £ = kM, + m. Consequently, we
have 1 < /¢ < M.

We want to minimize with respect to the model parameters, the fol-
lowing Non-Linear Least-Square (NLLS) criterion of the residual
audio signal, given by

N-1
ee= lze(n). *)
n=0

The previous criterion can be seen as one ¢-dimensional NLLS
criterion or as ¢ 1-dimensional NLLS criterions. Then, we give the
algorithmic description of the method :

Initialization : xo(n) 2 z(n) [audio signal]
iterate ¢

(1) Analysis of the residual audio signal z,(n) according to ex-
pression (3).

(2) According to the methodology of section 5, solve the follow-
ing criterion :

ar min &y 5
gae«de«d%wz ( )

(3) Synthesis of the modeled signal z,(n) according to

Zo(n) = Zo_1(n) + are™™ cos (wen + ¢o). (6)

For the EDS model? the method is exactly summed up in the
previous algorithm. For the HDS model, we perform an estima-
tion of the fundamental angular-frequency at the first iteration, af-
ter that, we deduce the set of harmonic angular-frequencies for a
fixed modeled order. Consequently, in the subsequent iterations,
we estimate only the model parameters {a¢, d¢, ¢¢}. In the case
where K > 1, i.e., for the HDSM model, we iterate K times the
algorithm dedicated to the HDS model.

5. MODEL PARAMETERS ESTIMATION

5.1. Angular-frequency estimation
5.1.1. EDS model case

In the case of the EDS model, we use the following strategy to
solve the one dimensional NLLS criterion (4). First, we begin by
estimating the angular-frequency w.,, according to

e, K=1and¢=m.
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we = arg )\21[%);] Xe(N) (7)

where X,()\) is the Short-Time Fourier Transform (STFT) of the
£-th zero-padded residual audio signal. One should make sure that
the selected component is a valid spectral peak [11].

5.1.2. HDS and HDSM models case

For HDS and HDSM maodels, we exploit the harmonic relations
between angular-frequencies : the k-th partial model is featured by
its fundamental angular-frequency wy. A first estimation stage is
then introduced to estimate the fundamental angular-frequencies.
A consequent work on pitch estimation methods has been devel-
oped over three decades and one can find several effective single-
pitch estimation methods for HDS modeling in [12].

When K > 1, multi-pitch estimation methods can be used to ob-
tain the fundamental angular-frequencies of each partial model.
Two approaches can be considered : first, one can use single-
pitch estimation methods, dedicated to the HDS model and iter-
ated K times [14]. Second, multi-pitch estimation method can be
exploited to jointly estimate the fundamental angular-frequencies
set [13]. However, we can point out an important defect of pitch
estimation methods, i.e., pitch doubling or pitch halving values can
occur. Thus, one can use an approach based on the MDL (Mini-
mum Description Length) as described in [15].

5.2. Damping-factor estimation

After that, we estimate the damping-factor d, by the shifted-STFT
method. This method uses the ratio of the modulus of two STFT
segments of the same length but one shifted from the other. Con-
sequently, we have :

L1 X0 w0) o
L= 5 T~

P ’ngo) (we)‘

where X” (w) and X" (w) are the respective STFTs of the sig-
nals :

0 (n)

. ze(n)w(n) for
z;" (n)

ze(n)w(n — P) for

n=0,....N—-P—-1
n=~FP,...,N—-1

)
where P is a time offset chosen small with respect to the analysis
duration. Note that we only calculate the Fourier transforms for
the considered w,. Consequently, the complexity is not the STFT
one but only the product of two (N — P) dimensional vectors.
w(n) is a weighting window which is designed for isolating the
pole from its conjugate [16]. We choose here a Blackman’s win-
dow [17]. We sum up the method in figure 2.

Finally, we can note that in the reference [18], the authors pro-
pose to determine each damping-factor by using a 1-D optimiza-
tion method. Then, the global algorithmic complexity is generally
higher than the STFT one.

5.3. Complex amplitude estimation

The N x 2 Vandermonde matrix can then be deduced from the
pole z, :

time segment <
(—)/\ " “6:(‘?"/
et

1st sub-segment %«

2nd sub-segment

R Idamping

v

frequency domain

Figure 2: Principle of the damping-factor estimation.

1 1
ze Zp
22\771 ZéNfl)*

and the following criterion can be solved :
arg min sz — VeagHg = ay = V};:L‘e (11)
oy

where 1 denotes the pseudo-inverse, ¢ = (¢(0) ... 2¢(N—1))T
and ap = (are'® /2 ace™'%t/2)T. Note that the pseudo-inverse
of V, exists if and only if the Hermitian matrix VEV, is full
rank. If we make the assumption that z, € C , i.e., w, # 0,
then the rank of V', is 2. Thanks to rank conservation, VXV,
is also a 2-rank matrix and is square of dimension 2. \We con-
clude that the pseudo-inverse of V', exists under the assumption
that the pole is complex. In the audio compression context, the
zero angular-frequency component is not important and is system-
atically eliminated at the synthesis stage. Let us indicate that [19]
points out that estimating «, according to the expression (11) is
asymptotically consistent (for N great enough).

5.4. Modified RELAX algorithm for the EDS model

The previous algorithm can be improved by using the RELAX
method [7]. The basic three step RELAX procedure for the first
component estimation could be briefly described in the following
manner :

step 1 Assume ¢ = 1. Estimate from x(n), the one-component
signal Z1(n), i.e., the model parameters : {w1,d1, a1, ¢1}.

step 2 Build the first residual z:(n) and estimate the one-
component signal Z2(n), i.e., the model parameters :
{w2, d2, a2, g2}
From the signal z(n) — Z2(n), redetermine the following
model parameter set {w1,d1,a1,é1}. lterate the previous
operations until ”practical convergence” [7].

step 3 Compute Z3(n) from the residual signal z2(n), i.e., estimate
{(4)3, d37 as, ¢3}
From the signal z(n) — £2(n) — &3(n), redetermine the fol-
lowing model parameter set {w1, d1, a1, ¢1 }. lterate the pre-
vious operations until "practical convergence”.

— Estimate the second component (¢ = 2), i.e., the model pa-
rameter set {ws, d2, az, P2 }.
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The remaining operations consist in continuing this three step
process until the model order is reached. It is well known, that
this method improves the angular-frequency resolution of the
Fourier-like methods [7, 18, 20] and, thus, improves also the
estimation of the other model parameters.

6. SIMULATIONS

6.1. HDS and HDSM models

The HDSM model is used on a mixing of two voices (see figure
3-a). On figure 4-«, the log-spectra of the two previous signals
and their modeled versions (see figures 3-b) are represented.
The autocorrelation method [12] has been used to estimate the
fundamental angular-frequency in the single-pitch case. For
the two-pitch case, we have exploited the same method in an
iterative scheme context. The log-spectra of the two partial
models are represented on figures 4-8-a,b. The fundamental
angular-frequency trajectories are plotted on figure 3-c. We
choose the autocorrelation method for two reasons. Firstly, it is
a high-resolution method and secondly, its computational cost is
quite moderate.

@)

(©) 0.5

4000

—2000
—4000

XXXXXXXXXXX

-
a
o

Figure 3: HDSM model, (a) original two-pitch signal, (b) mod-
eled time-waveform &(n) with My = M; = 20, (c) fundamental
angular-frequency trajectories.

Finally, one can see the harmonic structure of the test signals
and the great spectral and temporal matching of the modeled sig-
nals.

6.2. Time-frequency analysis by filter bank approach

In this section, we show through two examples of Glockenspiel
and Harpsichord signals (see figures 5-a and 6-a) the effective-
ness of the proposed method by comparison with the Matrix Pencil
(MP) algorithm. The classic SNR criterion is consistent with ex-
act temporal modeling of signal but it does not reflect the spectral
behavior of the considered models. Introducing a spectral aspect
in the analysis, we use the polyphase 32-band pseudo-QMF filter-
bank {hy(n)}1<p<32 of MPEG1-audio [21] providing a uniform
partition of the frequency axis. The bandwidth of each subband
is 500 Hz with a 32 kHz sampling frequency. In each subband,
we use the criterion SNR to characterize the temporal modeling
performance. The final criterion can thus be reformulated as
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Bo-
100- 3
280~
g
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LR = 00— 250030003500
3 ()
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60 Bo0-
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401 . . . . . .
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Figure 4: HDSM model, («) log-spectrum of the original z(n)
and of the modeled signal z(n), (3) (a) log-spectrum of the first
partial model Zo(n), (b) log-spectrum of the second partial model
‘fn (TL)

N-1

(rb) _ [y (n) * 2(n, )|
SNRy " = 10log;, nz::o [ho(n) = (z(n, 1) — 2(n, )2

[dB]

(12)
Note that this representation is to be related to power levels com-

putation in each subband. In fact, SNR%’) interpretation in weak

power subband b is not significant as SNR&T;E’) derived from a high
power subband in terms of considered model performance analy-
sis.

According to figures 5-b,c and for the Glockenspiel signal of fig-
ure 5-a, we can note the great modeling obtained by the EDS
model with the two tested estimation methods. Due to the use of
short windows (8 ms), we can note the absence of pre-echo phe-
nomenon® (see figures 5-b,c).

In the light of figures 7-b, we can say that the modified RELAX al-
gorithm presents better performance in the regions where we have
the higher subband powers (figure 7-a) i.e. for b < 5. On the
other hand, the MP method presents a better modeling in higher
subband, especially for b = {11;12;17}. In other subbands, the
power can be considered negligible, in the context of low bit-rate
audio modeling.

In the second example, on figure 6, we choose a Harpsichord sig-
nal. Contrary to the Glockenspiel signal, the two methods show
their defects in the high-frequency domain (see figure 7-c for
b > 22 i.e. for frequencies higher than 11 kHz) and the mod-
eled signal spectrograms on figures 6-b,c. However, we can see on
figure 7-d, that the two methods present very close performances.
Indeed, we have less than 2dB between the two approaches. These
conclusions are confirmed by informal listenings.

7. ALGORITHMIC COMPLEXITY ANALYSIS

7.1. Complexity order of the proposed method

In the context of the proposed method and for the EDS model,
we have a complexity order of O(N log, N) per iteration for the
determination of the angular-frequency by the STFT. The com-
plexity order for the estimation of the damping-factor is O(NV).

Sadditional energy before the onset.
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Figure 5: EDS modeling, Spectrograms, (a) Glockenspiel signal,

(b) modeled signal with the MP algorithm (M = 30) (c) modeled
signal with the modified RELAX algorithm (M = 30).
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Figure 6: EDS modeling, Spectrograms, (a) Harpsichord signal,
(b) modeled signal with the MP algorithm (A = 30) (c) modeled
signal with the modified RELAX algorithm (M = 30).

The pseudo-inversion of a thin matrix for the complex amplitude
estimation is O(N). Then, the complexity per iteration is dom-
inated by the STFT, i.e., O(N log, N). In the case of using the
RELAX approach, we reiterate this process few times. Conse-
quently, we can neglect it. For M iterations, the total complexity
is O(MN log, N).

For the HDS model, we perform a fundamental angular-frequency
estimation based on the autocorrelation method which presents a
complexity of O(N) and, finally, M damping-factors and com-
plex amplitudes estimations. Then, the total complexity is O(NV)
plus O(M N) which is dominated by O(M N).

The HDSM model makes the assumption that K > 1. In this case,
the modeling order is defined by >, . ; M and the total complex-
ity is O(N > ,o, My).

7.2. Full implementation of a HR method

The Matrix Pencil algorithm has a complexity dominated by the
cost of the full implementation of the SVD (Singular Value De-
composition) [26], i.e., O(N?). In relation with subsection 7.1,
we can conclude that the proposed algorithm presents a strongly
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Figure 7: Glockenspiel signal (a) Power by subband, (b) SNRrF,
Harpsichord signal , (c) Power by subband, (d) SNRr .

reduced computational cost.

7.3. Fast implementation of a HR method

In [22, 23], we present a fast and a very fast processing of the ”sig-
nal part” of the SVD. This approach, in its fast version, has a total
complexity order of O(N? M) if we use only the Orthogonal Iter-
ation algorithm. A very fast version is obtained by adding a fast
technique to compute the products between a vector and a struc-
tured (Hankel or Toeplitz) matrix. The complexity order is, then,
O(NM?).

We conclude that the total complexity of the proposed new method
is attractive in comparison with fast implementation of the SVD.
In the case of very fast implementation, the proposed method re-
mains more economic if the model order verifies A/ > log, N
in the EDS model case. Note that this constraint is realistic in
the context of low bit-rate audio coding. In the case of HDS and
HDSM models, the new method has always a lower computational
cost.

8. ADVANTAGES AND DRAWBACKS OF THE
PROPOSED METHOD

We have to point out the limitations of the proposed method.
Firstly, in the sharp transient audio modeling context, i.e., when we
have to deal with very localized time events (e.g. castanet onset),
it remains preferable to use a HR method (see [24, 25]). Secondly,
in the frequency tracking context (with short analysis segments) a
HR method has proven its efficiency [22]. Finally, note that HR
methods remain interesting in the context of high-quality audio
analysis [6].
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However, in the context of compact audio representation (low bit-
rate coding), i.e., for a given order M, we choose a large analysis
range NN, the proposed method is well adapted and provides very
satisfactory results for a reduced computational cost. For this rea-
son, we have chosen this approach for the quasi-stationary signals
and “soft” transients representation in the context of a paramet-
ric audio (speech and music) coder, designed for a target bit-rate
lower than 30 kbits and for a 32 kHz sampling frequency [3].

9. CONCLUSION

In this communication, we have presented two modifications of the
EDS model which are dedicated to harmonic signals. These mod-
els are named HDS for Harmonic Damped Sinusoidal model for
single-pitch signals and HDSM for Harmonic Damped Sinusoidal
model for multiple-pitch signals. In addition, we propose to use
for the three models a high-accuracy iterative algorithm to estimate
the model parameters. After that, we present in the simulation part
and in the context of compact audio representation (low bit-rate
audio coding), a "time-frequency” analysis by means of a filter-
bank architecture which tends to show that this method provides
similar performance to the more costly Matrix Pencil method.
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