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ABSTRACT

A signal model is described which forces temporal and spec-

tral smoothness of harmonic sounds. Smoothness refers to har-

monic partials, the amplitudes of which are slowly-varying as a

function of time and frequency. An algorithm is proposed for the

estimation of the model parameters. The algorithm is utilized in a

sound separation system, the robustness of which is increased by

the smoothness constraints.

1.  INTRODUCTION

Most audio analysis systems which operate in frequency

domain are completely frame-based. It is, the parameters are esti-

mated independently in each frame. To obtain temporal continu-

ity, some post-processing can be done for the estimated

parameters. This kind of bottom-up approach may work well in

some applications, but it is clear that constraining dependencies

between the frames already during the core estimation can

increase the robustness of a system.

In this paper, a signal model is proposed which forces time-

frequency smoothness of the parameters by representing them as

a linear combination of pre-defined basis functions. Previously

presented frequency-domain models [1] are extended into time-

domain.

The signal model is used as a core of a sound separation sys-

tem, allowing robust estimation of the amplitudes of harmonic

components. Because there is dependency of parameters between

frames, the least-squares solution has to be calculated for several

frames at the same time. Basically all the parameters of one sound

have to be estimated simultaneously. Since the usual least-squares

solution is computationally too complex for all notes at time, an

efficient algorithm is proposed for an approximation of the solu-

tion.

2.  THE SIGNAL MODEL

The kth frame sk(t) of a signal s is expressed as a sum of har-

monic sounds and residual. The harmonic sounds are expressed as

a sum of sinusoids:

(1)

where t is time, N is the total number of sounds, Mn is the number

of harmonic components of nth sound, and , , and

are the amplitudes, frequencies and phases of the hth com-

ponent, respectively. is the residual which is not representa-

ble with sinusoids. The onset and offset times ( and ) of

each sound are assumed to be known. The amplitudes of har-

monic components of each sound are zero outside the interval

, and non-negative inside the interval.

For sinusoids, the frequencies of which are not close to each

other, the parameters can be easily estimated. The problem is that

for polyphonic music signals, the number of sounds may be large

and several sinusoids are overlapping with each other. Also, har-

monic relations are preferred in music, which further increases

the number of components which coincide in frequency. The

parameters of overlapping components can be estimated only by

making some further assumptions concerning the parameters.

2.1. Linear models for overtone series

Spectral smoothness is one of the features that the human

auditory system uses in grouping spectral components to sound

sources [2]. Most natural sounds have a smooth spectrum. This

was utilized by Virtanen & Klapuri [1] in a sound separation sys-

tem, in which the overlapping harmonic components were

resolved using linear models for the overtone series. The linear

models force spectral smoothness and allow the estimation of

overlapping components.

The fundamental idea of linear models is the following:

instead of estimating the amplitudes, the estimation is done for a

parameter vector yn, which is a lower-dimensional linear projec-

tion of the amplitudes:

(2)

where is the amplitude vector containing amplitudes

of sound n in frame k, Xn is the transform matrix,

and is the parameter vector. Using this procedure, the ampli-

tudes of harmonic partials are represented as a linear combination

of columns of Xn:

(3)

where In is the number of columns of Xn, which is smaller

than Mn, the number of harmonic components. There are several

possible structures for the matrix X. Earlier simulations showed at

a good choice for X is a structure which simulates a critical-band
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filter bank [1]. The structure of this kind of matrix is illustrated in

Figure 1. Some other models are discussed in Section 4.

2.2. Linear models for temporal evolution

The robustness of parameter estimation can be increased by

applying the linear models also in time domain. In addition to the

within-frame constraint of Equation 3, similar restriction is placed

for the temporal evolution of each harmonic component:

(4)

where is the jth time-domain basis function and Jn is the

number of functions.

Similarly to the frequency-domain model, triangular basis

functions are used also for the time-domain model. These basis

functions result in amplitude spectrum which is piece-wise linear

as a function of time and frequency. Davy and Godsill [3] have

earlier modelled the time-varying amplitudes of harmonic compo-

nents using Hanning windows. They used Bayesian analysis of

parameters, which allows the usage of a prior distributions of

parameters. However, the system was reported to be computation-

ally very slow.

3.  APPLICATION TO SOUND SEPARATION

The described signal model is used in a separation system for

harmonic sounds. The system is initialized using a multipitch esti-

mator (MPE), which estimates the number of sounds and their

fundamental frequencies in large frames [4].

The exact time-varying frequencies and amplitudes of the

components are analysed using an iterative approach. Starting

from the estimates given by the multipitch estimator, the accuracy

of the parameters is improved in the least-squares sense, retaining

the harmonic structure of the sounds. Each iteration consists of

amplitude and frequency estimation steps. The frequency estima-

tion is exactly similar to the one described in [5], independent of

the amplitude estimation. The amplitude estimation algorithm is

described in the following sections.

3.1. Least-squares solution

The phase of each frequency component is estimated directly

from the phase spectrum of the original mixed signal. The model

for each vector sk of samples in the time frame k can be expressed

as:

(5)

where each column of  corresponds to one sinusoid:

, (6)

(7)

where , and are the current frequency and phase

estimates, respectively. By using the frequency-domain constraint

of Equation 3, we get

(8)

(9)

where

(10)

Equation 5 can now be written as:

(11)

which can be written for all the frames 1..K by:

(12)

(13)

where s, r and yn are the frame-wise vectors concatenated into a

longer vector:

, , and (14)

and G is a matrix in which the frame-wise matrices Gk are on the

diagonal:

(15)

From linear dependence of a and y it follows that the time-

domain dependence similar to Equation 4 can also be written for

the parameters y:

(16)

where is the gain of time-frequency basis function .

This can be expressed for all frames by a single matrix operation

. The elements of yn correspond to gain of jth basis

function of nth sound in kth frame through the following indexing:
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Figure 1: Triangular basis functions of the frequency-band model.
Each line corresponds to one column of the transform matrix X,
the values outside the triangle being zero. The 7th column is plot-
ted using stems and circles, each circle corresponding to one har-
monic component.
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(17)

The InK by InJn matrix T has the following structure:

(18)

where vector zk,n has the elements , j=1..Jn. Vector dn is:

(19)

Let us denote

(20)

so that

(21)

(22)

The summation can be avoided by expression

(23)

where

(24)

and

(25)

The solution for p which minimizes the residual energy can

be calculated from the Equation 23 as:

(26)

The inverse exists, if the rows and columns of P are

linearly independent. In practise, this is fulfilled if notes with the

same fundamental frequency do not overlap each other. Perfect

harmonicity may cause problems if overlapping notes are in exact

octave relation. Linear independency can be ensured by preproc-

essing step in which overlapping notes with too similar harmonic

structure are removed.

Frame-wise amplitudes can be solved by the following proce-

dure: the elements of which correspond to sound n are selected

to get , from which the are obtained by . The

elements of which correspond to frame k are selected to

obtain , from which the amplitudes are solved by .

3.2. Computationally efficient algorithm

If estimation is performed simultaneously over all frames as

in Equation 13, the computational complexity and memory usage

of the normal least-squares solution is huge. A computationally

efficient algorithm is proposed for the estimation of parameters.

Equation 26 can be written as

(27)

where

(28)

(29)

Matrix R has the following structure:

(30)

where

(31)

Vector S has structure

(32)

where

(33)

The algorithm is based on approximating R-1 by inverses of

submatrixes R(Q) of R. R(Q) contains submatrixes Rn,m, the indi-

ces of which belong to set Q: and . Similarly, sub-

vector  of  contains subvectors Si, for which

In the algorithm, each note is estimated simultaneously with

overlapping notes by forming set Q of overlapping notes.This is

illustrated in Figure 2 Additionally to the note the parameters

which we are estimating, set Q contains notes which at least par-

tially overlap with the note. Non-overlapping notes do not have to

taken into account since  for  or .

Memory-consuming variables H, G, P, and R are stored

dynamically. Their initialization and deletion are described in the

algorithm by commands “calculate”, and “delete”, respectively.
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ŷn
ŷn
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Figure 2: Illustration of overlapping notes. Each line corresponds
to one note, the onsets and offsets of which have been estimated by
the MPE. In the estimation of the parameters of the note with bold
line and circles the bold-line notes with x-marks are taken into
account.
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Since most elements of the transform matrices X and T are zero,

also matrices G and P are sparse. To further reduce memory con-

sumption, the our implementation utilizes “sparse matrix”

datatype of Matlab.

Input parameters of the algorithm:
-onset times  and offset times  of notes 1..N.

-frequency and phase estimates , and of har-

monic components of each sound in each frame

-mixture spectrum sk in each frame k
Output parameters of the algorithm:
-time-frequency model parameters dn of each sound

Initialization:
-during the processing, notes are divided into three sets:

-Let Z, the set of processed notes be

-Let D, the set of notes under processing be

-Let E, the set of unestimated notes be [1,N]

-Sort notes to increasing offset times:

-Initialize Xn, Tn for each sound n (frequency- and time matri-

ces, described in Section 4).

The algorithm:
1. Let note index n:=1. Let ,
2. Calculate (basis functions of each harmonic component)

and (basis functions of frequency models) for frames
 as described in Equations 6 and 10.

3. Calculate (Equation 15) using , . (all
basis frequency-model functions of a sound n). for

. Delete all
4. Calculate (time-frequency basis functions of a sound n)

(Equation 20). Delete .
5. Calculate . (Equation 33)
6. Find a set Q of notes under processing which overlap with

note n:

7. Calculate  for all .
8. Find a set V of notes under processing which do not overlap

with future notes: .
9. For each :

-Construct  (use  for )
-Construct .
-Let

-From elements of which correspond to parameters of

sound m, store .

-Delete .
10. Find a set of notes under processing which can be deleted:

, where ,
11. Delete all Rm,i, , all i.
12. Let  and
13. Let n:=n+1 (next note). If goto step 2. Otherwise,

repeat steps 8 to 12 once.

The frame-wise amplitudes can be solved using the procedure

described in the end of Section 3.1. The equations and algorithm

explained in this paper are formulated using time-domain signals.

The computational efficiency is increased by transforming the

signals into frequency domain, because this allows limiting of the

frequency range on which the least-square solution is calculated.

Basically this corresponds to decimating the input signals, but

allows selection of sampling frequency according to the highest

frequency component of the estimated notes.

4.  LINEAR MODELS

The proposed method allows arbitrary linear models. As

described in Equation 3, the amplitude vector an is represented as

a linear combination of the columns of the transform matrix Xn.

When frequencies and phases are taken into account, one frame of

a sound is represented as a linear combination of the columns of

matrix G. Instead of single overtones, the amplitudes are esti-

mated for these basis functions. By using time-domain models,

these basis functions are extended to several frames.

4.1. Frequency models

In [1], some practical structures for the frequency-model

transform matrix were studied. For example, a Mth-order polyno-

mial fit is obtained with the matrix

, (34)

where fp is the frequency of the p:th component. A more percep-

tually-oriented model is obtained by using a matrix which

approximates a critical-band-scale filterbank:

. (35)

This transform matrix is intuitively very applicable, because

the model parameters correspond to short-time energies within

octave frequency bands. The frequency bands were optimized

using generated test signals. The resulted optimal bands were

approximately 2/3-octave bands [1].

In the separation described in this paper the optimized fre-

quency-band model was used. Additionally to it’s intuitiveness,

the transform matrix is sparse, which reduces the computational

complexity of the algorithm.

4.2. Time models

Triangular basis functions were used also in time models. The

transform matrix T is formulated by

(36)

where the places of the triangles are determined by the time

instants tq. Two different methods for the placement of tq were

tested: In constant spacing the t0 is placed at the sound onset t(0)

and the rest instants at constant intervals:

, (37)

Usually natural sounds tend to have fast changes in the begin-

ning and slowly-varying decay. This was taken into account by

trying also exponentially spaced instants, which have increasing

intervals:
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, (38)

The constant-interval and exponentially spaced basis func-

tions are illustrated in Figure 3.

Naturally, it is advantageous to select the models according to

the amount of interfering notes: If there is only one sound present

and no interfering sounds, an identity transform matrix can be

used, since it is allows estimation of individual frequency compo-

nents. If there is more than one interfering sound present, some of

the components are probably overlapping and the rough spectral

shape has to be utilized to estimate amplitudes.

5.  SYNTHESIS

Once the parameters of the harmonic components have been

estimated in each frame, the sounds can be synthesized separately.

In synthesis, the frequencies, amplitudes and phases are interpo-

lated from frame to frame, and time-domain signals are obtained

by summing up all the harmonic components of each sound.

The parameters of the sounds can also be further analysed, or

manipulation can be performed on the parametric data.

6.  EXPERIMENTAL RESULTS

The proposed algorithm is intended for real-world music sig-

nals. For those a quantitative evaluation of the separation results is

impossible because separation reference is not available. This

problem was bypassed by generating test signals from MIDI

using a software synthesizer. In this case evaluation is possible by

synthesizing the individual notes separately and comparing to the

separation results. Also the correct fundamental frequencies are

known so that the performance of the multipitch estimation and

sound separation can be studied separately.

One hundred ten-second excerpts were randomly selected

from a collection of 359 MIDI songs, the styles of which ranged

from classical to popular music. The excerpts were listened to

exclude excerpts that were considered “too difficult for human to

transcribe or separate”. These included for example fast glissan-

dos.

The excerpts were synthesized using Timidity software syn-

thesizer. Also individual notes in each excerpt were synthesized

separately, to allow comparison to the separated notes. The

excerpts were transcribed using the MPE system. Since the per-

formance of the MPE is not perfect, the original MIDI data was

used as another initialization for the separation algorithm.

The synthesized excerpts were separated using the algorithm

described in Section 3. The separated notes were matched to the

individual original notes by their pitch and time location. If sev-

eral matches were possible, the notes were further analysed by an

auditory model, using which the separated notes were matched to

perceptually most similar original notes. Because of errors in

MPE, several separated notes did not correspond to any original

notes, and vice versa, for some original notes the corresponding

separated notes were not found.

The Perceptual Audio Quality Measure (PAQM) [6] was cal-

culated between each matched separated-original signal pair. This

gives a rough quantitative estimate of the separation quality. One

modification was made to the PAQM algorithm to make it more

suitable for comparison of single notes: scaling in three frequency

ranges was bypassed, because it gave too good results if the origi-

nal note had a very little energy in some frequency band and the

separated note had some interference in that band.

The total number of notes in the original MIDI excerpts

was 22800, which does not include drum notes. The MPE ana-

lysed 10456 notes. These were used as an initialization for the

separation algorithm. Depending on the parameters of the algo-

rithm, about 6300 of the separated notes were matched to the

original notes. The histogram of the PAQM between original and

separated notes using the MPE system as initialization and con-

stant-interval time models is illustrated in Figure 4. The histo-

grams of other simulations are very similar in shape and are

therefore not illustrated..

The simulations were carried out using three different time

models: constant-interval model, exponentially spaced model and

no time model so that each frame is independent of others. In the
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Figure 3: Examples of the constant-interval (upper plot) and
exponentially spaced (lower plot) basis functions. Each triangle
corresponds to one basis function.
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constant-interval model the triangles were spaced four frames

from each other and the in the exponentially spaced model the

powers of two were used in the placement of triangles, as illus-

trated in Figure 3.

Mean of logarithmic noise disturbances was calculated to

measure the average quality of separation. Percentage of notes for

which the logarithmic noise disturbance was below zero was cal-

culated to measure the amount of separated notes, the quality of

which was considered “acceptable”. The statistics are presented

in Table 1. The results were further analysed by listening to the

separated samples. For all three models, using the original MIDI

as an initialization gives better results than the MPE. However,

the difference is surprisingly small considering the difficulty of

the multipitch estimation of polyphonic music. Exponentially

spaced model performs slightly better than constant-interval

model, but separation without time model is clearly better accord-

ing to the PAQM. However, in listening comparisons it was

noticed that several signals separated without time model had irri-

tating modulation even though the PAQM indicated good quality.

The modulation was supposedly caused by rapid changes of

amplitudes between frames. In general, it was considered that

from separated notes with the same PAQM, the notes separated

using time models were perceptually better. This indicates that the

PAQM is not very suitable in comparison of single harmonic

sounds.

7.  CONCLUSIONS

The proposed algorithm allows efficient estimation of ampli-

tudes of harmonic partials with interframe dependency. The

dependency is obtained by modeling the components as a sum of

pre-defined basis functions. Simulations and quantitative meas-

ures do not directly show improvement in quality, but informal

listening comparisons indicate that that the perceptual quality of

separated sounds is increased by the time-frequency constraints.
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Table 1: Simulation results.

time model

mean of log(noise
disturbance)

percentage of notes
with log(noise

disturbance) < 0

MPE MIDI MPE MIDI

constant-
interval

0.311 0.301 18.2 23.5

exponen-
tially spaced

0.285 0.278 21.4 25.4

no time
model

0.030 0.030 45.3 51.7
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