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ABSTRACT

We present a novel method for onset detection in musical sig-
nals. It improves over previous energy-based and phase-based ap-
proaches by combining both types of information in the complex
domain. It generates a detection function that is sharp at the po-
sition of onsets and smooth everywhere else. Results on a hand-
labelled data-set show that high detection rates can be achieved at
very low error rates. The approach is more robust than its prede-
cessors both theoretically and practically.

1. INTRODUCTION

Temporal segmentation of audio into note events is useful for a
range of audio analysis, editing and synthesis applications, such
as automatic transcription [1], non-linear time-scaling and pitch-
shifting as in [2], and content analysis. Figure 1 shows a simple
case of two piano onsets, illustrating the energy increase, short
duration and instability related to note onset transients, as well as
the stability of the steady-state part. The wide range of signals and
onset types can be considerably more complex than this example,
but these phenomena are common to most.

Almost all onset detection algorithms can be separated into
two distinct parts. The first of these, often called the detection
function, converts the signal from its time domain samples into a
function which is more effective in locating onset transients. The
second part of any onset detection algorithm is often called the
peak picking stage, and involves locating points in the detection
function which correspond to onset transients.

A strong detection function will typically have sharp peaks
located at transients, and few spurious peaks located elsewhere.
The more this is the case, the more robust the detection function is
to the peak picking algorithm used. For this reason , the majority
of this paper is concerned with the detection function generation
stage.

The peak picking stage should be effective in selecting only
those peaks corresponding to note onsets. Therefore, simply choos-
ing all peaks is only effective in the unlikely case of a perfect de-
tection function. Effective thresholding of the detection function
to ignore spurious peaks is a common problem in the peak picking
stage. Section 4 will briefly discuss peak picking, however this
work is more concerned with detection function generation which
is robust to the peak picking method used.

Typically, note onset detection schemes use energy based ap-
proaches, often involving frequency weighting [3]. In recent years,
this has been extended to include sub-band schemes such as [4, 5].
In [6], a phase based approach to onset detection was proposed.
This approach offers clear improvements to those signals which
have softer, less percussive onsets. The idea was extended on [7]
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Figure 1: Sequence of two piano notes (a) and the corresponding
spectogram (b).

where a combined phase and energy based approach was proposed.
Here, we bind the previous work by developing a complex domain
approach to note onset detection.

2. PREVIOUS APPROACHES TO NOTE ONSET
DETECTION

2.1. Energy-Based Onset Detection

A new note will always lead to an increase in signal energy. In the
case of strong percussive note attacks, such as drums, this increase
in energy will be very sharp. For this reason, energy has proved to
be a useful, straightforward, and efficient metric by which to detect
percussive transients, and therefore certain types of note onset. If
we consider the L2 norm squared energy of a frame of the signal,
x(m):

E(m) =
mh
∑

n=(m−1)h

|x(n)|2 (1)

where h is the hop size, m the hop number and n is the integration
variable. Taking the first derivative of E(m) produces a detection
function from which peaks may be picked to find onset locations.
This is one of the simplest approaches to note onset detection. This
idea can be extended to consider frames of an FFT. Consider a
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time-domain signal s(mh), whose STFT is given by:

Sk(m) =
∞

∑

n=−∞

s(n)w(mh − n)e−j2πnk/N (2)

where k = 0, 1, . . . , N − 1 is the frequency bin index and w(n)
is a finite-length sliding window. It follows that the amplitude dif-
ference is then:

δS =
N

∑

k=1

|Sk(m)| − |Sk(m − 1)| (3)

2.2. Phase-based onset detection

Intuitively, Fourier analysis proposes that a signal can be repre-
sented by a group of sinusoidal oscillators with time-varying am-
plitudes, frequencies and phases. During the steady-state part of
the signal these oscillators will tend to have stable amplitudes and
frequencies. Therefore, the phase of the kth oscillator at a given
time n could be easily predicted according to:

ϕ̃k(n − 1) − ϕ̃k(n − 2) = ϕ̃k(n) − ϕ̃k(n − 1) (4)

where the ϕ̃ operator denotes phase unwrapping. This implies that
the actual phase deviation between the target and the real phase
values is given by the term:

dϕ = princarg[ϕ̃k(n) − 2̃ϕk(n − 1) + ϕ̃k(n − 2)] (5)

where princarg maps to the [−π, π] range. dϕ will tend to zero if
the phase value is accurately predicted and will deviate from zero
otherwise. The latter is the case for most oscillators during attack
transients.

This can be extrapolated to the distribution of deviations for
all oscillators in one analysis frame. During the steady-state part
of a signal most values will be concentrated around zero creating
a sharp distribution. On the other hand, during attack transients
the distribution will be wide and less sharp. By measuring the
spread of the distribution an accurate onset detection function can
be constructed [6].

2.3. Combining phase and energy based approaches

While energy-based methods are straightforward, and thus widely
used, they rely on the presence of pronounced energy increases for
all events in music. However this is not always the case, especially
with complex mixtures when overlapping between notes is com-
mon. Phase-based approaches offer an alternative to this, increas-
ing effectiveness for less salient onsets. However, these methods
are susceptible to phase distortion and to the variations introduced
by the phase of noisy components.

In [7] a method was proposed that combined both the energy
and the phase approaches. It made use of the similar behavior
of the distributions of phase deviations and of spectral magnitude
differences. Measures of spread per frame for each distribution
were obtained as:

η(n) = mean(fn(|x|)) (6)
where f(x) is the probability density function of our data set.

Then they were multiplied, emphasising the phase characteristic of
those components most relevant for the analysis. The method com-
pensated for instabilities in either approach, and produced sharper
peaks for detected onsets. Results consistently outperformed both
the energy and the phase-based methods.

3. COMPLEX DOMAIN ONSET DETECTION

Figure 2: Phasor diagram in the complex domain showing the
phase deviation between target and current vector, and the Eu-
clidean distance between them.

By definition, for locally steady state regions in audio signals,
it holds that the frequency and amplitude remain constant. In the
previous sections it has been shown that by inspecting changes
in either frequency and amplitude onset transients can be located.
However, we can simultaneously consider the effect of both vari-
ables by predicting values in the complex domain. It can be as-
sumed that, in its polar form, the target value for an FFT bin is
given by:

Ŝk(m) = R̂k(m)ejφ̂k(m) (7)

where the target amplitude R̂k(m) corresponds to the mag-
nitude of the previous frame |Sk(m − 1)|, and the target phase
φ̂k(m) can be calculated as the sum of the previous phase and the
phase difference between preceding frames:

φ̂k(m) = princarg[2ϕ̃k(m − 1) − ϕ̃k(m − 2)] (8)

We may then consider the measured value in the complex do-
main from the FFT:

Sk(m) = Rk(m)eφk(m) (9)

where Rk and φk are the magnitude and phase for the kth bin
of the current STFT frame. By measuring the Euclidean distance
between target and current vectors in the complex space, as shown
in Figure 2, we can then quantify the stationarity for the kth bin
as:

Γk(m) = {[<(Ŝk(m)) −<(Sk(m))]2 + · · ·

[=(Ŝk(m)) −=(Sk(m))]2}
1

2 (10)

Summing these stationarity measures across all k, we can con-
struct a frame-by-frame detection function as:

η(m) =
K

∑

k=1

Γk(m) (11)

Equation 11 can be simplified by mapping Ŝk(m) onto the real
axis (forcing φ̂k(m) = 0), such that:
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Ŝk(m) = R̂k(m) = Rk(m − 1) (12)

This implies rotating the phasors in Fig. 2, so that Sk(m) can
be represented using the phase deviation (Eq. 5):

Sk(m) = Rk(m)ejdϕk(m) (13)

We now consider the difference between this complex domain
prediction approach, and the basic amplitude difference measure
for the kth bin:

δSk(m) = R̂k(m) − Rk(m) (14)

With the mapping onto the real axis of Ŝk(m), equation 10
becomes:

Γk(m) = {[R̂k(m) −<(Sk(m))]2 + =(Sk(m))2}
1

2 (15)

which becomes:

Γk(m) = {[R̂k(m) − Rk(m)cos
(

dϕk(m)
)

]2 + · · ·

[Rk(m)sin
(

dϕk(m)
)

]2}
1

2 (16)

This can then be expanded:

Γk(m) = {R̂2
k(m) − 2R̂k(m)Rk(m)cos(dϕk(m)) + · · ·

R
2
k(m)sin2(dϕk(m)) + · · ·

R
2
k(m)cos2(dϕk(m))}

1

2 (17)

Simplifying, we obtain:

Γk(m) = {R̂k(m)2 + Rk(m)2 − · · ·

2R̂k(m)Rk(m)cos(dϕk(m))}
1

2 (18)

For the case of dϕk(m) = 0:

Γk = {R̂2
k(m) + R

2
k(m) − 2R̂kRk}

1

2

= R̂k(m) − Rk(m) (19)

Therefore Γk(m) is only equal to δSk(m) where dϕk(m) is
equal to zero, or when the phase prediction is “good”. In that
case, only the energy difference is being taken into account. In the
case of dϕk(m) 6= 0, there is the additional term taking the phase
deviation from the prediction into account.

η(m) constitutes an adequate detection function showing sharp
peaks at points of poor stationarity. Figure 3 depicts the detection
function for a section of a guitar signal. The figure also gives ex-
amples of phase and amplitude used individually. The complex
domain approach is clearly less noisy, therefore simplifying the
task of peak-picking and allowing a more robust detection.

4. PEAK PICKING

The thresholding of onset detection functions is problematical for a
number of reasons. Firstly, the detection functions tend to be noisy,
unless they are extensively low pass filtered, leading to a poorer
time resolution, and loss of weaker transients. Secondly, detection
function magnitudes tend to vary considerably over the range of
real world signals. Further to this, within one short segment of a
signal there may be a range of different types of onsets. For these
reasons, detection thresholds tend to be set manually in many onset
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Figure 3: Spectrogram of a music signal and its corresponding
time domain representation (a), Phase Based Detection Function
(b), Energy Distribution Detection Function (c) and Complex Do-
main Prediction Detection Function (d).
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Figure 4: Moving Median Thresholding of Complex Domain Pre-
diction Detection Function.
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detection applications. However, there are many cases where this
is not practical. For example, when implementing audio effects
requiring detection of note onsets, the user should not be required
to set an onset detection threshold for each signal. This is also a
considerable problem where real time applications are desired.

In peak picking algorithms, thresholding may be set either
globally or locally. Whilst global thresholds are a computation-
ally efficient method, the large changes in signal dynamics and
content that can occur within the same signal suggest that local
thresholding is essential for effective onset detection.

A simple peak-picking algorithm, using a weighted moving
average, is used to determine the precise location of note onsets
from the detection function. This is based on the thresholding al-
gorithm presented in [8] where it is used for detection of impulsive
noise. The basic principle of this is to find the median average of a
signal within a sliding analysis window, above which all peaks are
selected as onsets.

Each value of the dynamic threshold δt, for a H-length sliding
analysis is given:

δt(m) = Ct median γ2(km), km ∈ [m −
H

2
, m +

H

2
] (20)

where Ct is a scaling factor. Figure 4 illustrates the dynamic
threshold for the signal shown in figure 3.

5. RESULTS

Experiments were performed on a database of a wide range of
polyphonic music examples containing 400 hand-labeled onsets.
Figure 5 displays the percentage of false negatives versus the per-
centage of good detections for different offset values. The ideal
curve will rest over the y-axis and the 100% good detection line.
It can be seen from the generated curves that the complex domain
curve is considerably more robust to the peak picking threshold
used than the curves representing phase and energy only distribu-
tion detection functions. It also performs consistently better over
the entire range.

At the optimum position of the complex domain detection curve,
the algorithm achieves an average of 95% good detections, for 2%
false negatives. Considering the range and complexity of the mu-
sical signals used in this test, this is a remarkably good result.

6. CONCLUSIONS

In general, energy-based onset detection schemes have performed
well for audio signals with significant percussive content, or “hard”
onsets. Conversely, phase-based onset detection approaches pro-
vide a good solution to onset detection for “softer” signals, such as
bowed strings. In the complex domain, both phase and amplitude
information work together, offering a generally more robust onset
detection scheme. This algorithm is both straightforward to imple-
ment, and computationally cheap. Despite this, it proves effective
for a large range of audio signals.

As this complex domain approach currently performs better
on the lower frequency components of the spectrum, it may be
beneficial to incorporate it within a mutltiresolution scheme. This
has the advantage that high frequency noise bursts may be used to
improve time localisation of hard onsets. Since the analysis must
be complex in this case, a wavelet based approach would be un-
suitable. However, multiresolution Fourier analysis or complex
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Figure 5: Percentage of good detections versus percentage of
false negatives for different weight values and using the complex
method

wavelets such as those discussed in [9] may be useful for this pur-
pose.
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