
Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

CHAOTIC SIGNAL SYNTHESIS WITH REAL-TIME CONTROL: SOLVING
DIFFERENTIAL EQUATIONS IN PD, MAX/MSP, AND JMAX

Shahrokh Yadegari

Center for Research in Computing and the Arts
University of California, San Diego
http://www.crca.ucsd.edu/∼yadegari

ABSTRACT

Chaotic signals are useful in two different levels in audio synthesis:
as sound material or control structure. Patching languages such as
Pd, Max/MSP, and jMAX provide easier mechanisms for generat-
ing chaotic structures at control level. We can generate determin-
istic chaotic signals either by finding numerical solutions to differ-
ential equations or by using first return maps. While generating the
next sample, both of these methods require calculations with the
knowledge of the previous sample. Most signal processing envi-
ronments for computer music, such as Pd, Max/MSP, and jMAX,
transfer audio data among their objects by vectors (blocks). In such
environments, finding numerical solutions to differential equations
or generating signals based on first return maps, will require writ-
ing external objects or setting the block-size to 1. Writing external
objects can be time consuming and the real-time control of the cal-
culations have to be embedded in the external object, which will
require a recompilation for every change to the mechanism. Set-
ting the block-size to 1 can make writing the patch cumbersome
and sometimes very confusing. In this paper we shall present the
fexpr∼ object, implemented for Pd, Max/MSP, and jMAX, which
can be used for finding numerical solutions to differential equa-
tions by simply entering the difference equations as part of the
object arguments. The object parameters can then be controlled
in real-time using the host patching language. As examples, solu-
tions to Lorenz Equations, Chua’s Oscillators, Duffing’s equation,
and the use of first return maps will be presented using thefexpr∼
object.

1. INTRODUCTION

Synthesis mechanisms are often separated by synthesis and control
parameters. Chaotic signals, which can be used at both of these
levels, could be generated by finding numerical solutions to cer-
tain differential equations or by iterative use of first return maps.
Patching languages such as Pd[1], Max/MSP[2], and jMAX[3] en-
vironments offer objects with which one is able to generate chaotic
sequences in control level; however, chaotic signal synthesis at
sample level can prove to be difficult in such environments which
transfer audio among their objects in blocks.

2. SOLUTION TO DIFFERENCE EQUATIONS

A differential equation is a formula which relates an unknown
value to its derivative. Differential equations can also be written
as a set of equations relating the rate of change of a number of
unknowns to their derivatives. Differential equations often do not
define an initial condition and to find numerical solutions to them,

we need to set initial conditions and integrate over the variable in
which the unknowns are changing. For example, the following is
a first order differential equation for the variableY :

Ẏ = sin(Y) (1)

If Y is changing in time (represented byt), a numerical solution
to this equation would take the form of the following difference
equation:

Yn+1 = Yn + sin(Yn)∆t (2)

Therefore, to find a numerical solution to Equation 1, we pick an
initial condition for Y0 and pick a value for∆t and find the so-
lution function iteratively. In an environment which transfers au-
dio among its objects in blocks, we either have to write an exter-
nal object which performs the calculation for every sample or set
the block-size 1. Both of these solutions have serious drawbacks.
Writing external objects requires knowledge of a programming
language, such as C, and often involves a learning curve for the
uninitiated to the internal workings of the environment. Providing
real-time control of the parameters in an external object, (in case
of equation 2,∆t), can prove to be time consuming, and recom-
pilation of the object is required for every change to the equation
definition or control mechanism of its parameters. Setting the en-
vironment’s block-size to 1 will make the patch creation difficult
and inefficient. Using thefexpr∼ object we could solve for equa-
tion 2 as follows:

fexpr ∼ $y + sin($y) * $x

Where$x is an input signal which controls the value of∆t in
real-time. The ’set’ method (explained later) can be used to set the
initial condition ofY0.

3. CHAOTIC SIGNAL SYNTHESIS

Chaotic signals could be synthesized by finding numerical solu-
tions to differential equations of at least third order. One of the
most widely used differential equations capable of generating
chaotic signals is the Lorenz Equations set:[4]

Ẋ = Pr(Y −X) (3)

Ẏ = −XZ + rX − Y

Ż = XY − bZ

The variablesPr, r, and b are control parameters, andX, Y ,
andZ are the unknowns for which we find signals as solutions.

DAFX-1

http://www.crca.ucsd.edu/~yadegari

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

Therefore, The difference equations for numerical solutions to the
Lorenz equations would take the following form:

Xn+1 = Xn + (Pr(Yn −Xn))∆t (4)

Yn+1 = Yn + (−XnZn + rXn − Yn)∆t

Zn+1 = Zn + (XnYn − bZn)∆t

A solution for each of the unknowns in the above equation requires
knowledge of the previous values of the other variables at every
sample.Fexpr∼ also allows for definition of multiple equations in
the same instance of the object to accommodate this requirement.
The next section discusses the implementation and the syntax used
in fexpr∼, followed by the examples.

4. EXPR AND FEXPR˜

The expr object developed in the original Macintosh version of
MAX (”The Patcher”) is used for expression evaluation of control
streams. The expression syntax forexpr is very similar to expres-
sion syntax of the C programming language.[5, p53] (None of the
store, typecasting, nor any of the following operators “-> . --
++ ?: ” are supported at this time.) The rules for precedence of
operators are also the same as those defined in the C language.

Fexpr∼ is an extension ofexpr. It is best to think offexpr∼
as anexprwhich is evaluated for every sample.Fexpr∼ provides
a syntax for accessing previous samples of the input streams as
well as previous samples of the output streams in the expressions
to be evaluated. One block of every input and output streams are
buffered. All theexpr family objects allow for definition of multi-
ple expressions, separated by semicolon, which results in multiple
outputs of the same type. This is specially needed when using
fexpr∼ for finding numerical solutions to differential equations
representing second (or higher) order dynamical systems with 2
(or more) variables.

4.1. Equation Definition Syntax

In addition to access to global variables in the host environment,
special variables are used for accessing input and output streams.
Inlet values are denoted by the following syntax:$T# where,T
specifies the type of inlet and#, the inlet number. Integer, float,
and symbol inlets are available to allexpr objects. For example,
$i1 , specifies the value of the first inlet as integer,$f3 , the value
of the third inlet as float, and$s2[5] , the value of the fifth ele-
ment of an array specified by the value of the second inlet. Signal
inputs and outputs infexpr∼ are specified by the$x#[n] and
$y#[m] syntax respectively, where# specifies the signal inlet or
outlet number, andn andmare the indexes for accessing the previ-
ous values of the signals.Fexpr∼ buffers one block of each of its
inputs and outputs; therefore:

for $x#[n], 0 <= n <= −blocksize

for $y#[m], 0 < m <= −blocksize

A number of shorthand notations are available to make the equa-
tion definitions easier to code and read as follows:

$x[n] → $x1[n] $y[n] → $y1[n] (5)

$x# → $x#[0] $y# → $y#[-1] (6)

$x → $x1[0] $y → $y1[-1] (7)

5. EXAMPLES

In this section we shall present a number of examples to show
how fexpr∼ can be used for chaotic signal synthesis. Along with
the examples we shall also include a number of simple real-time
control methods for their use in musical contexts.

5.1. Lorenz Equations

The following patch implements difference equations (4). The
control parameterspr, r, b, anddt are defined as variables in the
environment with thevalueobject.

The ’set’ method sets the previous values of the 3 output streams
and figure (1) is a graph of the proceeding 2048 output values gen-
erated by above patch in Pd.

Figure 1: The first 2048 output values of the X signal for Lorenz
equations (3) generated withfexpr∼ object in Pd withpr = 10,
b = 2.66667, r = 18, dt = 0.01, and initial values forX[−1] =
0, Y [−1] = 2.3, andZ[−1] = −4.4.

5.2. Chua’s Equations

The Chua’s Oscillator equations set is one of the popular tools for
studying chaotic signals and due to its varied behavior from quasi-
periodic to noisy oscillations, we have found it a good musical
tool as well. A general dimensionless state equation for a Chua’s
Oscillator could be written as follows:[6, p xvi]

Ẋ = kα(Y −X − f(X)) (8)

Ẏ = k(X − Y + Z) (9)

Ż = k(−βY − γZ) (10)

f(X) = bX +
1

2
(a− b){|X + 1| − |X − 1|} (11)

DAFX-2

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

The functionf(x) implements the odd symmetric characteristic of
one of the nonlinear components in the Chua’s circuit (namely the
nonlinear resistor called Chua’s diode). Equation (11) could also
be written as follows:

f(X) =

 bX + (a− b), X >= 1
aX, |X| <= 1
bX − (a− b), X <= −1

(12)

The functionf(X) represented in (11) can be implemented in
fexpr∼ using theabs() function; however, to demonstrate the use
of theif() function as a general way of handling singularities we
have implemented the Chua’s oscillator withf(X) characterized
in (12) as follows:

The outputs of Chua’s oscillator are musically useful in two
different levels. Solutions obtained by fast integration of the equa-
tions (larger values fordt) are quasi-periodic or colored noise. Fig-
ure 5.2 shows the first 2048 outputs of the X signal with following
variables: alpha = 15.6, beta = 28.58, gamma = 0, a =
−1.14286, b = −0.714286, k = 1, dt = 0.01, and initial points
X−1 = 1.16346, Y−1 = −0.0972335, andZ−1 = −0.905656
(see [6] for the source of these initial values).

Figure 2: The first 2048 output values of the X signal for Chua’s
Equations (11) generated withfexpr∼ object in Pd withalpha =
15.6, beta = 28.58, gamma = 0, a = −1.14286, b =
−0.714286, k = 1, dt = 0.01, and initial pointsX−1 = 1.16346,
Y−1 = −0.0972335, andZ−1 = −0.905656.

It is also possible to use the numerical solutions of Chua’s
equations as control parameters. For example, when scaled cor-
rectly, one can use the solutions as frequency values for oscilla-
tors. By using smaller values ofdt (such as 0.00001) the nu-
merical solutions most often oscillate at a much slower rate and
when assigned as frequencies to oscillators the result exhibits cer-
tain breathing like quality which mimics musical phrasing. In the
above example when the solution of theX signal is multiplied by

100 and used as an oscillator frequency withdt = 0.01, the result-
ing output of the oscillator is colored noise; whendt = 0.0001 the
result is a quick rhythmical figure while the melodic and rhyth-
mical characteristics are very slowly changing, and whendt =
0.00001 the frequency of the oscillator is sweeped slowly but with
rather clear phrasing boundaries. When listened over a long pe-
riod of time, the ever changing glissando phrases can be perceived
to have a speaking quality. Thus, as a very simple real-time pa-
rameter one can usedt to continuously control the behavior of the
synthesis over a spectrum of sounds from colored noise to long
slow changing phrases.

5.3. Duffing’s Equation

Consider the following Duffing’s equation:[7, p 130]

Ÿ + kẎ + αY + βY 3 = Γ cos(ωt) (13)

by setting:

Ẏn =
Yn − Yn−1

∆t
(14)

Ÿn =
Ẏn − Ẏn−1

∆t
(15)

we can solve forYn as follows:

Yn =
∆t2(Γ cos(ωt)− β ∗ Yn−1

3)

(1 + k ∗∆t)
+

Yn−1(∆t k − α ∗∆t2 + 2)− Yn−2

(1 + k ∗∆t)
(16)

The following patch implements the difference equation (16):

Note the use of the set method ”set y1 0.1 0.2” which setsY−1

to 0.1, andY−2 to 0.2. To get deterministic results, it is important
to make sure that one sets the phase of the oscillator connected to
the second inlet to zero when setting the initial conditions of the
fexpr∼ instance. Figure 5.3 is a graph of 8192 points generated
with the above patch withdt = 0.01, k = 0.3, alpha = −1,
beta = 1, andgamma = 0.5. With the mentioned values, the
output goes through an initial transient period which is not in-
cluded the graph. The chaotic region of the above patch is ap-
proximately when0.5 < gamma < 0.6.

5.4. First Return Maps

In this section we shall demonstrate howfexpr∼ could be used to
implement first return maps. One dimensional first return maps
can be used for nonlinear signal generation. Let us consider a map
represented byf(x) where every sample of the signal is calculated
according to the following equation:

xn+1 = f(xn) (17)

When the map is a defined function, one can do the calculation
while generating very sample; however, using a table lookup is of-
ten a far more efficient computational process. Even though very

DAFX-3

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

Figure 3: 8192 output values for Duffing’s equation (16) generated
with fexpr∼ object in Pd withdt = 0.01, k = 0.3, alpha = −1,
beta = 1, gamma = 0.5, andω = 557.76.

small changes to the map could result in considerably different so-
lutions, with careful choices one can use the map as a very simple
real-time control of the signal generation process.

Let us consider the iterations using the following simple map:
(see [8, p 71])

xn+1 = 4µxn(1− xn), x ∈ [0, 1]. (18)

If we build the map of the equation (18) in a 2048 point array
called “retmap”, the signal synthesis patch would be simply:

fexpr ∼ retmap[$y * 2048]

With µ = 0.7, equation (18) has an unstable fixed point at zero
and an stable fixed point at 0.64286. In a 2048 point table the
fixed point falls between the 1316th and 1317th elements of the
table. If we set these two elements to any other number than what
function (18) would specify, the iterative process will synthesize a
periodic signal. Figure 5.4 shows the result of this iteration if we
set “retmap[1316]=0.1”, “retmap[1317]=0.1”.

We could use an oscillator to reset the value of the generated
output as the iteration gets close to the fixed point. The following
patch produces a signal with varying pitch, rhythm, and dynam-
ics. Note the scaling of the oscillator input as($x2+1.1)/2.2
which is to make sure that the process does not generate an out
of range sample, as well as not arrive at the zero fixed point. Of
course one can make the limit values defining the vicinity of the
fixed point a real-time controlled parameter as well.

6. SUMMARY

Using differential equations and first return maps are among pop-
ular methods for synthesizing chaotic signals. Implementing such
methods in environments that transfer audio among their objects in

Figure 4: The periodic signal generated by using a 2048 point array
as a first return map using equation (18) with setting the elements
1316 and 1317 in the first return map array to 0.1.

blocks can be time consuming and difficult. A new object, called
fexpr∼, was introduced for Pd, Max/MSP, and jMAX, which fa-
cilitates solving difference equations and using first return maps
while providing a simple mechanism for real-time parameter con-
trol.

7. ACKNOWLEDGMENTS

It is a pleasure to acknowledge the input and helpful suggestions
of Miller Puckette throughout all development stages of theexpr
objects.

8. REFERENCES

[1] M. Puckette, “Pure data: another integrated computer music
environment,” inProceedings, International Computer Music
Conference. 1996, pp. 269–272, San Francisco: ICMA.

[2] D. Zicarelli, “An extensible real-time signal processing en-
vironment for max,” inProceedings, International Computer
Music Conference. 1998, San Francisco: ICMA.

[3] F. Dechelle, R. Borghesi, E. De Cecco, M. Maggi, B. Rovan,
and N. Schnell, “jmax: a new java-based editing and control
system for real-time musical applications,” inProceedings,
International Computer Music Conference. 1998, San Fran-
cisco: ICMA.

[4] Edward N. Lorenz, “Deterministic nonperiodic flow,”Journal
of the Atmospheric Sciences, vol. 20, March 1963.

[5] Brian W. Kerninghan and Dennis M. Ritchie,The C program-
ming language, Prentice Hall Press, 1988.

[6] Chua’s Circuit: A paradigm for Chaos, World Scientific, New
Jersy, 1993.

[7] D. W. Jordan and P. Smith,Nonlinear Ordinary Differential
Equations, Clarendon Press, New York, second edition, 1987.

[8] P. Berǵe, Y. Pomeau, and C. Vidal,Order Within Chaos:
Towards a Deterministic Approach to Turbulence, Wiley-
Interscience, New York, 1984.

DAFX-4

	1 Introduction
	2 Solution to Difference Equations
	3 Chaotic Signal Synthesis
	4 Expr and Fexpr˜
	4.1 Equation Definition Syntax

	5 Examples
	5.1 Lorenz Equations
	5.2 Chua's Equations
	5.3 Duffing's Equation
	5.4 First Return Maps

	6 Summary
	7 Acknowledgments
	8 References

