
Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

BLOCKCOMPILER — A RESEARCH TOOL FOR PHYSICALMODELING AND DSP

Matti Karjalainen

Laboratory of Acoustics and Audio Signal Processing
Helsinki University of Technology, Espoo, Finland

matti.karjalainen@hut.fi

ABSTRACT

This paper describes an experimental research tool for block-based
physical modeling and DSP computation. The goals of the devel-
opment have been high abstraction level and flexibility in model
specification without compromising computational efficiency in
real-time simulation and application execution. To achieve both
goals, the Lisp language is used for symbolic manipulation of
computational block structures and C language for compilation
of efficient executables. The primary motivation for this tool has
been to enable flexible generation of physical models where two-
directional interaction between elements is needed. A particular
feature of the system is support for mixed modeling by combining
digital waveguides, finite difference schemes, wave digital filters,
as well as traditional block-basedDSP algorithms.

1. INTRODUCTION—WHY YET ANOTHER
BLOCK-BASED SYSTEM?

This work emerged from the need to easily write efficient simula-
tion and sound synthesis programs for different kinds of acoustic
and audio applications using a multi-paradigm approach. The idea
of block-based computation itself is commonly utilized; there is a
multitude of software environments such as Max/MSP and jMax,
Pd, LabView, Simulink, etc., that are based on wiring of DSP
blocks, using a graphical interface or textual scripting. There are
also software environments particularly for simulating distributed
systems (FEM, BEM, FDTD) or lumped element systems (circuit
simulators). None of them is, however, a truly multi-paradigm en-
vironment for flexible yet efficient simulation and real-time syn-
thesis of physical systems.

2. OVERVIEW OF THE BLOCKCOMPILER

The BlockCompiler is an experimental software environment us-
ing block objects and their interconnection networks for high-level
specification of computational models. The first level of objects
supports conventional DSP and one-directional signal data flow
between objects. This includes elementary blocks such as adders,
multipliers, nonlinear functions, filters, transformations, and sound
I/O through PortAudio sound drivers. In addition to synchronous
signal flow, there is a possibility of parametric control flow that
supports asynchronous communication.

A more advanced level supports modeling of physical (two-
way) interactions. The elements are connected through two-way
ports that carry physical signal variables, such as force, pressure,
velocity, voltage, current, etc. In this sense the system works as a
circuit and network simulator. The structures may also be 2D and
3D meshes, which is important in simulating for example musical

.da

.D

.coeff.coeff
d1

dac1

.ad

ad

.add a1

c2

Figure 1: Simple low-pass filter from sound driver input to output.

instruments or acoustic spaces. The models are based on Digital
Waveguide (DWG) [1] and Finite Difference (FDTD) [2] princi-
ples. Lumped element systems can be added throughWave Digital
Filter (WDF) [3] principles.

2.1. Simple DSP scripting example

A full model specification in BlockCompiler is called a patch,
which consists of interconnected block-item units.

Figure 1 shows a simple DSP example of a low-passfilter from
sound input (ad-converter) to sound output (da-converter). This
patch can be created by scripting in Lisp notation:

(patch ((ad (.ad)) ; sound in
(c1 (.coeff 0.0666)) ; coeff
(a (.add :inputs 2)) ; adder
(c2 (.coeff -0.8668)) ; coeff
(d1 (.d)) ; unit delay
(da (.da))) ; sound out

(connect (out ad 0) (in c1))
(connect (out c1) (in a 0))
(connect (out a) (in d1))
(connect (out d1) (in c2))
(connect (out c2) (in a 1))
(connect (out a) (in da 0))
(connect (out a) (in da 1)))

where forms in parentheses such as (.ad) create related objects
and assign them to local variables such as ad. Forms (connect
out in) connect an output to an input. The first output or input
of a block is used unless index or symbol name is also given, such
as (in a 1) for the second input of the adder (index 1). The
same patch can we written more compactly in short-form notation
by applying the chaining function (->) by:

(patch ((a (.add)))
(-> (.ad) (.coeff 0.0666) a (inputs (.da)))
(-> a (.d) (.coeff -0.8668) (in a 1)))

Function forms (-> obj1 obj2 ...) connect these block
objects from output to input, output to input, etc. This allows for
compact scripting of patches, and powerful symbolic manipulation
ability by the Lisp language provides high flexibility.

DAFX-1

http://www.acoustics.hut.fi
mailto:matti.karjalainen@hut.fi

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

2.2. Properties of the BlockCompiler

•Macro blocks can be defined as combinations of more elemen-
tary blocks to hide the details of new macro class objects. The
macro blocks can be utilized further hierarchically as elements of
new macro definitions. Parameters can be given to specify the
properties of a macro block during instantiation. A simple ex-
ample of macro block definition, implementing the low-pass filter
used in a patch related to Fig. 1, is:

(def-macro-block ((block .lpf) &key
coeff1 coeff2)

(let ((c1 (.coeff coeff1))
(c2 (.coeff coeff2))
(a (.add)))

(-> c1 (in a 0) (.d) c2 (in a 1))
(set-inputs (in c1))
(set-outputs (out a)))

which defines a block class named .lpf and a make-function
of the same name for the low-pass filter part of the patch. Key-
words given after &key are available to specify the properties of
the macro-block instances. Elementary blocks c1 and c2, i.e., the
filter coefficients, as well as adder a, are specified and linked next.
Finally, the inputs and outputs of the macro block are set as inputs
and outputs of the elementary blocks.

The low-pass filtering patch of Fig. 1 can be made now by:

(defparameter lpstream
(patch ()

(-> (.ad)
(.lpf :coeff1 0.0666 :coeff2 -0.8668)
(inputs (.da)))))

• Data types (short, long, float, double) and corresponding array
types are available for runtime signal data. Both scalar and vector-
ized operations are supported. On the level of model specification
(in Lisp) there is strong support for object-based programming and
scripting.

• Data flow between block outputs and inputs is multirate syn-
chronous. This means that each block can be given an individual
sample rate as an integer multiple of fraction of the master rate of
the patch. Polyphase synchronization is possible.

Blocks can have parametric inputs (param inputs) that sup-
port asynchronous communication with or without handshaking.
Combined with the multirate feature this makes possible to opti-
mize the rate of control parameter updating.

• Scheduling. When a patch has been specified and instantiated as
an interconnected set of blocks, the operations in it are scheduled.
This is done by walking through the blocks hierarchically and set-
ting them into a computable order, i.e., checking whether the in-
puts and outputs are ready for the operation. Arbitrary graphs are
allowed unless there are delay-free loops, which condition is re-
ported as an error.

• Code generation and compilation. Each block class has a
method that generates C code for computation of the block. El-
ementary (non-macro) blocks are specified so that C-code gener-
ation is defined by pseudo-C, which is C source code except data
references being to Lisp specifications of the data items.

A scheduled patch generates inline C code from the ordered
block operations and writes it into a file in the form of a single
C function and related data definitions. When the source file is

written, it will be compiled on the fly by a call to GCC compiler.
For simple-to-moderate size patches the compilation takes only a
fraction of a second to a few seconds. Finally a function pointer
from the compiled file is made and prepared for execution.

• Patch streaming and stepping. There are two modes of exe-
cuting a patch: streaming and stepping. In the real-time streaming
mode a patch is timed by sound driver sampling rate by linking
sound input blocks (.ad) and output blocks (.da) to other DSP
or physical model blocks. Streaming patchx is started by function
(run-patch patchx). While real-time streaming is running,
the patch is fully controllable from Lisp, allowing for highly flexi-
ble control and inspection of patch behavior.

In the stepping mode a single sample step is computed every
time a form (step-patch patchx)is executed. This makes it
possible to do non-realtime processing as well as debugging real-
time patches.

• Graphic user interface. Presently the BlockCompiler doesn’t
have a graphic editor for creating patches. The preference to pro-
gramming and scripting the patches was given since the software
was developed primarily for research purposes, where textual pro-
gramming is found more powerful than graphical specification.
Since controlling of patch parameters is an important feature of
any real-time synthesis environment, graphic controllers such as
sliders are available already now. An example thereof is presented
below in the form of an extended Karplus-Strong string model. It
is probable that a full-blown graphic user interface will be added
in the future.

• Model export. An important property of the BlockCompiler is
support for exporting patch models to other execution platforms.
This is based on the fact that BlockCompiler is basically a C code
generator. So far the code export feature is fully implemented for
Mustajuuri [4], an audio signal processing platform.

3. DISCRETE-TIME PHYSICALMODELING

The main motivation for BlockCompiler was the potential to cre-
ate computationally efficient physical models in a flexible way.
Instead of one-directional data flow, true physical models require
two-directional interaction via the ports of physical blocks.

In time-domain discrete-time modeling of physical systems
the task is to convert the underlying (partial) differential equations
into approximating difference equations then to be solved. Formu-
lation of the solution as DSP algorithms makes them computable
by efficient software tools for real-time simulation. We next dis-
cuss a systematic DSP formulation of the two main physical mod-
eling approaches of interest, the digital waveguides (DWG) and
the finite difference time-domain schemes (FDTD), and then add
wave digital filters (WDF) to this modeling framework.

In a one-dimensional lossless medium the wave equation is
written

ytt = c2yxx (1)

where y is a wave variable, subscript tt refers to second partial
derivative in time t, xx to second partial derivative in place vari-
able x, and c is speed of wavefront in the medium of interest.

3.1. Wave-basedmodeling

The 1-D traveling wave formulation is based on the d’Alembert
solution of propagation of two opposite direction waves, i.e.,

y(t, x) =
→
y (t − x/c) +

←
y (t + x/c) (2)

DAFX-2

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

where the arrows denote the right-going and the left-going compo-
nents of the total waveform. Assuming that the signals are band-
limited to half of sampling rate, the traveling waves can be sampled
without losing any information by selecting T as the sample inter-
val andX the position interval between samples so that T = X/c.
Sampling is applied in a discrete time-space grid in which n and
m are related to time and position, respectively. The discretized
version of Eq. (2) [1] becomes:

y(n, m) =
→
y (n − m) +

←
y (n + m) (3)

It follows that the wave propagation can be computed by updating
state variables in two delay lines by

→
y k,n+1 =

→
y k−1,n and

←
y k,n+1 =

←
y k+1,n (4)

i.e., by simply shifting the samples to the right and left, respec-
tively. This kind of discrete-time modeling is called Digital Wave-
guide (DWG) modeling [1]. Since the physical wave variables are
split explicitly into directional wave components, we will call such
modelsW-models.

The next step is to take into account the global physical con-
straints of continuity by Kirchhoff type of rules. This means to for-
mulate the scattering junctions of interconnected ports, with given
impedances and wave variables at related ports. For a scattering
junction, where the physical variables are sound wave pressure P
and volume velocity U , and when a parallel admittance model 1 of
N ports is utilized, the Kirchhoff constrains become

P1 = P2 = . . . = PN = PJ (5)

U1 + U2 + . . . + UN + Uext = 0 (6)

where PJ is the common pressure of coupled branches and U ext is
an external volume velocity to the junction. When port pressures
are representedby incomingwave componentsP +

i , outgoingwave
components by P −

i , admittances attached to each port by Y i , and

Pi = P+
i + P−

i and U+
i = YiP

+
i (7)

the junction pressure PJ can be obtained as:

PJ =
1

Ytot
(Uext + 2

N−1�

i=0

YiP
+
i) (8)

where Ytot =
�N−1

i=0 Yi is the sum of all admittances to the junc-
tion. Outgoing pressure waves, obtained from Eq. (7), are then
P−

i = PJ − P+
i . The resulting junction, a W-node, is depicted as

a DSP structure in theN1 node of Fig. 2 (top). When admittances
Yi are frequency-dependent, this diagram can be interpreted as a
filter structure where the incoming pressures are filtered by the
corresponding wave admittances Y i times two, and their sum is
filtered further by 1/Ytot to get the junction pressurePJ.

Two special cases can be noticed on the basis of Eq. (8). First,
a (passive) loading admittance is the case with Y i where no in-
coming pressure wave component P +

i is associated. This needs
no computation except including Y i in Ytot becauseP +

i = 0, see
the left-hand termination, a W-admittance, in Fig. 2. Another is-
sue is the external velocity Uext effective to the junction. This is
connected directly to the summation at the junction node.

The W-node in Fig. 2 is coupled throughW-ports to the neigh-
boring elements (port 3 is uncoupled). The right-hand side block

1Models can be formulated as well for impedances instead of admit-
tances and for series connection, and different physical variable pairs can
be used.

YN

wW-line

Y1

P1
+

P1
–

P3
+ P3

–

ΣΥi

Y3

W
-p

or
t 1

W-port 3

W-node
 N1

PJ

PJ

1

Y2

Y2

z-N

z-N

P2
+

W
-p

or
t 2

P2
–

Uext

Uext

0

W
-a

dm
itt

an
ce

W-line

22

2

Y1

Y1 Y2

Y3

w

w

w w w w w ww N1 NNY1 W-line

Figure 2: Top: A 3-port scattering junction (W-node N1). In-
coming pressures are P +

i and outgoing ones P +
i . W-port 1 is

connected to termination W-admittance Y1 and port 2 to a two-
directional delay line (W-line). Admittance controls are marked
by dashed lines. Bottom: Block diagram with abstracted blocks
and how they can be connected to form a 1-D DWG waveguide.

is a two-directional delay line, a W-line, of admittance Y2. The
bottom part of the figure depicts a block diagram abstraction of
the DSP structure. It also characterizes how waveguides are built
as structures of W-line elements connected by W-node junctions.

Notice that the admittances in Fig. 2 may be real-valued or
frequency-dependent so that Y i and the impedance 1/

�
Yi can

be realized as FIR or IIR filters, or just as real coefficients if all
attached admittances are real. In the latter case, if we skip the
external velocity Uext of Eq. (8), we may write the equation us-
ing scattering parameters αi as PJ =

�N−1
i=0 αiP

+
i , where αi =

2Yi/Ytot . This and other special forms of scattering [1] are effi-
cient computationally when admittances are real-valued, but in a
general case it is practical to implement computation as shown in
Fig. 2 so that the term 1/

�
Yi is a common filter.

Dashed lines in Fig. 2 are parametric controls for admittances
of the network elements. If the DSP blocks are grouped as shown,
which is natural in an object-based formulation, the junction W-
nodes actually contain most of the computation by implementing
wave scattering. The W-node is delegated its admittance param-
eters through ports from the network elements, W-lines and W-
admittances. In a time-varying case the admittance filters (blocks
Y1, Y2, and Y3) as well as the inverse of their sum 1/

�
Yi must

be updated when the admittance control parameters change.

3.2. Finite difference modeling

In the most commonly usedway to discretize the wave equation by
finite differences the partial derivatives in Eq. (1) are approximated
by second order finite differences

yxx ≈ −(2yx,t − yx−∆x,t − yx+∆x,t)/(∆x)2 (9)

ytt ≈ −(2yx,t − yx,t−∆t − yx,t+∆t)/(∆t)2 (10)

By selecting the discrete-time sampling interval ∆t to correspond
to spatial sampling interval ∆x, i.e., ∆t = c∆x, and using index
notation k = x/∆x and n = t/∆t, Eqs. (9) and (10) result in

DAFX-3

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

Y1

Y3

ΣYi

K
-p

or
t 1

K
-p

or
t 2

K-port 3

PJ

1

Y2 K
-p

ip
e

z–1 z–1

z–2

K
-a

dm
itt

an
ce

z–1

2 2

2

Y2Y1

Y3Uext

K-node

YN

kK-pipe

PJ

UextY1 Y2

k

k

k k k k k kk N1 NNY1 K-pipe

Figure 3: Top: Digital filter structure for finite difference approx-
imation of a two-port scattering node with port admittances Y1

and Y2. Only total pressurePJ (K-variable) is explicitly available.
Bottom: Block diagram with abstracted blocks and how they can
be connected to form a 1-D FDTD waveguide.

yk,n+1 = yk−1,n + yk+1,n − yk,n−1 (11)

which is a K-model, i.e., using Kirchhoff type of variables, not
wave components. From form (11) we can see that a new sample
yk,n+1 at position k and time index n + 1 is computed as the sum
of its neighboring position values minus the value at the position
itself one sample period earlier.

The behavioral similarity of DWGs vs. FDTDs [7], although
being computationally different formulations (W- vs. K-models),
hints to expand Eq. (11) to a FDTD type scattering junction for
arbitrary port admittances. For a parallel admittance model, cor-
responding to Eq. (8), Eq. (11) can be formulated for N ports as

PJ,n+1 =
2

Ytot

N−1�

i=0

YiPi,n − PJ,n−1 (12)

This is a waveguide mesh formulation as discussed in [5]. Figure
3 depicts a DSP formulation of one such 3-port scattering K-node
and the way to terminate port 1 by K-admittance, Y1. This corre-
sponds to the W-model in Fig. 2, except that a wave traveling to
the left reflects back from Y1 one unit delay later than in the DWG
case. Notice the feedback through a unit delay. There can be any
number of ports attached to a node also here as for a DWG junc-
tion. The bottom part of Fig. 3 depicts a block diagram abstraction
which shows the conformity with the DWG in Fig. 2.

An essential difference between DWGs of Fig. 2 and FDTDs
of Fig. 3 is that while DWG junctions are connected through two-
directional delay lines (W-lines), FDTD nodes have two unit de-
lays of internal memory, and delay-free K-pipes connect ports be-
tween nodes (see the right-hand side block in Fig. 3). The DWG
and FDTD junction nodes and ports are not directly compatible
because they use different type of wave variables.

More details about FDTD modeling vs. DWG modeling are
presented in [6].

Y2

ΣYi

Y3

PJ2

PJ1

2

Y1

ΣYi

Y2

2

z–1

z–1

N1 N2Y2

z–1

W
-p

or
t

W
-p

or
t

K
-p

or
t

K
-p

or
t

P+

z–1

KW-pipe
adaptor

P–
z–1

Figure 4: FDTD node (left) and a DWG node (right) forming a
part of a hybrid waveguide. Yi are wave admittances of W-lines,
K-pipes, and adaptor KW-pipes between junction nodes. P J are
junction pressures,P + and P − are wave components.

ww w L

Y1

Y1+Y2

Y2

2

N1

z–1

Y2 Y3 = 1/2fsL

z-N

z-N

W-line

Y2 Y3

2

N2

Y1 = 2fsC

z–1

Y2+Y3

C Y2 L

w w w ww N1 N2C W-line

in

in

out

out

–1

C L

Figure 5: A simple DWG+WDF resonator where a DWG delay
line is terminated with a WDF capacitor (left) and inductor (right).

3.3. Interfacing DWGs and FDTDs

The next problem is how to interface wave-basedand FDTD-based
submodels. In [?] it was shown how to interconnect a lossy 1-D
FDTD waveguide with a similar DWG waveguide into a mixed
model using a proper interconnection element (adaptor). As a gen-
eralization, it is possible to make any hybrid model of K-elements
(FDTD) andW-elements having arbitrary wave admittances/impe-
dances at their ports.

Figure 4 shows how this can be done in a 1-D waveguide be-
tween a K-nodeN1 (left) and a W-nodeN2 (right). The role of the
KW-pipe in the middle of Fig. 4 is to adapt the K-type port of an
FDTD node and theW-type port of a DWG node. It is delay-free in
left-to-right direction and contains delay in the opposite direction.

The equivalence of W- and K-variable based models and the
availability of the adaptor allow now to implement mixed models
where both of the approaches can be applied, depending on which
one is more useful in a problem at hand. Generally the DWG
elements are preferable in 1-D modeling due to good numerical
properties and possibility of arbitrary (including fractional) delays,
while the FDTDs are more efficient in 2-D and 3-D structures, be-
ing however more critical in numerical accuracy.

3.4. Interfacing wave digital filters with DWGs

An additional technique to the mixed modeling framework above
is to adoptWave Digital Filters (WDF) [3] as discrete-time simula-
tors of lumped parameter elements. Being based on W-modeling,
i.e., wave variables, they are computationally compatible with the
W-type DWGs [7]. A WDF resistor is basically just a real-valued
termination (see Y1) in Fig. 2, but WDF capacitors and inductors,

DAFX-4

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

dawt

dlxlp

add

trig

delayfg

Figure 6: Block diagram of an extended Karplus-Strong model as
a case of semiphysical modeling.

Figure 7: Control dialog for the Karplus-Strong model.

as well as ideal transformers and gyrators, etc., are useful addi-
tional components [3].

As a physically bound choice for the case of this study, aWDF
capacitor is realized as a feedback from V − wave of a port back
to V + through a unit delay, having a port admittance 2f sC. A
WDF inductor is a feedback through a unit delay and coefficient
-1, having a port admittance 1/2fsL. Here C is capacitance, L is
inductance, and fs is sample rate (cf. [7]).

Figure 5 shows an example of a model where a DWG delay
line is terminated by a WDF capacitor at the left hand side and by
a WDF inductor at the right hand side.

WDF elements, being W-models, are not directly compatible
with DFTDs that are K-models. However, the compatibility can
be realized through a KW-adaptor element if needed.

4. PHYSICALMODELING EXAMPLES

In this section we describe by case examples how BlockCompiler
is used for physically based modeling. The first example is an ex-
tended Karplus-Strong string model with user interface for param-
eter control. The second example shows how a string instrument is
built by coupling the strings via a common bridge impedance. The
third example is a waveguide formulation of a vocal tract speech
synthesizer, and the final case is to show how to make a mixed
FDTD+DWG waveguide mesh.

An extended Karplus-Strong string model, depicted in Fig. 6
by a block diagram, is an example of ‘semiphysical’ modeling.
The patch is created by script:

(defparameter ks-string
(patch ((d (.slider

:title " Delay [sec]" ; slider
:low 0.001 :high 0.02 ; delay
:init-value 0.0075)) ; [sec]

(f (.slider
:title " Loop freq" ; slider
:low 0.0 :high 1.0 ; freq
:init-value 0.80))

(g (.slider
:title " Loop gain" ; slider
:low 0.9 :high 1.0 ; gain
:init-value 0.995))

(trig (.trig-button))

zt1

zbnuts
pluck points

bridgedl11 dl12w w ww w w w

w

w

w w

ww

dazt2 dl21

pluck-trig

trig

wt1

wt2

dl22w w ww w w w ww

s

ss

s s

Figure 8: Block diagram of two strings coupled through a common
bridge impedance (zb).

(wt (.wtable :data *noise-data*))
(dlx (.delay :delay-time 0.02

:control ’.lg3))
(add (.add))
(lp (.lp1)))

(-> d (.smooth) (param dlx ‘delay))
(-> f (.smooth) (param lp ’freq))
(-> g (.smooth) (param lp ’gain))
(-> trig (param wt 0))
(-> wt add dlx lp (in add 1)

(inputs (.da)))
(patch-window
(:v (.text-box "Karplus-Strong String")

(sliders (list d f g) :length 200)
(buttons (list (.start/stop) trig)))

:title "Karplus-Strong experiment"
:view-position #@(350 150)
:view-size #@(450 113))))

The resulting patch is a single-delay-loop structure with a con-
trollable length delay line (by Lagrange interpolation of order 3,
.lg3) and a first order low-pass loop filter with DC gain and low-
pass frequency control, the string model being triggerable from a
wavetable (filled by a noise burst in this case).

The feature of intrest in this case is the use of parameter con-
trol blocks by sliders in a graphic user interface window depicted
in Fig. 7. The sliders (d, f, and g) in the script are connected to
parameter inputs through smoothing (.smooth) interpolators to
avoid gliches. Finally the patch control window is created by a
layout specification (patch-window ...).

As an example of true physicalmodeling by digital waveguide
approach, Fig. 8 shows a string instrument of two strings con-
nected by a common bridge impedance. The model is composedof
delay lines, junction nodes, impedances, and triggerable excitation
wavetables. On the left hand side of Fig. 8 we can see (nut) termi-
nations (zt) of the two strings. Delay lines (dl) make the strings
in two parts so that the (series junction) nodes in the middle are
insertion points for pluck (force) excitation from wavetables (wt).
True physical interaction of a string and a plucking object could be
modeled as well but for simplicity we show here a wavetable ex-
citation case. On the right hand side the bridge impedance (zb) is
a common termination for both strings, implementing a physically
correct connection of these elements by a series junction node.
The velocity of the bridge node is the model output that could be
further processed by a filter for sound radiation from the body.

Notice that the nodes (junctions) can accommodate any num-
ber of attached DWG delay lines with arbitrary, even time-varying
impedances. The formulation is general in the sense that it can

DAFX-5

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

yt

Ag

glottistrachea

osc
nasal
tract

vocal
tract

lung
pressure

dlw w w ww w dlw w dlw w w w

w

w

w

dlw ww

A1

dl w ww w

Ag

A2 Ai Ai+1

dlw w

An,i+1

dlw w w w dlw w

Ak-2 Ak-1 Ak

yl

lips

w dlw w w w w

ynw w w

out

lk

dlw w w w dlw w

An,k-2 An,k-1 An,k

w dlw w

+ Hl

Figure 9: DWG transmission-line speech production model, including nasal-tract, made of (mostly) constant length sections.

kw wl

wl

wl

kp

kp

kp

kw

wl

yt

yt

kp

kp

kp

kp

kp k

k k

k w

w w

wl

w

wl

w

yt

kw

w

wl

w

wl

yt

kw

w

wl

w

wl

wl ytw

wl ytw

Figure 10: Part of a 2-D waveguide mesh composed of K-type
FDTD elements (left bottom): K-pipes (kp) and K-nodes (k), W-
type DWG elements (top and right): delay-controllable W-lines
wl, W-nodes (w), and terminating admittances (yt), adaptor ele-
ments (kw) to make a mixed model.

be used as a circuit/network simulator having arbitrary (spatially)
distributed elements such as DWGs and FDTDs as well as lumped
elements such as WDF capacitors, inductors, and resistances in se-
ries or parallel connections. Acually any impedances/admittances,
expressed by z-transforms (FIR or IIR forms), can be used.

As another case of physical modeling, Figure 9 illustrates an
advanced speech production transmission-line model, which how-
ever follows traditional guidelines. The tract is divided into a set
of constant length sectionswhereby acoustic admittancesY (i) can
be controlled according to their cross-sectional area dependency
Y (i) = A(i)/ρc, where ρ is air density and c is speed of sound.
Parametric control of vocal tract shape can be based for example
on mapping from articulatory parameters, or by contextual lookup
and interpolation in time. Fine-tuning of the tract length can be
made at the lips by a single controllable fractional delay line sec-
tion.

The glottis is realized as a single section of vocal tract with
varying area, controlled by a glottal waveform oscillator. Lung
pressuremakes the volume flow through the glottis to be in relation
to its opening. More advancednonlinear models of self-oscillation
can also be experimented easily.

The termination in the model of Fig. 9 at lips and nostrils
includes a filter Hl for detailed lip pressure to far-field radiation
function. Other functionalities that can be experimented relatively
easily are for example generation of turbulence frication and bursts

in constrictions and during the opening of occlusion.
As a 2-dimensional case of physical modeling, Fig. 10 depicts

a part of a rectangular mesh structure that is composed of FDTD
elements for efficient and memory-saving computation and DWG
elements for boundaries. Suchmodel could be for example a mem-
brane of a drum or in a 3-D case a room enclosed by walls.

In Fig. 10 the elements denoted kp are K-type pipes between
K-type nodes. Elements kw are K-to-W adaptors and elements fd
are (controllable) fractional delays. Elements yt are terminating
admittances. In a general case the admittances of each element
can be different, thus allowing for instance for non-homogeneous
membrane models.

5. SUMMARY

This paper has described an experimental software environment
called the BlockCompiler, which has been developed primarily as
a flexible tool for physical modeling and real-time computation of
such models. The present prototype of the BlockCompiler runs
only on the Macintosh OS X operating system, but all its software
components should be possible to be ported to other major plat-
forms (Linux, Windows).

Additional documentation on BlockCompiler can be found in:
http://www.acoustics.hut.fi/software/BlockCompiler.

6. ACKNOWLEDGEMENTS

This study is part of the Academy of Finland project “Technology
for Audio and Speech processing” (SA 53537) and is also related
to the EU ALMA project (IST-2001-33059).

7. REFERENCES

[1] J. O. Smith, “Principles of Waveguide Models of Musical
Instruments,” in Applications of Digital Signal Processing
to Audio and Acoustics, ed. M. Kahrs and K. Brandenburg,
Kluwer Academic Publishers, Boston 1998.

[2] J. Strikverda, Finite Difference Schemes and Partial Differ-
ential Equations, Wadsworth and Brooks, Grove, Ca, 1989.

[3] A. Fettweis, “Wave Digital Filters: Theory and Practice,”
Proc. IEEE, 74(2), pp. 270–372, 1986.

[4] http://www.tml.hut.fi/∼tilmonen/mustajuuri/
[5] S. Van Duyne and J. O. Smith, “Physical Modeling with the

2-D Digital Waveguide Mesh,” Proc. Int. Computer Music
Conf. (ICMC’93). Tokio, Japan, 1993, pp. 40–47.

[6] M. Karjalainen, “Mixed Physical modeling: DWG + FDTD
+ WDF,” Accepted to Proc. IEEE WASPAA 2003.

[7] S. D. Bilbao, Wave and Scattering Methods for the Numeri-
cal Integration of Partial Differential Equations, PhD Thesis,
Stanford University, May 2001.

[8] M. Karjalainen, C. Erkut, and L. Savioja, “Compilation
of Unified Physical Models for Efficient Sound Synthesis,”
Proc. IEEE ICASSP’2003, Hong Kong, 2003.

DAFX-6

	1 Introduction --- Why yet another block-based system?
	2 Overview of the BlockCompiler
	2.1 Simple DSP scripting example
	2.2 Properties of the BlockCompiler

	3 Discrete-time physical modeling
	3.1 Wave-based modeling
	3.2 Finite difference modeling
	3.3 Interfacing DWGs and FDTDs
	3.4 Interfacing wave digital filters with DWGs

	4 Physical modeling examples
	5 Summary
	6 Acknowledgements
	7 References

