
 Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

DAFX-1

RECENT DEVELOPMENTS IN PWSYNTH

Mikael Laurson and Vesa Norilo

Centre for Music and Technology, Sibelius Academy, P.O.Box 86, 00251 Helsinki, Finland
laurson@siba.fi,vnorilo@siba.fi

ABSTRACT

PWSynth was originally a visual synthesis language situated
in PatchWork. Recently our research team has started a
complete rewrite of the system so that it can be adapted to our
new programming environment called PWGL. In this paper we
present the main differences of the old and new systems.
These include switching from C to C++, efficiency issues,
interface between PWGL and the synthesis engine, and a novel
copy-synth-patch scheme.

1. INTRODUCTION

Real-time sound synthesis has recently become more feasible
due to advances in low-cost hardware. This evolution has
opened new possibilities of how to combine high-level
computer assisted composition environments with real-time
sound synthesis. Computer assisted composition
environments have been used mostly as non-real-time tools
that deal with compositional problems resulting in material
or scores for acoustical instruments. Sound synthesis, in turn,
has been used often within improvisational real-time systems
or to enhance musical instruments with the help of live
electronics. PWSynth [1] can be seen as an attempt to make a
bridge between these worlds that were previously seen as
separate entities. Here the user can use the system as a general
purpose synthesis engine or to use music notation as a
starting point to generate control information for sound
synthesis. The latter approach has been extensively used to
control physical models of musical instruments ([2] and [3]).

PWSynth was originally written as a PatchWork (PW, [4])
user library. It consisted of a collection of C-subroutines and
a collection of visual boxes that could be used within the PW
environment to define sound synthesis patches. Lately PW
has been rewritten and has resulted in a new visual language
called PWGL [5]. The main difference between PW and PWGL
is that the graphics part of the latter one is written in OpenGL.
During this rewrite process we decided also to renew the
PWSynth system. The most important change was to use C++
instead of C. C++ allows to use an object-oriented approach
that results in a system where new DSP-units can be designed
in a more flexible manner than before. (Benefits of using
object-oriented languages in DSP-applications are discussed
for instance in [6].) Also we removed several bottlenecks of
the previous system so that the current version i s
significantly faster than the old one.

PWSynth consists of two main parts: the C-component
and the Lisp-component. The C-component is written in C++
and it contains a library of DSP-units, real-time scheduling,
sequencer, audio hardware support and some other general
purpose tools. Our system uses the PortAudio library [7] for

cross-platform audio input and output. The Lisp-component,
in turn, is written in Common Lisp and CLOS (Common Lisp
Object System) and is used to access the DSP-units database
provided by the C-component. In PWGL this information i s
used to build popup-menus, boxes and sliders. These visual
components can be used to build patches which in turn are
translated into a sequence of C function calls. The C-
component builds an internal representation of the patch and
starts a scheduling process which results in an audio stream.
While the scheduler is running it can receive events from the
PWGL system. These events can either be user events (such as
changing the state of a slider during playback) or pre-
calculated sequencer events (typically coming from a music
notation package). The synthesis engine updates the outputs
and the inputs of the DSP-modules at each sample, which i s
needed for applications dealing with physical modelling.

The rest of the paper is organised as follows. First we give
an overview of the C-component of the system. This section
describes a general DSP-unit class. Next we go over to
efficiency issues. We describe how a PWGL patch forming a
graph structure is translated into a linear queue structure. We
also give some ideas of how the system responds to events.
After this we show how the user can define DSP-units. In
Section 3 we discuss the Lisp-component. We describe among
other things the database provided by the C-component and
show how it is translated into visual entities that can be used
to build patches in PWGL. We end with an implementation
example that demonstrates some of the key features in the
system.

2. C-COMPONENT

This section discusses the main features of a generic C++ base
class called pwsBox and how it is used to define all DSP-units
within PWSynth.

2.1. pwsBox

The most important members of pwsBox are inputs, idName,
idCategory and docString. The members define the necessary
data that is required so that C++ DSP-units are functional and
that they can be converted to visual boxes in PWGL. pwsBox
has one or several input-boxes that are represented by
pwsInputCaps structures. The inputs member is a pointer to an
array of input-boxes. pwsInputCaps, in turn, has members for
idName, dataType, default-value, min-value, max-value and some
other members for internal use.

2.2. Efficiency issues

The section will show how the synthesis engine has been
optimised. A visual PWGL patch which is a graph structure

 Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

DAFX-2

(i.e. a tree that can contain cycles) is collapsed into a linear
array of DSP-boxes. This approach improves significantly the
speed of sample calculation without sacrificing the generality
and the flexibility of the system.

Before the real-time run, the patch is sent to the C-
component as a series of commands in order to create and
connect the modules. Internally, the C-component treats the
patch as a linear queue of subroutines. Starting from synth-
box, the compiler collects the boxes its input depends on.
These are then inserted at the head of the queue, making sure
each module precedes all the modules that depend on its
output and that every module is added exactly once.

These two precautions allow to build arbitrary patches
with recursions, loops and splits. In the case of recursion the
patch cannot be rendered perfectly in the digital domain.
Recursive connections exhibit a unit delay as a by-product of
the scheduling scheme

2.3. Event handling

While running, the synthesis engine can respond to events in
several ways. In the simplest case events can be sent from
PWGL so that values are written directly into the data
addresses of the input-boxes. Often it is, however, beneficial
to use a scheme where events call a refresh method that allows
to convert the incoming data in some meaningful way. Filters,
for instance, get often user updates as high-level data (such as
frequencies, amplitudes and bandwidths) which are in turn
converted to low-level coefficients. Another example where
the refresh method is useful is a spatialization module, such
as the VBAP (Vector Base Amplitude Panning [8]) system,
where typically the high-level input data (azimuth, elevation
and distance) changes slowly.

Our system is optimal in the sense that data is converted
only by the refresh method when receiving events. Otherwise
the calculation runs with full speed using low-level
parameters. Another benefit provided by this scheme is the
fact that our system typically does not need separate box
definitions for audio and control rate cases.

2.4. Vectored inputs and outputs

PWSynth DSP-boxes support vectored inputs and outputs
(mono signals are only a special case where the vector length
is equal to 1). This scheme is useful as it allows to construct
compound entities which are used often in sound synthesis
such as banks, parallel structures, serial structures, etc. As any
box can return a vectored output, each item in the vector can
be processed separately, if necessary.

 PWSynth provides a rich set of tools that allow to
manipulate vectors. For instance vectors can be summed into
one signal, vectors can be split into sub-vectors, etc.

2.5. Box creation in C++

Next we give two concrete examples of how new box instances
can be defined using C++. A box definition is done in three
steps. First, a header file gives a class declaration typically
inheriting from the general base class pwsBox discussed in
Section 2.1. The second step consists of an initialisation
routine - implemented in a C file - giving number of inputs,
box name, box category name and input names. Finally, we
specialise a method called process which executes the actual

calculation. Some boxes also require the specialisation of
methods that initialize and/or refresh the box.

The first example implements a resonating filter. The code
is shown in the Appendix. Due to space limitations we can
give only a rough overview of the code. The resonator has
four inputs: signal, amplitude, frequency and bandwidth. We
first declare a new class inheriting from the base class pwsBox
(1). In the implementation we provide the database
information for the box-name, inputs, popup-menu, etc. (2).
In (3) we initialize the low-level state variables. Next we
define a refresh method that is called each time there is a
change in the high-level input values (4). Finally, in (5) we
define the process method that performs the actual sample
calculation using the low-level state variables.

The second example - also given in the Appendix - is a
bank of resonators which takes one signal input, vectored
inputs for amplitudes, frequencies and bandwidths and
returns a vectored output. In (1) the new class pwsResonBank
inherits from a generic pwsBankBaseBox class. In order to define
a new bank module, basically the only thing that we have to
do - besides some initialization routines in (2) - is to define
the createNewUnit method (3). This method defines the basic
DSP-unit - in this case the resonating filter - used by the bank
module to calculate the final output. This scheme is very
powerful as it allows to reuse the existing modules in the
system to build more complex entities.

3. LISP-COMPONENT

When PWGL is launched it creates all necessary components
so that the synthesis engine can be used within a visual
programming environment. These include a hierarchical pop-
menu which is built according to the category-name and box-
name information provided by the C-component.
Furthermore, the system builds a database from available
DSP-boxes according to box-names and input-box
information. This process is automatic and reflects the current
state of the C-component. Thus any changes in the C-
component will correctly be updated in the visual part of the
system.

3.1. PWGL interface

A synthesis patch is realised in three steps. First, the user
builds a visual PWGL patch consisting of DSP-boxes and
connections. Special abstraction boxes can be used to define
sub-patches. After this the patch is translated into C-function
calls to add boxes, connections and input terminators. These
are in turn used by the C-component to build the internal
representation that will perform the final sample calculation.
Figure 1 shows a typical PWGL window that contains a
synthesis patch implementing a guitar model:

 Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

DAFX-3

Figure 1: A PWSynth example patch with boxes,
connections, two abstractions, a real-time slider and
a popup-menu for creating boxes.

3.2. Copy-synth-patch scheme

Visual synthesis languages have been criticised of being
static. Furthermore, more complex synthesis problems tend to
result in patches that are crowded and confusing. One way to
avoid these problems is to introduce special control
structures that allow to mimic similar constructs like loops
found in some textual synthesis languages, like
SuperCollider [9]. In order to meet this challenge PWSynth
introduces a new special box called copy-synth-patch having
two inputs count and patch. copy-synth-patch duplicates a
patch connected to the patch-input count times. This scheme
has many applications such as a guitar-model that contains
for instance six string-model instances. Our system allows to
define a string-model only once and let the copy-synth-patch
box duplicate the required amount of strings automatically.
Figure 1 shows one copy-synth-patch example where the patch
input is connected to an abstraction box called 'string'. The
contents of the abstraction is copied here 6 times in order to
create a guitar model.

 In order to distinguish between different duplicated
patch instances the copy-synth-patch scheme generates
automatically symbolic references to specific user defined
entry points. These entry points are specified by connecting a
PWSynth-plug box at the leafs of a synthesis patch. The
entry-points are used afterwards to control the synthesis
process. The symbolic references are path-names, similar to
the one found in OSC [10] and in the previous version of
PWSynth, such as 'guitar1/1/freq' or 'guitar2/6/lfgain'.

3.3. Other applications

The clear and compact interface between the Lisp-component
and the C-component allows to create other synthesis related
applications in PWGL which are not directly related to a
visual patch. Such applications are of great interest in our
system as it allows to use sophisticated OpenGL based 2D- or

3D-graphics in conjunction with sound synthesis. Possible
applications are for instance sample editors, interactive
instrument models and tools for computer aided
instrumentation.

4. IMPLEMENTATION EXAMPLE

We end with an implementation example that demonstrates
some of the capabilities offered by PWSynth. The example
patch in Figure 2 is a straightforward implementation of a
feedback delay network (FDN) reverberation [11]. Since FDN
is basically a vectored comb filter, the vectorization
capabilities of PWSynth offer an advantage. The building
blocks for FDN are delay, loss filter and feedback. By
vectorizing them and turning the feedback into a matrix, a
prototype FDN is created. Input signal is injected into a
vectored delay line that is in turn fed into a vectored loss
filter. A highly efficient Hadamard matrix is used to distribute
the feedback between delay lines. The vectored modules
automatically determine the number of elements by
examining their inputs. In the example case we are using eight
elements in each vectored module. The benefits of PWSynth-
based effect design are the quickness of the
design/implementation/evaluation cycle and the possibility
of using custom routines written in Lisp to calculate various
low level parameters such as loss filter coefficients and delay
line lengths. Additional twists such as inserting allpass
filters in the feedback paths or changing the way the delay
line lengths are chosen can be done quickly and easily.
PWSynth also provides an infrastructure to flexibly control
sound processing via real-time or sequenced events.

Figure 2: An abstraction patch which defines a FDN
reverberator.

 Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

DAFX-4

5. CONCLUSIONS

This paper has presented a new visual software synthesis
language written in C++ and Lisp. The key features in the new
system are an improved C++ programming environment,
speed optimizations, event handling, vectored input and
output boxes and a novel copy-patch scheme. The aim is to
combine the speed of low-level DSP-routines calculation with
the flexibility of a high-level visual programming
environment.

The current system runs on Mac OS 9 and our work is now
concentrated on a OS X port. Future plans include a port to
Linux and Windows.

6. REFERENCES

[1] M. Laurson and M. Kuuskankare, “PWSynth: A Lisp-
based Bridge between Computer Assisted Composition
and Sound Synthesis”, in Proc. ICMC’01, pp. 127-130,
Havana, Cuba, 2001.

[2] M. Laurson, C. Erkut, V. Välimäki, and M. Kuuskankare,
“Methods for Modeling Realistic Playing in Acoustic
Guitar Synthesis”, Computer Music Journal, vol. 25, no.
3, pp. 38-49, Fall 2001.

[3] V. Välimäki, M. Laurson, and C. Erkut, “Commuted
Waveguide Synthesis of the Clavichord”, Computer
Music Journal, vol. 27, no. 1, pp. 71-82, Spring 2003.

[4] M. Laurson, PATCHWORK: A Visual Programming
Language and Some Musical Applications. Doctoral
dissertation, Sibelius Academy, Helsinki, Finland, 1996.

[5] M. Laurson and M. Kuuskankare, “PWGL: A Novel Visual
Language based on Common Lisp, CLOS and OpenGL”,
in Proc. ICMC’02, pp. 142-145, Gothenburg, Sweden,
2002.

[6] V. Lazzarini, “Audio Signal Processing and Object-
oriented Systems”, in Proc. of the 5th Int. Conference on
Digital Audio Effects (DAFX-02), Hamburg, Germany, pp.
211-216, 2002.

[7] R. Bencina and P. Burk, “PortAudio – an Open Source
Cross Platform Audio API”, in Proc. ICMC’01, pp. 263-
266, Havana, Cuba, 2001.

[8] V. Pulkki, “Virtual sound source positioning using
vector base amplitude panning”, in Journal of the Audio
Engineering Society, 45(6) pp. 456-466, June 1997.

[9] J. McCartney, “Continued Evolution of the Super-
Collider Real Time Environment”, in Proc. ICMC'98, pp.
133-136, Ann Arbor, USA, 1998.

[10] M. Wright and A. Freed, “Open Sound Control: a new
protocol for communicating with sound synthesizers”, in
Proc. ICMC’97, pp. 101–104, Thessaloniki, Greece, 1997.

[11] J-M. Jot, “Efficient Models for Reverberation and
Distance Rendering in Computer Music and Virtual
Audio Reality”, in Proc. ICMC’97, pp. 236-243,
Thessaloniki, Greece, 1997.

7. APPENDIX

/* 1. Example: pwsResonBox */

class pwsResonBox:public pwsBox{ // (1)
public: pwsResonBox();

virtual void Process();
virtual void Prepare();
virtual int Refresh(int numInput);
enum{ksig=0,kfreq,kamp,kbw,kNumInputs};

protected:float a0,b1,b2,p_out1,p_out2;};

pwsResonBox::pwsResonBox() // (2)
{setNumInputs(kNumInputs);
 setBoxName("reson");
 setBoxCategory("filters/IIR");
 setInputName(ksig, "sig"); setInputName(kfreq, "freq");
 setInputName(kamp, "amp"); setInputName(kbw, "bw");
 setInputFlag(kfreq,kNeedRefresh);
 setInputFlag(kamp,kNeedRefresh);
 setInputFlag(kbw,kNeedRefresh);
 boxCaps.docString="Two pole IIR resonator filter";
return;}

void pwsResonBox::Prepare() // (3)
{p_out1=p_out2=0;a0=b1=b2=0;}

int pwsResonBox::Refresh(int numInput) // (4)
{ float fc,am,bw;
 float **ptr=(float **)inputBoxBuf;
 fc = *ptr[1]; am = *ptr[2]; bw = *ptr[3];
 b2 = pow(neperE,(NegPi2*(bw/_pws_sampleRate)));
 b1 =(((-4*b2)/(1+b2))*cos(NegPi2*(fc/_pws_sampleRate)));
 a0 = am;
 return pwsBox::Refresh(numInput);}

void pwsResonBox::Process() // (5)
{float sig, out;
 float **ptr=(float **)inputBoxBuf;
 sig = *ptr[0];
 out = ((a0*sig)-(b1*p_out1)-(b2*p_out2));
 p_out2 = p_out1;
 p_out1 = out;
 *((float *)outputBuf) = out;}

/* 2. Example: pwsResonBank */

class pwsResonBank:public pwsBankBaseBox{ // (1)
public: pwsResonBank();

virtual pwsBox *createNewUnit();
enum{kSig,kFreq,kAmp,kBW,kNumInputs};};

pwsResonBank::pwsResonBank() // (2)
{copyUnitSettings();
 setBoxName("reson-bank");
 setBoxCategory("filters/vector");
 boxCaps.docString=
 "bank of resonators operating on the input signal";}

 pwsBox *pwsResonBank::createNewUnit() // (3)
 {return new pwsResonBox;}

