
 Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

GUI FRONT-END FOR SPECTRAL WARPING

Mr. T. Healy, Mr. T. Lysaght, and Dr. J. Timoney

Department of Computer Science
National University of Ireland, Maynooth, Ireland

Tom.Lysaght@may.ie,Joseph.Timoney@may.ie

ABSTRACT

This paper describes a software tool developed in the Java
language to facilitate time and frequency warping of audio
spectra. The application utilises the Java Advanced Image
Processing (AIP) API which contains classes for image
manipulation and, in particular, for non-linear warping using
polynomial transformations. Warping of spectral representations
is fundamental to sound processing techniques such as sound
transformation and morphing. Dynamic time warping has been
the method of choice for many implementations of temporal and
spectral alignment for morphing. This tool offers greater
advantage by providing an interactive approach to warping, thus
allowing greater flexibility in achieving a desired transformation.
This application can then be used as input to a signal synthesis
routine, which will recover the transformed sound.

Figure 1: Warping program flow chart.

1. INTRODUCTION
2. POLYNOMIAL TRANSFORMATIONS

The most popular method for time and frequency alignment of
features in sound processing algorithms has been dynamic time
warping (DTW) [1,2]. This technique permits feature matching
and alignment through a one-dimensional warping process.
However, it is limited in performance as it depends completely
on the complexity of the backtracing procedure and thus
misalignments can happen easily. Spatial warping of images, on
the other hand, offers a two-dimensional approach to time-
frequency warping. Furthermore, the development of an
interactive tool for warping enables greater flexibility and ease in
specifying the warping parameters, thus allowing immediate
examination and verification of results or editing of control
points. The Java language was chosen in which to implement
this application due to the availability of the Advanced Image
Processing API which offers polynomial warping routines.
Furthermore, Java facilitates the development of a portable GUI
interface for such an application. Figure 1. shows a flow chart of
the warping process and illustrates the key implementation
features. Section 2 outlines the mathematics behind polynomial
transformations for warping. Section 3 details the software
design and implementation. Section 4 describes the JAVA
implementation. Section 5 describes software testing and results.
Section 6 draws conclusions and points to future work.

Time-frequency spatial warping is the process of distorting an
original/source time-frequency representation into a destination
representation according to a mapping between source and
destination coordinates termed control or fiducial points [3]. The
positions of the coordinates in the destination image are altered
according to some warping function. The spatial transformation
is expressed in general form as a mapping from a point (x, y) in
an output time-frequency representation to its corresponding
warped position (i, j) in an input representation (see Eq. 1).

 () () ()()yxWyxWji yx ,,,, = (1)

where W and W are the warping functions. These functions

can be modelled by the following polynomial transformations
(Eq. 2):

x y

 (2)
()

() ∑ ∑

∑∑

=

=

n

p

n

q
qp

pqy

n

p

n

q

qp
pqx

yxbyxW

yxayxW

,

,

where n denotes the degree of the polynomial. Second order
warping is usually sufficient to effect most distortions. Solving
for the a and b coefficients in Eq.1 is achieved using an over-
determined system of linear equations. Such a system does not
have an exact solution and so the common approach of the least-
squared-error solution is used. Estimation of the intensity of the
output coordinates uses bilinear interpolation when the

 DAFX-1

 Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

corresponding input position yielded by the warping function is
non-integer.

ImageOps
warp : WarpPolynomial

Overlay()
RunCrop()
runWarp()
getHighestError()

ImageFilter
jpg : String = "jpg"
jpeg : String = "jpeg"

accept()
getExtension()
getDescription()

ArrayOps
rOps : RectangleOps

appendArray()
validRectangleArray()

RectangleOps

pointsInRectangle()
divideXRectangle()
divideYRectangle()

MyPanel1

PaintComponent()

WindowCloser

windowClosing()

MyFrameDriver
wf : WarpFrame

main()

WarpFrame

3. GUI DESIGN AND IMPLEMENTATION

This GUI was designed to be as user friendly as possible by
making it transparent and as consistent with other GUI’s as
possible. The dialogs were designed and implemented to yield
closure and provide informative feedback where required. When
designing the interface it was assumed that the user would have a
reasonable knowledge of the basic ideas of image warping such
as polynomial degree and the number of control points required.
The GUI itself is divided into three distinct regions (see Figure
3). The largest part of the GUI is used to display the image
loaded by the user. This immediately attracts the user’s attention
to the main purpose of the application. On the right of this is the
toolbar that contains an array of buttons and labels that are used
both to control the application and to provide important feedback
to the user. The final region of the GUI is the menu bar. This
contains standard options concerning file operations as well as
advanced options such as a zooming tool.

Figure 2: System Architecture Design

modularity and reusability, which is an important feature of
software applications. Another compelling reason to program the
GUI in Java is platform independence or portability. Java runs
on most major hardware and software platforms, including
Windows 95 and NT, the Macintosh, and several varieties of
UNIX. Java applications also have the advantage of maintaining
their ‘look and feel’ irrespective of the platform on which they
are running. Consequently the application, which has been
developed, will work as well, for example, on a Macintosh as it
will on a PC running Windows software.

Each of the dialogs used in the application are modal. This
prevents further user input to the rest of the application until the
dialog has been dealt with. This feature in addition to
informative error messages that are provided to the user form an
effective error prevention system. This has the effect of
increasing the users confidence in the application.

There are a number of features of the interface that improve
the interaction between the user and the application. The first of
these features is the changing mouse cursor, which allows the
user to easily identify the mode which the application is in. Each
cursor represents a different mode and indicates to the user
which operations need to be performed before the warp operation
can take place. The use of modal message dialogs informs the
user of the progress of the warping process and provides the user
with options regarding choices which need to be made by the
user such as the selecting of pin points.

The GUI components from the AWT package are linked
directly to the local platforms GUI capabilities and so may look
and feel different depending on the underlying platform.
However Swing is different in this respect as its components are
implemented without using native code and consequently are
independent on the underlying platform. The AWT contains the
classes that handle events, the successful implementation of
which plays a central role in the success of interaction between
user and interface. This application relies heavily on input from
the user in the form of mouse clicks and mouse movement. The menus provided in the application allow the user to

access a number of more abstract support features such as file
operations, zoom feature and a feature which allows the user to
obtain the intensity values of each pixel in the image.

Figure 2 shows a UML diagram illustrating the architecture
of the application. MyFrameDriver is the parent component and
allows running more than one instance of the main component.
The WarpFrame class is the main component of the system. All
of the essential variables and data structures are instantiated and
updated here. This creates the GUI and supports all event
handling that occurs during the execution of the application. Six
support components are used by the main component to perform
the warping. The first of these, ArrayOps is used to carry out
operations on the array data structures which store the
coordinates of the control points. Another component,
RectangleOps is concerned with validating user input and with
the implementation of the pinning function. The pinning
function allows specification of extra control points or pin points
along the edges of the region to be warped in order to avoid
unnecessary skewing of the surface. A third component handles
all the paint operations such as drawing the rectangular regions
which outline the areas which have been selected for

4. JAVA IMPLEMENTATION

Java was chosen as the programming language for the GUI for a
number of reasons. The primary reason for using Java was the
existence of the Java Advanced Imaging (JAI) Applications
Programming Interfaces (API). This JAI API allows for
sophisticated, high-performance image processing to be
incorporated into Java applications. This enables us to use JAI
to perform operations such as warping on the images in the
application. The GUI was implemented using the AWT and
Swing packages provided by the Java language. As an object-
oriented programming language Java allows for greater

 DAFX-2

 Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

 DAFX-3

Figure 3: GUI interface and warping example

warping. The component which deals with the various image
processing procedures for warping uses a number of methods
from the JAI API. Another feature which enhances the user’s
interaction with the application is provided by the ImageFilter
component which limits the file types available under the
load/save menu. This prevents the user from loading file types
which are not compatible with the application namely non-image
files.

The application was coded using a mixture of Java Swing
and AWT components. The ‘top-level’ window for the
application was created using a Swing JFrame object (See
Figure 3). Other components added to this include JButton,
JComboBox, and JMenu. The AWT package contains classes
that provide event handling. For example, the MouseEvent class
is used to tell the current coordinates of the mouse. These
coordinates are visible as a label at the bottom of the toolbar (see
Figure 3). Event handling enables the application to respond to
certain main modes of operation, indicated by the cursor
changing. These include, control point selection/editing. Dialog
boxes, dialogs, are used to display different error/question
messages to the user. These dialogs are all ‘modal’ as an error
prevention mechanism.

5. TESTING AND RESULTS

Testing consisted of component testing of the GUI and black box
testing to test the response of the application to large input sets.
Warping was tested using varying control point sets for the
different warping orders. Figure 3 shows two harmonics of a
violin time-frequency distribution warped at the midpoint along
the time axis.

Synthesis of the warped images of Wigner distributions, in
particular the smoothed pseudo Wigner distribution (SPWD),
was implemented using MatLab. The SPWD magnitudes were
written as uncompressed PNG image files. The Wigner
distribution has no phase information and so only the SPWD
magnitudes are warped. After warping, the saved PNG warped
image was imported into MatLab and resynthesised using a
Wigner distribution synthesis technique [6]. SPWD images of
trumpet and violin tones were used for warping and the effects of

warping were evident in the resultant synthesised sounds.
Warping of spectrograms can be accomplished by warping the
magnitudes only and resynthesis using magnitude-only
reconstruction techniques [7,8].

6. CONCLUSIONS

We have outlined a portable Java implementation of a warping
tool for spectral transformation which uses the Java Advanced
Image Processing API. The application offers an interactive
method of spectral warping with ease of parameter specification
and editing. Work is ongoing to include signal resynthesis from
warped time-frequency spectra in the complete package
[4,6,7,8]. Future work will include integration with other audio
processing software tools [5]. Future development of the
application would include extending these menus to include
other features which would enhance the application.

7. REFERENCES

[1] Malcolm Slaney, Michele Covell and Bud Lassiter.
"Automatic Audio Morphing", Proceedings IEEE
International Conference Acoustics, Speech and Signal
Processing, 2, pp. 1001-1004, 1996.

[2] Naotoshi Osaka. "Timbre interpolation of sounds using a
sinusoidal model", Proceedings ICMC Sep. 1995, BANFF,
Canada, pp 408-411.

[3] George Wolberg. Digital Image Warping, IEEE Press,
1992.

[4] Gloria Fay Boudreaux-Bartels. "Time-Varying Filtering and
Signal Estimation Using Wigner Distribution Synthesis
Techniques", IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. ASSP-34, No. 3, June 1986.

[5] Victor Lazzarini. “Audio Signal Processing and Object-
Oriented Systems”. Proceedings Dafx02, Hamburg, 2002.

[6] T. Lysaght and J. Timoney, ``Timbre morphing using the
modal distribution", COST-G6 Conference on Digital Audio
Effects (DAFx02), University of Federal Armed Forces,
Hamburg, Germany, pp. 191-194, September 26-28, 2002

[7] Puckette, M. "Phase-locked Vocoder." Proceedings, IEEE
ASSP Workshop on Applications of Signal Processing to
Audio and Acoustics, 1995

[8] Daniel W. Griffin, Jae S. Lim, “Signal Estimation from
Modified Short-Time Fourier Transform”, IEEE
Transactions on Acoustics, Speech, and Signal Processing,
vol. 32, no. 2, pp. 236-243, 1984.

	INTRODUCTION
	POLYNOMIAL TRANSFORMATIONS
	GUI DESIGN AND IMPLEMENTATION
	JAVA IMPLEMENTATION
	TESTING AND RESULTS
	CONCLUSIONS
	REFERENCES

