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ABSTRACT 

In this work the techniques of chaotic time series analysis are 
applied to music. The audio stream from musical recordings are 
treated as representing experimental data from a dynamical 
system. Several performance of well-known classical pieces are 
analysed using recurrence analysis, stationarity measures, 
information metrics, and other time series based approaches. The 
benefits of such analysis are reported. 

1. INTRODUCTION 

Data from a multidimensional nonlinear system is often difficult 
to analyse. Structure may be masked by the inherent complexities 
of the system. Thus a specialised set of techniques have been 
designed specifically for the analysis of time series from 
nonlinear systems.   
Extracting and investigating the musical content in an audio signal 
presents unique challenges. Although much of the relevant 
information is based in rhythmic and harmonic structures, even 
frequency domain analysis may fail with polyphonic, multivoice 
recordings. Furthermore musical structures may be based on 
nonlinear correlations in the data. Traditional signal processing 
techniques are not designed to identify such relationships. Nor do 
they provide quantitative measurement of the complexity or 
information content in the signal. 
There have been few previous attempts to apply nonlinear  time 
series analysis techniques to audio. Witten[1] used the reverse 
approach, attempting to understand well-known dynamical 
systems as musical compositions. Boon’s studies [2,3] are quite 
similar to ours, with the primary exception being that he 

considered the symbolic representation, not the raw audio. 
Hemenway [4] attempted to calculate the fractal dimension of 
compositions by Mozart and Bach, again using the symbolic 
representation. Gibiat [5] approached audio as being a dynamical 
system, but he concentrated on the structure of notes and chords, 
not on the dynamics of rhythms. In some sense, those 
approaching music and audio analysis using a hidden Markov 
model[6] or neural network[7] approach are most similar to ours 
because they involve the identification of rhythmic structures as 
a result of underlying dynamical processes.  
In this work, we use time series analysis to reveal hidden musical 
structures that represent long-term rhythms and repeating 
patterns. Furthermore,  we can use this to quantify the 
complexity of the signal. Several examples are presented and the 
results are reported. We also comment on the challenges 
presented in this type of analysis, and how they might be 
overcome. 

2. METHOD 

We base our analysis around several well-known classical 
compositions. This was done partly because classical recordings 
typically have little distortion and also because of their 
familiarity. These recordings, freely available and in the public 
domain (www.intelliscore.net), are described in Table 1 and will 
be referred to in the text by their abbreviations.  
We should note here that we do not limit ourselves in any 
way to monophonic or single voice recordings. However, 
the samples that were analysed were relatively simple 
recordings from a synthesiser. This was to eliminate some 
pitch and rhythm errors that would occur in live 
performances on acoustic instruments. 

 

Table 1. A list of the four audio samples analysed, with data concerning their duration and quality, as well as the abbreviation 
used to refer to them in the text. 

Abbreviation Composer Title Sample 
Rate (kHz) 

Channels  Duration 
(sec) 

Sample size 
(bits) 

E Elgar Pomp and Circumstance 44 1 38 16 
B Bach Jesu, Joy of Man’s Desiring 22 2 13 16 
R Ravel Bolero 44 1 39 16 
T Tchaikovsky Swan Lake 44 1 27 16 
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Figure 1: Frame variances from  recording T. 

The analysis techniques used were as follows. 

2.1. Sliding window analysis 

This type of analysis is typically performed in order to identify 
long-term dynamics, parameter drift, and other forms of 
nonstationarity in data sets. Sliding windows of varying length 
are applied to the data sets and some quantitative measure of 
each window is plotted as a function of time. In this case, 
standard deviation was thought to be an appropriate measure 
because it would capture rapid changes in frequency and 
amplitude. The results of this analysis are depicted in Figure 1. 
The entire musical excerpt lasts about 30 seconds, so we can 
identify repetitive rhythms on a long time-scale. 
This measure also clearly identifies the dramatic change at 
approximately 20 seconds into the music. The rhythm changes 
slightly, and the amplitude increases. In fact, we can characterize 
this as symbolic dynamics, with a transition from a low variance 
to high variance repetition. It is our goal to more accurately 
identify the dynamics of music that typify this piece. It should 
be expected that we find certain time series analysis-based 
measures which are robust to changes in timbre, and hence isolate 
relevant aspects of harmony, rhythm and melody. 

 
Figure 2. The autocorrelation of recording B as a function 
of the delay used in a 2 dimensional embedding. 

 
Figure 3. The autocorrelation of Elgar’s  Pomp and 

Circumstance as a function of the delay τ  used in a two-
dimensional embedding. 

2.2. Delay Coordinate Embeddings 

A common first step in the analysis of time series data from a 
nonlinear dynamical system is to construct a delay coordinate 
embedding.  A delay coordinate embedding is typically used as a 
method to reconstruct multidimensional data from a one 
dimensional time series[8].  
Consider a time series of the form 1 2, ,... NX X X . From this series, 

vectors are created using a delay τ  and embedding dimension D: 
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Various methods have been suggested for the determination of an 
appropriate delay [9]. In this section we concentrate on two 
alternatives; the first zero-crossing of the autocorrelation 
function; (as a function of the delay as it is increased from zero), 
and the first minimum of the mutual information function.  
Both these choices serve to represent vectors where the 
individual components share minimal information due to the 
dynamics, but are still closely related in time. The autocorrelation 
function is often used to identify periodicities in data. However, 
the autocorrelation function only measures linear correlations, 
whereas the mutual information function describes nonlinear 
relationships between coordinates. The mutual information may 
give a better value because it takes nonlinear correlations into 
account. In this section, we use an efficient method[10] of 
calculating mutual information in order to identify and 
characterize nonlinear, delayed correlations in the data 
Figure 2 depicts the (normalized) autocorrelation as a function of 
the delay in recording B. The delay is given in units of the sample 
rate, or 0.045 msec. The first zero-crossing of the autocorrelation 
occurs at τ=7, or 0.315 msec. For recording E, the autocorrelation 
function is given in Figure 3.  
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Figure 4. The mutual information of recording B as a 
function of the delay used in a 2 dimensional embedding. 

By comparing Figure 2 and Figure 3, we can see that both reveal 
strong correlations at τ>100. However, these correlations are still 
at time durations less than a second. Thus the autocorrelation 
function is revealing the correlations within a note, and not from 
long-term rhythmic structures in the audio. This does not 
invalidate the method however, since it simply  gives us a choice 
of delay which does not overemphasize the short-time 
correlations.  

The mutual information, depicted in Figure 4, suggests a similar 
value for τ. However, the mutual information is more difficult to 
interpret, since it is more susceptible to noise, data complexity, 
and finite data set size. Coupled with the fact that computation 
of mutual information from a large data set is computationally 
intensive, and it becomes clear that when successful, the 
autocorrelation function is preferred over the mutual information 
as a method of determining an appropriate delay to use in 
embedding an audio signal. 

 

 

 

Figure 5. A three dimensional embedding of Bach’s  Jesu, 
Joy of Man’s Desiring using the delay τ=7, as suggested 
by the autocorrelation function. 

 

Figure 6. A two-dimensional return map of a Poincare 
section of recording B. 

In Figure 5, a three-dimensional delay coordinate embedding of 
recording B is provided. Here, we used the delay suggested by 
the first zero-crossing of the autocorrelation function. Note that 
this procedure, which incorporates multidimensional temporal 
structure into a simple graph, reveals a nonrandom distribution to 
the data. Certain directions appear favored for the 3 dimensional 
delayed vectors. This would not be revealed from the time 
domain waveform or the frequency domain spectrum. 

2.3. Poincare sections using peak detection 

If a dynamical system contains a term that is periodic in time then 
it can be sampled at that period and hence reduced in 
dimensionality. The act of taking a Poincare section, as it is 
known, reduces a continuous time system to a return map and is a 
useful tool in nonlinear dynamics. However, with audio signals it is 
not clear what period, if any can be used. 

Here, we can borrow a technique that is used in the application of 
nonlinear time series analysis to biological systems[11-13]. For 
data from neurons, both experimental and simulated, the 
dynamics consist of both slow and very fast processes. This has 
the effect of creating sharp spikes in the time domain waveform. 
The times between these spikes represent the times between 
piercings of a Poincare surface of section. This suggests that 
vectors consisting of successive interspike intervals will reconstruct 
the multidimensional dynamics in a set of dimension exactly one 
less than the attractor dimension. 
Although a musical signal does not consist of spike trains, it does 
have fast (the period of a single note) and slow (the times between 
notes) processes. Thus we can apply a similar technique to audio. 

Using a polynomial interpolation, the time intervals between peaks 
were extracted for recordings R and B. These were used to form 
multidimensional vectors which are depicted in Figure 6 through 
Figure 8. Figure 6 shows a structured, nonGaussian distribution to 
the peak intervals. A simulated noisy waveform would exhibit a 
Gaussian distribution focused on zero. Instead, there appears to be 
well-defined allowable regions, for the embedded inter-peak times. 
These should correspond to certain notes, and the peak interval 
times represent the period of the note or notes, i.e., pitch. 
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Figure 7. A two-dimensional return map of a Poincare 
section of Bolero, created from the time intervals between 
peaks . Units are given in terms of the sample period.  

This behaviour is even more pronounced in Figure 7. The 
allowable regions (ignoring points that seem to represent a noisy 
background) form several sets of discrete stairs ascending linearly 
away from the origin. These paths overlap, thus indicating that 
more than two dimensions are required to unfold the structure. 

This is done through the use of a three dimensional plot, as 
depicted in Figure 8. The figure has been rotated to reveal 
approximately 11 paths.  In three dimensions, the paths are 
independent. Again we believe that these regions, represent the 
harmonics of a note or chord. By incorporating additional temporal 
information into these graphs, such as through a windowing 
technique to create short time Poincare sections, it may be possible 
to use this method in a transcription scheme. 
 
 
 

 

Figure 8. A 3-dimensional return map of peak times in Bolero. 

 

2.4. Recurrence plots 

The recurrence plots were first suggested by Eckmann, et. al.[14] 
as a means of identifying nonstationarity as well as aperiodicity. 
They have since been found to be a useful tool in visualising a 
wide variety of behaviour.  
The phase space is reconstructed by taking the time series  
X1,X2…XN and creating D-dimensional vectors using the 
embedding method mentioned in Equation (1). 

The recurrence plot is formed by comparing all embedded vectors 

with each other. The distance between vectors i and j, 1 2Y Y−  is 

then plotted (using a grayscale intensity) at the coordinate value 
(i, j). This is depicted in Figure 9. Note that the recurrence plot is 
symmetric since the distances are symmetric between i and j. The 
horizontal and vertical white bands are associated with rare 
states, and the dark bands indicate states that remain roughly 
unchanged for a long duration.  

Of further interest is the relative lack of diagonal lines. This 
implies a lack of long-term periodicity, and hence the rhythm 
must be represented in a different manner. Furthermore, the 
change in amplitude is visualized both by the abrupt rise in 
variance in Figure 1(for Swan Lake) and also by the increased 
density in the region to the right of Figure 9(for Bolero).  

3. CONCLUSIONS 

The investigations reported here were speculative since there has 
been  very little p revious work on the app lication of nonlinear 
time series techniques to raw audio music. These techniques, 
although powerful and extensible, are not designed for use with 
audio.  

 

 

Figure 9: A recurrence plot depicting the dynamics in Bolero. 
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In particular, without modification, they  have a tendency to 
identify  short term dynamics and miss the rhythmic structures. 
Despite this shortcoming, nonlinear time series analysis 
techniques are well-suited to musical audio signals. This was 
evidenced by the fact that these techniques allowed us to observe 
rhythmic structures occuring over very long time spans. Such 
structures would not have been evidenced using many frequency 
domain approaches.  
We also showed that the times between peaks in a peak detection 
routine can be used to identify notes. By  incorporating additional 
temporal information, this can be used to represent a symbolic 
dynamics. Thus  this work relates directly to the previous work 
on time series analy sis of music in the symbolic 
representatiuon[3,4]. 

4. REFERENCES 

1 M. Witten, The Sounds of Science: II. Listening to Dynamical 
Systems. Towards a Musical Exploration of Complexity, 
Computers and Mathematics with Applications 32 (1), 145 
(1996). 
2 J.-P. Boon, A. Noullez, and C. Mommen, Complex dynamics 
and musical structure, Interface 19, 3 (1990). 
3 J. P. Boon and O. Decroly, Dynamical systems theory for 
music dynamics, Chaos 5 (3), 501 (1995). 
4 J. Hemenway, Fractal Dimensions in the Music of Mozart 
and Bach, The Nonlinear Journal 2, 86 (2000). 

5 V. Gibiat, Phase space representations of acoustical musical 
signals, J. Sound Vib. 123, 529 (1988). 
6 A. Durey. Melody Spotting Using Hidden Markov Models . 
2nd Int. Symposium on Music Inform. Retriev. (ISMIR), 
Bloomington, IN, USA, October 2001. 
7 A. Robel. Neural network Modeling of Speech and Music 
Signals. Neural Information Processing Systems 9 (NIPS 
96)1996. 
8 T. Sauer, J. A. Yorke, and M. Casdagli, Embedology, J. Stat. 
Phys. 65, 579 (1991). 
9 A. M. Fraser, Reconstructing Attractors from Scalar Time 
Series: A Comparison of Singular System and Redundancy 
Criteria , Physica D 34, 391 (1989). 
10 J. D.  Reiss, N. Mitianoudis, and M. B. Sandler. Computation 
of Generalized Mutual Information from Multichannel Audio 
Data . 110th Convention of the Audio Engineering Society, 
Amsterdam, The Netherlands, 2001 May 12-15 2001. 
11 D. M. Racicot and A. Longtin, Interspike interval attractors 
from chaotically driven neuron models , Physica D 104, 184 
(1997). 
12 T. Sauer, Reconstruction of dynamical systems from 
interspike intervals , Phys. Rev. Lett. 72, 3811 (1994).  
13 R. Castro and T. Sauer, Reconstructing chaotic dynamics 
through spike filters, Phys. Rev. E 59 (3), 2911 (1999). 
14 J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, Recurrence 
plots of dynamical systems, Europhys. Lett. 4, 973 (1987). 

 


