
Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004

 AIDE, A NEW DIGITAL AUDIO EFFECTS DEVELOPMENT ENVIRONMENT

Victor Lazzarini Rory Walsh

Music Technology Laboratory 13 Rue Louis de Cardonnel
NUI Maynooth, Ireland Grenoble, France

victor.lazzarini@may.ie

rorywalsh@ear.ie

ABSTRACT

This paper describes a new rapid development environment for
digital audio applications and computer instruments, AIDE (Audio
Instrument Development Environment). The system is designed
to help users build signal processing applications for use in music,
multimedia and sound design. Based on a graphical patching
principle, this system generates software using the V and Sound
Object libraries. These provide the graphical interface/application
framework and sound processing elements, respectively, for stand-
alone programmes generated by AIDE. It is envisaged that the
system will also generate application components in addition to
stand-alone programs. The paper outlines in some detail the ele-
ments involved in the software. It discusses how the system is
aimed at different types of users with different levels of interac-
tion. The paper concludes with an overview of the typical applica-
tion development cycle using the system.

1. INTRODUCTION

AIDE is a new software system for computer instrument and stand
alone audio software development in C++. It is intended for use
by musicians, composers and programmers, as it provides differ-
ent levels of user interaction. For those with no prior experience of
programming, the software can be used as a pedagogical system,
in which users can learn the intricacies of programming. Applica-
tion development can be done through a user-friendly graphical
approach. The system also provides lower-level interaction for
more experienced programmers.

The first version of the system provides support for the devel-
opment of stand-alone applications, but it is hoped that in the fu-
ture users will also be able to develop software components. These
would comprise Pure Data(PD) [1], MaxMSP [2] classes, as well
as VST, LADSPA and DirectX plugins. AIDE is designed to assist
all aspects of the development of practical tools for music signal
processing.

2. SYSTEM FEATURES

The most important feature of AIDE is its versatility. As a basic
tool it provides users with a way to create their own standalone
audio applications. It is foreseen that users will employ the system
to create task specific applications, such as computer instruments
for works of electroacoustic music, research tools for audio proc-
essing, and educational tools for teaching computer music. The
benefit of this is that the applications will be small in size and very
easy to set up as the generated executable files do not need any
third party libraries to run. The ‘ease of setup’ factor is very useful

to musicians performing computer music. No more will they have
to preinstall complete software to run their patches, the only soft-
ware they will have to install is the executable which runs the
process.

Work is now underway to allow for different types of target
applications, not merely standalone executables. The generation of
PD/MaxMSP externals is possible through the employment of
Flext [3], a C++ layer for Max/MSP and PD externals. However,
for now external objects are limited to a very basic interface.
LADSPA, VST and DirectX plugins are other varieties of output
that are planned for the future. This would provide users with a
means to creating their own custom plugins, thus stretching the
realms of user interaction found in many of today’s audio process-
ing systems.

While the above examples illustrates how AIDE proves a very
useful tool in the development of audio processing software, it
must not be overlooked that it also provides users with access to
low level signal processing operations. This type of access is often
not available with other audio systems, in particular commercially
available systems. While these systems may provide users with
pre-built effects such as reverbs, delays, and filters, they do not
allow the user to take these effects apart and rebuild them to their
own specifications.

3. TECHNICAL ASPECTS

AIDE is being developed for Windows using the Borland© C++
Builder. It is hoped that, with the release of Borland’s Kylix© [4]
a new Linux C++ development environment, a version for Linux
will also be made available. The system works by creating the
appropriate C++ code whenever the user places a new SndObj
object or graphical component in the main patcher window. AIDE
makes use of the freeware multi platform GNU gcc compiler to
compile the standalone executables, therefore even though an
application is created in Windows, the multi-platform makefile
may be run on any Linux PC or Mac OSX providing that the cor-
rect libraries are installed.

3.1. The V library

The V GUI Library [5] is used to create the GUI interface for
standalone applications. V is a C++ Graphical User Interface
Framework designed to provide an easy to use system for building
GUI applications. The framework is small, and provides all the
tools one would need for building intuitive graphical user inter-
faces. V has also been designed to be portable and, currently, ver-
sions for Linux, Microsoft Windows, and OS/2 exist. The

 DAFX-1

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —

04DAFx

53 53

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004

V framework is freely available for use by anyone under the terms
of the GNU Library General Public License.

3.2. The SndObj library

AIDE uses the Sound Object Library [6] to provide the audio
processing operations for the generated software. The generated
code is fully portable across Windows, Linux/Unix (with OSS),
Irix and MacOS X. The SndObj library provides around 100
classes that can be used for time- and frequency-domain signal
processing, as well as sound and MIDI input/output. With its
SndThread class, it can also manage audio processing threads,
something particularly important for this software.

The library is normally used by this software as a toolkit, but
also serves as a framework for class development. The software,
with its code generation capabilities, includes the possibility of
user-defined custom SndObj classes. It is expected that AIDE will
be used in the further development of the library.

4. LEVELS OF INTERACTION

The system was designed to be used at three different levels of
interaction:

• Introductory: The first level is directed at the novice user,

who has no prior knowledge of audio processing systems yet
wants to learn about the many ways to manipulate and trans-
form sounds digitally. By using AIDE they can start learning
from the very beginning. By following interactive tutorials in
which they follow flow charts of classic processing tech-
niques they will begin see the different ways in which the
classic techniques can be realised using the system. They
may then start to create their own applications by recreating
these flow charts on screen in a modular based fashion to
create new applications in which these techniques are em-
bedded.

• Advanced: the second level is directed at users with prior
knowledge of processing techniques. They may use AIDE to
create and develop new techniques. As the system comes
with a complete range of audio processing tools in the form
of SndObj classes, it should make it possible to create or rec-
reate a huge array of processing techniques. The user may
then embed these new techniques into standalone software or
plugins.

• Developer: The third level of interaction aims to support
users experienced in processing techniques and in C++ pro-
gramming. For them, the software will help them to realise
more complex audio applications and enable fast develop-
ment with code re-use. Skeleton applications which include
just the GUI elements such as Menu items, buttons, scroll-
bars, etc, can be augmented by the user’s own C++ code.
This can be edited from within the application in a code text
window. After the code is modified, it can be compiled as
normal from within the Application Builder or from the
command line. In this way users can benefit from code re-
use, esp. when developing a graphical user interface for their
application. This particular level of interaction provides ex-
perienced users with a great tool for researching new custom
built audio processing techniques.

5. PROGRAM LAYOUT

AIDE incorporates a modular design ‘flow chart’ system, similar
to many current audio processing systems, such as PD/MaxMSP,
OSW [7] and CPS [8]. This system was chosen above others be-
cause of its clarity and simplicity of use. In addition, it is hoped
that users of Pd/MaxMSP will not have many problems in adapt-
ing to AIDE as it incorporates the same ‘patcher’ paradigm. So as
in many other audio processing systems the user simply drags and
drops classes into the main patcher window to instantiate objects.
These are then connected together in typical patch chord fashion.
When the user starts a session with the AIDE they are presented
with three main windows:

1) The Main Patcher Window: this contains the graphical repre-

sentation of the audio processing flow.
2) The Source Code Editor: this contains the entire source for

the project.
3) The GUI Layout, Data Structure and compiler output win-

dow: this contains the GUI designer where the user imple-
ments the graphical user interface for their application. It also
contains the processing order of the classes on screen and
also informs the users of which patch chord goes where. Fi-
nally it contains the compiler output to inform users of
whether or not their projects compiled correctly.

Figure 1: Main Program Window

6. IMPLEMENTING A SIMPLE APPLICATION

To illustrate a typical session it is best to implement a simple ap-
plication, such as a Schroeder Reverb Unit. The user, upon open-
ing the main program interface, begins by simply inserting the
needed sound objects into the ‘patcher’ window. These objects are
connected together with patch chords to determine the data flow of
the application.
 Figure 2 shows an implementation of our simple ‘Schroeder
reverb’ unit. As you can see from the diagram the flow chart is
quite simple to follow. There are four parallel comb filters, each
with a constant for the gain and delay time parameters connected
to two cascading allpass filters. The allpass filters also have two
parameters, again for the gain control and the delay time. The
SndRTIO objects handle real time audio IO and the SndIn object

 DAFX-2

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —54 54

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004

captures the audio stream and makes it accessible to other
SndObjs. Each of the sound objects are named in the same way as
they appear in the SndObj library so as not to confuse a user who
wishes to make the move from using the AIDE to using the
SndObj Library in another programming environment outside of
AIDE.

After the signal processing patch is created, a Graphical User
Interface for the application can be generated using the GUI de-
signer. Again by a simple process of drag and drop a nice user
friendly interface can be created for the application. In the above
patch, constants have been used to provide parameters for the
different class members. However if the 4 comb filter gains were
made variable, they could be linked to GUI components, such as a
scroll bar, as in Figure 2.

Figure 2: Schroeder Reverb Implementation

Figure 3: A Simple GUI Interface

Each time a user places, deletes, or moves a graphical element,
be it a sound object or a GUI object, C++ code is generated by
AIDE to correspond with each new object. This C++ code is visi-
ble to the user through the source code editor giving them the
opportunity to take a glimpse at how the code is structured and
placed together. The automatically generated source code is put
together in the most user friendly fashion possible, to give the user
a clear idea of how the application works.

After completing the graphic interface, the user can proceed to
the compilation of the new software. When the user compiles the
project AIDE runs the project makefile. If there are errors in the
compilation of the application, the user may view them through
the compiler output window which is integrated into the software
main interface. Providing that the source code has no user errors
AIDE will compile everything into a standalone executable. As
stated earlier the source code for each project and makefiles are
cross-platform and can be compiled on many different platforms.

7. AIDE IN THE CONTEXT OF CURRENT AUDIO
PROCESSING SYSTEMS

While AIDE obviously contains a certain likeness, in terms of user
interaction, with other software systems such as PD, Max/MSP
and OSW, the similarities stop there. There is no audio engine in
AIDE, thus there is no run-time environment for the execution of
the newly created programs. Instead, each patch must be carefully
planned and implemented by the user before compilation in order
for it to run and compile correctly. Through this approach users
will find it easier to develop highly structured applications. None
of the above systems are designed to allow users access to the
actual processing code. In some ways this is where AIDE is most
innovative. By offering access to the C++ code, users are being
encouraged to look at the algorithms and classes for each of the
SndObjs employed in their patch. With the freedom AIDE offers
for exploration of processing classes, it is not difficult to see how
the system can become a useful tool in the development and re-
search of audio instrument design.

Another original aspect of this system is that it uses a plat-
form- independent GUI C++ library for application development.
While other software does offer users the options of creating GUI
interfaces to control processing parameters, these are in general
intricately connected to the main application, which sometimes is
not desirable. Using a C++ application framework is possibly a
more flexible and open way to provide GUI support for the gener-
ated software.

Among the comparable systems, CPS, a new realtime process-
ing environment, appears to share some of the aims of AIDE. In
this system, users can translate their graphical patches into C++ or
Java source code. This source code can then be used together with
a supplied SDK to create standalone applications. Unlike AIDE,
however, CPS is not a development environment as such, lacking
the compiler, text-editing and application-building support. CPS
seems to be primarily a synthesis and processing system, with
some secondary application development features. In addition, as
opposed to AIDE, it is not free software.

Finally, it is also important to point out that, while all other
systems discussed here provide their own basic signal processing
and GUI functionality, AIDE depends on external libraries. This
model allows for a more flexible evolution of the whole system.
Separate upgrades of the libraries will add new functionality to
AIDE, without the need for new versions of the program itself.

 DAFX-3

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —55 55

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004

8. CONCLUSION

AIDE has been used very successfully by the authors and others in
beta-testing. It has been employed in the development of computer
instruments for live electroacoustic music, for sound processing
tutorial materials and in general music applications. Further work
will possibly involve also the addition of different types of output
(plugins/components), as well as preview capabilities, whereby the
sound processing operations can be tested prior to compilation.
This would involve the design of a light-weight processing engine,
based on the processing thread management services provided by
the SndObj library. It is envisaged that, with the addition of these
features, the system will become a comprehensive tool for audio
application development. The beta-versions of the application,
including source code and examples will soon be available on-line
at the NUIM Music Technology Laboratory site:
http://www.may.ie/academic/music/musictec.

9. ACKNOWLEDGEMENTS

The research project that led to the development of AIDE was
carried out in the La Villa Media Institute, Grenoble, France, un-
der the auspices of the French Ministry of Education. The authors
would like to thank the Institute, its staff, and its Director, Bernard
Cornu, for their support and encouragement.

10. REFERENCES

[1] Puckette, M., “Pure Data,” in Proc. International Computer
Music Conference, San Francisco, pp. 269–272, 1996.

[2] Puckette, M., “Max at Seventeen,” Computer Music Journal
26 (4), MIT Press, Cambridge, Mass., pp. 31–43, 2002.

[3] Grill, Thomas. “Flext, C++ layer for MaxMSP and pd exter-
nals.” http://www.kapazitaeten.net/Pd/ext/f
lext

[4] Borland Software Corporation. “Kilyx: Rapid e-business
Development for Linux.” http://www.borland.com/
kylix/index.html

[5] Wampler, B. “V - A Freeware Portable C++ GUI Framework
for Windows, X, and OS/2.” http://www.objectCenT
ral.com

[6] Lazzarini, V, “The Sound Object Library,” Organised Sound
5 (1), Cambridge: Cambridge Univ. Press., pp. 35–49, 2000.

[7] A. Chaudhary, A. Freed, and M. Wright, “An Open Architec-
ture for Real-Time Music Software,” Proceedings of Interna-
tional Computer Music Conference, Berlin, Germany, 2000.

[8] Douglas Keislar (Ed.). “Products of Interest,” Computer Mu-
sic Journal 28 (3), Cambridge Mass, 2003, pp. 114–115.

 DAFX-4

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —56 56

http://www.may.ie/academic/music/musictec
http://www.kapazitaeten.net/Pd/ext/flext
http://www.kapazitaeten.net/Pd/ext/flext
http://www.borland.com/kylix/index.html
http://www.borland.com/kylix/index.html
http://www.objectCenTral.com
http://www.objectCenTral.com

	P_053.pdf
	AIDE, A NEW DIGITAL AUDIO EFFECTS DEVELOPMENT ENVIRONMENT
	INTRODUCTION
	SYSTEM FEATURES
	TECHNICAL ASPECTS
	The V library
	The SndObj library

	LEVELS OF INTERACTION
	PROGRAM LAYOUT
	IMPLEMENTING A SIMPLE APPLICATION
	AIDE IN THE CONTEXT OF CURRENT AUDIO PROCESSING SYSTEMS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

	Lazzarini
	Walsh

