
Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

ADAM - A 64 CHANNEL GENERAL PURPOSE REALTIME AUDIO SIGNAL PROCESSOR

Dr. Robert Trausmuth, Michael Kollegger

IT Department
University of Applied Science Wiener Neustadt, Austria

geo@fhwn.ac.at

ABSTRACT

In this paper we introduce a 64 channel audio processing unit made
in our department. The audio processor uses a 16 bit control unit
(Infineon XC 167) with ethernet interface running a realtime oper-
ating system and two Analog Devices ADSP-TS101S high perfor-
mance tigerSHARC DSPs for audio stream processing. The first
project implemented on this equipment is a 64 channel in, 32 chan-
nel out audio mixer with a sampling frequency of 48 kHz (leaving
another 32 channels for effect feedback loops) or 96 kHz, alterna-
tively. The audio processor is fully remote controllable via TCP/IP.

1. INTRODUCTION

Teaching system programming is done best with a real world appli-
cation. A sound system produces huge amounts of realtime data
and the results can be heard immediately. So we started the 64
channel audio mixer 2 years ago from scratch. Every piece of
hardware (except for the processor boards) was done in our labs.
Protocols and system architectures had to be designed to meet the
requirement of creating a fully remotely controllable audio mixer.
The control is done via standard TCP/IP network, and the control
console can either be a standard-mixer like console with faders and
switches or a simple software application. Using a wireless LAN
access point even gives the possibility of using handheld devices
for stage personnel, allowing to adjust monitor channel settings di-
rectly at those devices with no need to contact the monitor sound
engineer via walkie-talkie.

The mixer itself was built on a very general concept, leaving us
the possibility of driving up to 256 output channels. For financial
reasons we decided to implement only 32 output channels and use
another 32 as feedback loops for effect calculations running on the
second DSP.

Using ADAM means finally getting rid of multicore cables,
since no audio data needs to leave the stage, although in the first
implementation there is still the need of one audio line for the talk-
back monitor and one for the headset.

2. SYSTEM DESCRIPTION

The central player is a XILINX Spartan IIe 300 FPGA which han-
dles all the data traffic and synchronizes the system components.
It works with two different clock speeds to meet the needs of the
CODECs and the DSP data ports. Communication with the XC
167 is done via dual port RAM to meet the different update speeds
of slow control data and to avoid a third clock domain in the FPGA.
Audio data is sent to and received from the CODECs in 32 bit
words (24 bits significance) per channel at 48 kHz sampling rate.

Figure 1:Audio processor block diagram.

The total amount of audio data handled by the FPGA is roughly 10
MB per second.

2.1. Data Flow Conceps

ADAM is contained in a 19 inch standard stage box. Communi-
cation with the outer world is done by Ethernet and TCP/IP proto-
cols. Channel parameters like filter settings and fader controls are
sent via TCP connection. VU meter data is provided by the stage-
box via UDP broadcast telegrams. After implementing a realtime
ethernet layer there will be 2 - 8 channels of realtime audio data
for transmitting headset and talkback signals to the remote control.
Another 8 channels will be available for transmitting output sig-
nals via standard WLAN equipment to distributed active speaker
stations.

The first prototype also contains a touch panel directly on the
stage box front side to check the function of the XC 167 module
and to execute a variety of testing routines directly on the stage
box.

2.2. Slow Control

The XC 167 handles all the slow control calculations. It is respon-
sible for keeping up to 16 virtual audio mixer setups. Each setup
can control 3 stereo main mix outputs with different delay times,
4 mono monitor channels and 8 stereo subgroups, which gives a
total of 26 output channels. Of course not all of the channels have
to be mapped to a real output channel.

Every time a parameter changes, the mixer matrix is recalcu-
lated and the new values are stored in the dual port RAM. The com-
plete set of parameters is transferred to the DSP every 50 ms. At

DAFX-1

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —

04DAFx

57 57

mailto:it-geo@fhwn.ac.at

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

Figure 2:The symbolic audio data path.

the same time the DSP reports the last peak values to the slow con-
trol entity, which in turn broadcasts the signal values to all the re-
mote controls. As shown inFig. 2, audio data is first passed through
the six band equalizer. The final mixing parameters are calculated
depending on the selected signal routing. After the main channel
fader the signal can be routed via one or more subgroups or sent di-
rectly to the master output. Each subgroup can be mapped to direct
outputs (DACs) or to the master output. Four distinct AUX chan-
nels per setup can be routed pre or post the channel fader. The VU
meter calculation is done directly after the ADC to check the input
signal strength or directly after the mixer matrix, where the actual
signal strength is available (per channel or for the subgroup/master
sums).

Since only one DSP is working with the mixing parameters,
the second DSP can be used for side-calculations like audio ef-
fects. A special parameter set gives the opportunity to set up 32
different audio effect chains which can be calculated in real time.
This section of the audio mixer is currently under development.

The XILINX FPGA uses a 16 bit wide dual port RAM for
communication with the XC 167. The DSP board is connected via
one special synchronous 8 bit data port of the TS 101.

2.3. Audio Stream

Analog audio signals are sampled by high end 24 bit AD 1854 and
AD 1871 CODECs. The regular sampling rate is 48 kHz, but this
can be changed to 96 kHz if both DSPs are used for audio mixing
calculation. The XILINX FPGA generates the sampling clock sig-
nal and synchronizes all other components. Data exchange with
the DSP board is done via another of the 8 bit synchronous data
ports of the TS 101 at 62 MHz clock speed. On the DSP side
the data is handled by DMA transfers on the chip internal 128 bit
wide data bus. This leaves nearly all the CPU time for the realtime
calculations.

Sampling and transferring the data happens during one clock
cycle. The second clock cycle is used for calculations. The third
cycle has been inserted as idle cycle and will be used for audio
effect calculations later on. During the first half of the fourth clock
cycle, data is transferred back to the FPGA and another set of data
is fetched into the DSP for calculation. The second half of this
clock cycle is used to write the output data back to the CODECs.

Figure 3:ADSP-TS101S block diagram.

Two different memory segments are used to implement a working
pipeline with a total of four steps. This gives a total of 83µs
response time per sample.

The audio mixer itself implements a 6 band fully parametrized
equalizer for each input channel, followed by the 96 in / 64 out
mixing matrix. Audio data is converted to floating point format
prior to entering the input filter and reconverted to 24 bit integer
after all calculations are finished. All calculations in the DSPs are
done with floating point numbers.

Data for audio effect calculation is transferred via DMA to the
second DSP. To grant more time for the effect calculations, the
designated effect loop channels will be dealt with at the beginning
of the calculation stage and transferred to the second DSP while
the calculation on the “real” audio channels is done.

2.3.1. 6 Band Equalizer

Each input channel has its own 6 band equalizer with independent
parameters (shelving and peak filters, [1]). The settings for each
filter (cut-off frequencyfc, gainG and factorQ = fb/fc) are con-
verted to corresponding parameters for calculation by slow control
and sent to the DSP. The DSP code has been optimized for the TS
101 processor architecture, fully utilizing the internal 128 bit data
busses and the two independent computational units. Calculations
are done in IEEE floating point format with single instruction mul-
tiple data operations. This special mode is used for calculating 4
channels at the same time. The optimization result is documented
in [3]. Starting with a textbook application using roughly 62µs,
the optimization of the code leads to a final execution time of 3,22
µs for all 64 channels. Since the equalizer is realized as six stage
second order IIR filter, careful simulations have been done on the
parameter ranges for the filter coefficients. In his diploma thesis
Franz Siegmeth has also proven the validity and possible imple-
mentation of these filter banks.

2.3.2. Mixer Matrix

The mixer matrix itself is implemented using an adapted FIR fil-
ter algorithm. The coefficients are calculated by slow control and

DAFX-2

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —58 58

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

actualized every 50 ms. The slow control microprocessor uses
a three stage multiplication scheme to get the right values: first
there are the per channel faders. Channels can be combined into
subgroups (8 groups stereo). Subgroups can be configured as real
output channels or again mixed to the main output. In parallel, ev-
ery channel can be a part of the main output without belonging to
a subgroup.

The matrix calculation starts with the 32 effect channels, which
are subject to DMA transfer to the second DSP right after the cal-
culation has finished. The calculation of the 32 output channels
follows immediately.

For the main signal output channels (max. 3 pairs) there is a
special feature in the output chain. Each main signal pair has its
own volume control and delay line. The main signal can be de-
layed for up to 500 ms to compensate for sound wave propagation
in a distributed speaker environment.

2.3.3. VU Meter

After the matrix calculation there is another series of calculation
which gives the VU meter data sum for each channel. This sum is
sent to all mixer terminals every 50 ms via UDP broadcast. The
parameters for this calculation can be updated every 50 ms. This
feature can be used to display the de facto contribtion of each chan-
nel to the main signal, in which case the calculation parameters
are the ones used in the matrix mixer section for the main output.
When adjusting the input gain, the factors are changed to the chan-
nel fader coefficients. If the fader is set to 0 dB the input gain can
be adjusted using the gain control.

For providing the standard VU meter display the 32 output
channels are monitored, too, but without any calculation parame-
ter. Therefore the real signal strength can also be drawn from the
VU meter broadcase package.

2.3.4. Audio Recording

Current development deals with the implementation of an IDE in-
terface on the FPGA. Using ATA-2 (EIDE, 16 MBps) or even
ATA-3 (Ultra ATA, 33 MBps) standard, the amount of realtime
data should be no problem even if the recording is done uncom-
pressed. Once this interface is included in the audio data stream,
a control instance can use it to record the 64 channels of live data
on hard disc. The FPGA can be used as source control and play
back the recorded data to the DSP, making no difference to the live
performance. Using this approach gives the possibility to record a
live concert and use the raw sound data later in a studio the remix
the recorded tracks for studio production.

2.4. Hardware Setup

The audio frontend is organized in 8 input / 4 output channels per
unit. The audio signal enters a pre-ADC section where phantom
power can be applied if necessary. Mic and Line signals can be
sampled because prior to the ADC there is an analog gain con-
troller (digitally controlled via a feedback DAC). The ADCs are
chained together, so the ADC clock of 12,288 MHz gets 8 x 32
bits out of the chain per sampling interval. Data is left justified,
so there is time enough after sampling the last channel to transfer
the data to the DSP. Data transfer starts in the middle of the sam-
pling clock cycle. This point is used for synchronization, since the
DSP initializes its DMA channel after finishing the backtransfer of
the output data and remains idle until new data is available. The

Figure 4:The live performance mixing console.

possible data transfer rate to the DSP in this setup is 62 MBit x 8
per second, the ADC data rate is 12,288 MBit x 6 (one byte out
of 4 is always 0), which gives enough safety margin for the DMA
transfer.

DACs cannot be chained together, so each of them gets only
two channel’s data. All DACs are set with the same clock signal,
so each output channel has the new data available at the same time
(which is trimmed to the end of the sampling interval). Following
the DAC, there is a symmetric signal distributor, so the audio sig-
nal can be used either in a symmetric or asymmetric way, in which
case the second line is shortcut to ground. The chip will rise the
asymmetric signal level accordingly.

2.5. User Interface

We have two different approaches to the user interface. The first
goal was to keep the traditional mixing console feeling for live per-
formances. Thus we built a microcontroller based control system
which looks familiar to the sound engineer [6]. On the other hand,
we developed a computer application which can be used in an au-
dio studio and provides full access to all the ADAM features. The
application can be used during live performances to restore certain
scene settings like fader setups or even filter and level setups. All
those settings can be restored selectively so that the interference
with live settings can be minimized. Since each fader module is an
independent system controlled by the mixing console master (an-
other XC 167), channels can be assigned to each fader as needed.
The mixing console itself can store up to four different fader lay-
outs. Using the software application, this number can be extended
as needed.

Both application and hardware user interface communicate with
the stage box over TCP/IP connections. A special protocol has
been developed to meet the needs for exchanging setup and slow
control data. The protocol has been prepared to include further ex-
tensions like transferring live audio data using a realtime ethernet
protocol extension. The mixing console has a VU meter bridge to
show all 64 input channels with the corresponding fader settings
for the selected mixing console setup. The fader and control dis-
plays are updated by the stagebox so that more than one mixing
console can be used for the same output setup. Faders and controls
can be moved once their value does not longer correspond to the

DAFX-3

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —59 59

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

actual stage box setting, and they have to “hook into” the actual
value again before their movement will be sent to the stage box.
This way we can avoid jumps in volume or filter settings even if
more than one mixing console (or restored settings from the soft-
ware application) have been applied to the stage box.

3. RESULTS

All parts of the system have been evaluated with realtime mea-
surements. One sampling slot has about 21µs. The FPGA uses
the full slot time for sampling 8 x 8 channels of ADCs. During the
last 650 ns of the time slot, there is time enough to transfer the last
8 channels to the DSP, so the calculation of the mixing stage starts
nearly synchronously with the next sampling slot.

The mixing stage calculation uses 3,2µs for the input ampli-
fier (including the int to float conversion), leaving 16µs for the
matrix mixer. The calculation of the VU meter data uses another 1
µs, leaving nearly 1µs as safety margin to cope with DMA trans-
fer delays.

The second DSP is not used for the basic audio mixer setup
and will be included in ongoing work to do some effect calcula-
tions on 32 extra channels.

4. CONCLUSIONS

ADAM is a powerful audio processing setup which can be adapted
to other tasks as well. There are many ideas of further improve-
ments, like 64 channel hard disc recording or realtime audio data
transfer using the standard ethernet link to the remote control. The
setup can also be altered to support less input channels but up to
256 output channels, which would be a great setup for wave front
synthesis.

Ongoing developments are now dealing with realtime data com-
pression which can be used for the hard disc recorder. Another
project starting soon will be the development of an 8 channel au-
dio WLAN box which can support active speaker setups with one
of 8 channels coming from the ADAM mixer.

5. REFERENCES

[1] Udo Zölzer,DAFX Digital Audio Effects, Wiley & Sons, 2003,
ISBN 0-471-49078-4

[2] Udo Zölzer,Digital Audio Signal Processing, Wiley & Sons,
1999, ISBN 0-471-97226-6

[3] Franz Siegmeth,Realisierung eines digitalen Mischpultes mit
DSP, diploma thesis, 2003

[4] James Noble, Charles Weir,Small Memory Software, Pat-
terns for systems with limited memory, Addison Wesley, 2001,
ISBN 0-201-59607-5

[5] John Watkinson,The Art of Digital Audio, Focal Press, 2001,
ISBN 0-240-51587-0

[6] Michael Kollegger,Implementierung von Echtzeitapplikatio-
nen zur Kommunikation zwischen Geräten f̈ur Audioanwen-
dungen, diploma thesis, 2003

DAFX-4

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —60 60

	P_057.pdf
	ADAM - A 64 CHANNEL GENERAL PURPOSE REALTIME AUDIO SIGNAL PROCESSOR
	1 Introduction
	2 System Description
	2.1 Data Flow Conceps
	2.2 Slow Control
	2.3 Audio Stream
	2.3.1 6 Band Equalizer
	2.3.2 Mixer Matrix
	2.3.3 VU Meter
	2.3.4 Audio Recording

	2.4 Hardware Setup
	2.5 User Interface

	3 Results
	4 Conclusions
	5 References

	Trausmuth
	Kollegger

