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ABSTRACT

In this research, a method previously applied to improve a dig-
ital simulation of the avian syrinx is adapted to the geometry of the
clarinet reed. The clarinet model is studied with particular atten-
tion to the case when the reed beats again the lay of the mouth-
piece, closing off air flow to the bore once each period. In place
of the standard reed table which gives steady-state volume flow as
a function of constant pressure difference across the reed, a more
realistic dynamic volume flow model is proposed. The differential
equation governing volume flow dynamics is seen to have a singu-
larity at the point of reed closure, where both the volume flow and
reed channel area become zero. The feathered clarinet reed refers
to the method, first used in the syrinx, to smooth or feather the
volume flow cutoff in a closing valve. The feathered valve elimi-
nates the singularity and reduces artifacts in the simulated clarinet
output.

1. INTRODUCTION

Many sounds are produced by coupling the mechanical vibrations
of a source to the resonance of an acoustic tube. In the bird’s
vocal organ, the syrinx, air pressure from the lungs controls the
oscillation of a membrane (by changing the pressure across the
membrane), which creates a variable constriction through which
air flows before reaching the upper bronchus and trachea [1, 2, 3].
Similarly, blowing into the mouthpiece of a clarinet will cause the
reed to vibrate, narrowing and widening the airflow aperture to
the bore. Sound sources of this kind are referred to as pressure-
controlled valves and they have been simulated in various ways
to create musical synthesis models of woodwind and brass instru-
ments as well as animal vocal systems.

When airflow sets a valve into motion, it causes a change in
the height of the valve channel and, if the motion is extreme, it
can potentially close off the channel completely, creating a sud-
den termination in airflow. Examples of this occur when a clarinet
reed beats against the lay of the mouthpiece or when the syrinx
membrane touches the opposite wall of the upper bronchus. Such
abrupt changes are difficult to synthesize because of undesirable
time quantization effects that result when using relatively low au-
dio sampling rates.

As described in [3] and [4], if the vibrating membrane in the
syrinx were to reach to opposite wall of the bronchus, the mem-
brane’s flexible biological material would likely cause it to touch
gradually, starting with the center bulge and the remainder settling
gently on either side before finally closing off the channel. That is,
as illustrated in Figure 1, instead of the channel being sealed the
moment the membrane touches the opposite wall, it is more likely

that flow will be able to seep through side corners and any other
potential openings before the channel is closed completely.

Figure 1: A hypothetical view of a flexible biological membrane
beating on the cartilage of the opposite valve wall. As the valve
closes, it likely starts with the center bulge and the remainder gen-
tly settles on either side before the channel is closed off completely.

In previous research [3], the behaviour of the differential equa-
tion governing volume flow through a syrinx valve was re-examined,
paying particular attention to this troublesome transition between
an open and closed valve. A closed-form solution for the time evo-
lution of volume flow was given and used to derive an update for
the volume flow which, in effect, sampled the continuous output of
the differential equation governing volume flow. The result was a
sort of leaky valve, with the leakage decreasing as the volume flow
decreases, which smoothed or feathered the transition between the
two states, significantly reducing the aliasing associated with the
closing of the valve.

In this paper, also described in [4], improvements made to the
syrinx valve [3] are applied to the clarinet reed, effectively feather-
ing the beating clarinet reed. Though the cane reed is much more
rigid than the bird’s syrinx membrane, its simulation can benefit
from the same principles of feathering—particularly when meet-
ing the demands of relatively low audio sampling rates.

We begin by describing the current status of the clarinet sim-
ulation which employ a so-called reed table to relate the pressure
difference across the valve to the volume flow through the valve
channel. This quasi-static model ignores the dynamic relationship
between the pressure difference and volume flow, yielding a set
volume flow for each value of input pressure difference. We ad-
dress this shortcoming by then introducing a dynamic model for
airflow through the reed channel, and replace the reed table with
differential equations governing displacement of the reed and the
resulting volume flow through the valve channel. With the dy-
namic model in place, the feathered valve can then be incorpo-
rated, taking into account the geometry of the clarinet valve.

2. THE QUASI-STATIC CLARINET MODEL

Most current models of the clarinet reed are implemented using
a lookup table which matches values for flow with the pressure
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Figure 2: A simplified diagram of a clarinet reed. The variable p,
represents the mouth pressure, p; is the pressure in the bore, U is
the volume flow, z is the displacement of the reed, y indicates the
position along the reed and X is the length of the unclamped end
of the reed.

drop across the reed valve. This is known as a quasi-static model
since the value of flow, U, is established by using a lookup table
(see Figure 3) relating pressure difference and volume flow under
constant-flow conditions [5]. One of the benefits of the reed ta-
ble approach is that it produces very satisfying results with low
computational cost. One difficulty however, occurs when the reed
beats against the lay of the mouthpiece: since the point of colli-
sions between the reed and the lay is often too abrupt, the sound
produced can be metallic and artificial. Furthermore, in the case
that the reed beats against the lay, terminating air flow every cycle,
it is clear that a static model is not entirely accurate [6].

An excellent description of the quasi-static clarinet reed model
was published by Dalmont, Gilbert and Ollivier in [7], by Fletcher
and Rossing in [8], and by Hirschberg et al. in [9], and is summa-
rized here to give context to the discussion that follows.

The steady flow through a valve is determined based on an
input (or blowing) pressure p,, and a resulting output (or mouth-
piece) pressure py (see Figure 2). The difference between these
two pressures is denoted Ap, and is related to volume flow via the
stationary Bernoulli equation [8],

U=A H, (1)
P
where A is the cross section area of the air column (and the jet)
and p is the density of air. The steady state reed position, and
therefore the jet cross-sectional area, is a function of the pressure
difference alone, and (1) can be used to generate the reed table
shown in Figure 3.

The geometry of the clarinet valve is given by the width of the
reed channel w and the height of the opening H (or alternatively,
the distance between the reed and the lay). The area of the valve
opening A is therefore given by

A=wH. )
The motion of the reed follows the familiar equation
d’z de = A
ar + Vit + wr (z — x0) g 3

where v is a damping coefficient, m is the effective mass of the
reed and w, is the reed’s resonant frequency. Since w,. is related to
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Figure 3: The reed table provides a value for volume flow U cor-
responding to a change in pressure across the reed. The region of
oscillation is between the two dotted lines.

the stiffness and the mass by

K
wr =4/ —, 4
m
where & is a constant describing the reed stiffness (in Pa/m), equa-
tion (3) can be rewritten for convenience as

&’z

dx
Hgm THI g Hhe= Ap, 5)

where g is mass per meter square and g is a viscous-damping coef-
ficient (in s~1) [7]. In the quasi-static model, the time derivatives
in (5) are set to zero, rendering the mechanical reed effectively
massless, with the stiffness being the only reactive element. The
equation for the quasi-static reed therefore becomes

A
x==L
K

(6)

If Hy is the equilibrium opening, that is, the opening of the valve
in the absence of flow, the displacement of the reed determines the
valve opening, H, by

H=Hy—=x. Q)

From (6) and (7), the steady-state pressure difference correspond-
ing to a just closed reed is determined by setting the opening to
zero, that is setting the displacement to its maximum, z = Hy.
Stated mathematically,

Ho—H = r=— (8)

Apmaz = kHo, when H =0, 9)

where Apy,qz represents the maximum pressure difference, below
which the valve is open. By applying (7) and (8), the area of the
reed opening becomes

Ap

A=w (Ho - 7) (10)
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Quantity Symbol  Value Range
Equilibrium reed opening Hy 0.04 —0.1cm
Reed stiffness K 800 — 1300 hPa/cm
Effective width of jet aw 1.2-1.8cm
Maximum volume flow Umez 200 — 600 cm?®/s
Flow on the reed v 0.9cm

Damping coefficients y 1000/s

Density of air p 0.0000012 kg/cm?
Frequency of reed f 1045 Hz

Reed length A 3.4cm

Table 1: Example value ranges for variables of the quasi-static
clarinet model (some values are taken from [7]).

which can be further reduced to

A =wH, (1 __Aar ) (11)

Apmam
by applying (9). The stationary volume flow from (1) therefore

becomes
Uzwo(l— Ap ),/@. (12)
Apmaac 14

Note that a pressure difference of Apmaz/3 gives the maximum
value for steady state flow Upaz,

Unnas = ngo /mﬂ_ (13)
3 3p

It is just above this value of differential pressure that the reed can
oscillate in response to an applied pressure [7].

If the pressure difference is greater than P,,q, it is assumed
that the reed is closed, and there is no flow through the valve chan-
nel (see Figure 3) and U is set to zero. This handling of the flow
between open and closed valves can be improved by feathering the
collision between the open and closed states.

3. REPLACING THE REED TABLE WITH THE
DYNAMIC MODEL

Since volume flow doesn’t instantly respond to changes in differ-
ential pressure, a dynamic model is needed. Before applying the
feathered beating reed, the equations for flow and displacement in
the quasi-static model must first be replaced with their correspond-
ing differential equations, incorporating the appropriate valve ge-
ometry for the clarinet.

3.1. Volume Flow

The strategy for determining the volume flow derivative in the clar-
inet reed model is similar to that for the syrinx discussed in [3]. In
the clarinet reed, only a short section of length v along the y axis
(see Figure 2) is in contact with the flow before the flow separates
from the surface of the reed and forms a jet. The force on a thin
slice dy along this part of the reed is given by

F = A(y; z) Ap(y). (14)

where A(y; ) is the area of the valve channel at this position and
Ap(y) is the pressure drop across this section of the reed.
This force is applied to a mass of

m = pA(y; )dy, (15)

where p is the air density and A(y; z)dy is the volume to which
the force is applied. Newton’s second law, F' = ma, can then be
applied to (14) and (15) to obtain

A(y; z)Ap(y) = pA(y;x)dyZ—:, (16)

where acceleration is given by the time derivative of the particle
velocity, dv/dt, assumed constant over this section dy of the reed.

Since volume flow is equal to particle velocity scaled by area,
the expression for differential pressure as a function of position y
along the reed channel is given by

U
Ap(y) = p—-dy/Aly; ). an
Equation (17) is then integrated over the length of the channel to
obtain _
auv [v="
p(0) —p(v) = P dy/A(y; ), (18)
y=0

where y = 0 is the channel entrance and y = v is the point at
which the flow separates from the surface of the reed and forms a
jet.

The pressure at the channel entrance is obtained using Bernoulli’s

equation given by
p(y) =po + g [v6 —v()7], (19)

where v is the particle velocity. Again substituting volume flow
divided by area for particle velocity, the pressure at the channel

entrance p(0) is given by
2
_p(_U
: (a6m7) 0

where p,,, is the mouth pressure. Since the pressure at the point of
flow separation p(v) is equal to the bore pressure p;, equation (18)
becomes

p(0) = pm

p( U \°_ du [v= _
pm—pb—g(A(0;$)> —pﬁ/ dy/A(y;z).  (21)

y=0
The differential equation governing volume flow is then given by
au A(z) U?
= = (pm — - 22
g = m = p) v WA (22)

where the flow is assumed to be in contact with the reed for a
distance of v, at an assumed constant area equal to

A(z) = A(0;z) = w(Ho — ), (23)

where w is the width of the reed (or jet) and Hy is the opening of
the valve channel in the absence of flow.

Note that in steady state, the dynamic equation for air flow (22)
reduces to (1). Setting the time derivative dU/dt to zero, implies

A(x)  U?
bm =20)=, " = 2ty =
Solving for the steady state flow, we get
2
U = A(z) [;(pm —pb)] . (25)
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3.2. Reed Displacement

The equation for displacement is determined by considering the
force acting on the clarinet reed. If the reed is rigid and hinged
with spring constant & at a point far from the mouth side of the lip,
let X be the length of the reed, roughly along the y axis, which sees
the mouth pressure pyy, .

There is a force closing the reed which is given by

Fp, = wApm, (26)

and in contrast, the force on the bore side of the reed away from
the jet, given by
Fy = —w(\ —v)py, 27)

where v is defined as before, forces the reed open. The force ap-
plied by the flow (which also forces the reed open) is found by
integrating the pressure along the flow and is given by

oo (-t (i) ) o0

The overall force acting of the reed is obtained by summing (26),
(27) and (28) and is given by

F = w(A~ v)(pn —ps) — w0’ (%) . @)

Once the force is known, the displacement of the reed is obtained
using the familiar differential equation (comparable to 3)

d’z dx k F
— 4+ 27—+ —(x — = — 30
g7 + 27— + —(z — zo) ; (30)

where F' is defined by (29).

3.3. Mode Aliasing

In simulating the valve, care must be taken in computing the vol-
ume flow between open and closed states. This is made more dif-
ficult by the singularity in the equation for the volume flow deriva-
tive (22) as the valve opening approaches zero.

Frequently this type of situation is handled by solving the
equation only when it is stable,and substituting a fixed value at
the point of singularity. It is well known, however, that switching
based on a level threshold causes aliasing in discrete time signals.
In this case, aliasing is caused by setting the volume flow U (¢) to
zero when the valve closes.

As illustrated by the magnified plot of volume flow in Figure 4,
U(t) (the dashed line) is forced to zero on a sample boundary.
Regardless of the value of U(t) predicted by updating (22), air
volume flow is still being set to zero when the valve is closed.

Theoretically, this approach seems correct, since no air should
flow through a closed valve. Truncating the volume flow on sam-
ple boundaries, however, is problematic (both in the static and dy-
namic model). Depending on the period of the signal, the clipping
may not happen at the correct phase and aliased components will
be generated. This is illustrated in Figure 5 which shows a sinusoid
and its truncated version along with their respective power spectra.
Aliased components appear as peaks at nonharmonic frequencies.

Magnified Volume Flow (U)
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Figure 4: A magnified view of volume flow showing truncation on
a sample boundary (dashed line) and a more desirable gradual
slope in the flow update (solid line) when the valve closes.

4. IMPROVING THE DYNAMIC MODEL BY
FEATHERING THE BEATING REED

The difficulty with discretizing (22) in the presence of small valve
areas is illustrated in Figure 6. Since the slope of U(t) is decreas-
ing with decreasing volume flow (this can be seen in Figure 4),
predictions of the slope based on (22) tend to overshoot zero vol-
ume flow [3]. It would therefore be preferable to use a small area
solution of dU (¢) /dt to update the volume flow when the valve is
closing. In [3] the small area solution to the volume flow update
is solved for the syrinx geometry; here it is solved for the clarinet
reed.

When the valve channel area A(t) is sufficiently small, the
first term of (22) can be ignored and the differential equation for
U(t) is approximated by

auv U’

@A Al <1, (31)

which is in the form of a so-called Bernoulli differential equation
[10]. Though this differential equation is nonlinear in U(t), it may
be converted to a linear form by the substitution

Wt) = —. (32)

Writing (31) in terms of W (¢) gives the following new differential
equation for U (t)

dau 1 dw

W (33)
where
dw 1
dt T 2wA(t)’ (34)
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Figure 5: Figure (a) shows a full and truncated version of a sine
wave. Figure (b) shows the desired power spectrum of the trun-
cated waveform, and Figure (c) shows the artifacts in the spectrum
if the truncation is done too abruptly for the sampling rate used.
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Figure 6: In the case of a large sampling period T', updating the
volume flow using (22) can cause U to overshoot. The dotted line
represents the actual value of U.

This equation is easily integrated to solve for volume flow:

t o dr
W) = / 5 + O (35)
Uty = —— (36)

todr
/ A T°
where the constant of integration C' may be set given knowledge
of U(t) at a particular time ¢, and

U(to)
todr
to WA(T)

Ut) =

= (37)
1+ Ul(to)

Note that when the area A(t) is small, the integral in the de-
nominator of (37) is large, and any initial positive value of volume
flow is quickly reduced to zero without crossing zero, as would be

expected for a closing valve. This observation provides justifica-
tion for having zero volume flow when the valve area is zero. The
small valve area solution to (37) suggests a possible alternative to
truncating U when the valve is closed (which would be otherwise
necessary given the singularity in (22)). If the valve were slightly
leaky, e.g.,

A(t) = A(t) + A, (38)

for a small leakage area A, the singularity at zero area would be
avoided, and the volume flow behaviour would be relatively un-
changed. However, it is not sufficient to use a leaky valve in place
of one that is truncated because though this may reduce the slope of
U(¢) it also introduces the undesirable behaviour of volume flow
oscillating about zero.

In order to see how this solution should be incorporated into
the volume flow update, consider the value of U(¢) at time ¢o + T,
where T is the sampling period. Given the small area solution for
volume flow (37), but in a more convenient form

v0= (i + [Laae®]

the valve channel area can be substituted by A(#o), since it is as-
sumed to be constant during the time interval [¢o, to + T"]. Substi-
tuting into (39) we obtain

00 =g + Ayt -] - @

and the volume flow at ¢ + T is

Ulto +T) = Ulto) [1 + 2:[/]14(113((2))T] . (41)

Using the first order backwards difference approximation, the new
differential equation for U(t) becomes

dU Ut +T) — Ulto)

i T 42
_ Ul(to)® Ulto) ]~

ToA(to) [1 wAng | - @

Comparing the form of (43) to (31) note that the Bernoulli terms
are identical, save a factor of [1 + U (to)/2vA(te)T]™" . This fac-
tor has the effect of reducing the derivative in the presence of small
channel areas or large sample periods. Rewriting (43) gives

au U(to)®
@ T wAlte) + UGt (44)

Note that in this form the Bernoulli term is similar to that of (31),
with a valve having increased area. In other words, it has become a
leaky valve whose leakage increases with increasing volume flow.
The final step is to replace the second term in (22) with this new
Bernoulli term (44) to obtain

Ul(to)?

dU _ A(to)
(P = P2) = ~ 5oy + OGIT

— = 4
dt vp (45)

which is the final feathered differential equation for volume flow.
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5. CONCLUSIONS

The differential equation (22) describing the behaviour of volume
flow (22) can be numerically unstable because of the singularity
in the Bernoulli term when the valve closes. Since abruptly set-
ting the flow to zero causes aliasing, the problem is addressed by
incorporating the new small-area solution for U(t). The volume
flow is now updated in a way which produces smoother transitions
between open and close valves.

By feathering the collisions of the beating reed in the clarinet
simulation, the sound is greatly improved. This is illustrated in the
output spectrum of the static model (Figure 8) and that of the feath-
ered dynamic model (Figure 7) where the aliasing is significantly
reduced.

Output of Quasi - Static Flow Clarinet Model
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Figure 7: Output of the quasi-static clarinet model using a sam-
pling rate of 44.1 kHz. Control parameter values were mouth pres-
sure, 70 - 10 hPa, and frequency, 300-600 Hz. Lines through the
spectrum illustrate undesirable artifacts.
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