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ABSTRACT

The Functional Transformation Method (FTM) is an established
method for sound synthesis by physical modeling, which has pro-
ven its feasibility so far by the application to strings and mem-
branes. Based on integral transformations, it provides a discrete
solution for continuous physical problems given in form of initial-
boundary-value problems. This paper extends the range of applica-
tions of the FTM to brass instruments. A full continuous physical
model of the instrument, consisting of an air column, a mouth-
piece and the player’s lips is introduced and solved in the discrete
domain. It is shown, that the FTM is a suitable method also for
sound synthesis of brass instruments.

1. INTRODUCTION

In the field of sound synthesis physical modeling has gained much
interest in the last decade. The FTM steps in, where other physical
based sound synthesis techniques loose direct physical relations
or require high computational cost. The FTM starts with a de-
scription of a musical instrument in form of a partial differential
equation (PDE) with initial conditions (IC) and boundary condi-
tions (BC). By performing integral transformations on both time
and space variable, a multi-dimensional transfer-function-model
(MD TFM) is achieved, that allows the real time solution of the
entire system. The FTM provides full access to all physical pa-
rameters of the underlying model. For that reason interaction of
control parameters with the model is close to the control mecha-
nisms of real musical instruments, which allows a intuitive way of
interaction with the model. Furthermore fully accessible physical
models can help to understand the mechanism of the sound pro-
duction and therefore the influence and optimization of physical
parameters. The general procedures of the FTM are depicted in
Figure 1. Detailed information is available in [1].
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Figure 1:General procedures of the FTM.

In this paper a physical model of a brass instrument is built of
several separate models: the air column, the mouthpiece and the
player’s lips. All models are chosen to be as complex as necessary
and as simple as possible in order to keep the basic physical prop-

erties and to be able to show the feasibility of the FTM synthesis
for brass instruments in general.

For the air column an extended version of Webster’s horn equa-
tion is the underlying PDE of the model. The mouthpiece model is
assumed to be a lumped model, where advantage is taken of anal-
ogous acoustic network circuits for the description of acoustical
problems. This allows a description of the mouthpiece with a set
of coupled ordinary differential equations (ODEs). Furthermore
a lip model in form of a pressure controlled valve is used, that is
coupled to the mouthpiece ODEs in a nonlinear way.

The paper is organized as follows. All parts of the entire model
are treated in separate chapters. First they are introduced in the
continuous form and then the way for obtaining a discrete model
is shown respectively. Section 2 treats the air column and the used
FTM procedures, Section 3 the mouthpiece model and Section 4 the
lip model. Some details on the connection of the discrete models
are given in Section 5. Section 6 provides results of the MATLAB
implementation. Section 7 concludes this paper and shows possi-
bilities of improvement of the physical model.

2. AIR COLUMN

Brass instruments consist roughly of long cylindrical pipes, mostly
curved, that flare to a horn at one end. The sound waves inside
propagate lossy through the instrument and are both, radiated and
reflected at the horn. Due to viscous and thermal effects at the
walls of the instrument and high pressure amplitudes the signifi-
cant loss mechanisms are quite complex. Details are available in
[2]. However in that first approach towards brass instruments the
model is kept quite simple.

2.1. Continuous Model

Starting point of the air column model is a mathematical descrip-
tion of the brass instrument as an initial-boundary-value problem.
Therefore, corresponding to [1], the following description with a
PDE in vector notation with initial valuesy

i
and boundary values

yb is used.

[L + CDt]y(x, t) = fe(x, t), x ∈ V

f
H

b y(x, t) = yb(x, t), x ∈ ∂V (1)

f
H

i y(x, t)|t=0 = yi(x), x ∈ V

The vector of unknown quantities isy(x, t). The vectorfe(x, t)
indicates the excitation functions. The variablet is the time. x
denotes the vector of spatial coordinates defined in the spatial vol-
umeV , which is bounded by∂V . The operatorDt denotes the 1st
order temporal derivative.fi andfb are vector operators specifying
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initial and boundary values.(·)H is the hermitian operation andL
is a matrix operator of the form

L = A + B∇ . (2)

At first the model is simplified to one spatial dimension. In conse-
quence the nabla operator∇ simplifies to the 1st order derivative
with respect to the spatial coordinatex. The model divides the
spatial volumeV of the brass instrument model into a cylindrical
partV1 and an horn shaped partV2, which are both assumed to be
round in diameter.

xb1xb2 xs

V1V2

x

r

0

Figure 2:Profile of a brass instrument. Details of the shape vary
with the instrument. At the coordinatexb1 the air column is con-
nected to the mouthpiece.xb2 is the coordinate of the bell’s end.
The cylindrical and the horn shaped part are connected atxs .

For a concise notation the velocity potentialΦ is introduced, that
is related to the pressurep and the sound particle velocityv by

∂Φ(x, t)

∂x
= Φ

′

(x, t) = v(x, t) , (3)

∂Φ(x, t)

∂t
= Φ̇(x, t) = −

1

̺0
p(x, t) . (4)

The constant̺ 0 is the static density of air. The vectory of un-
known quantities for the initial-boundary-value problem is

y(x, t) =

(

Φ
′

(x, t)

Φ̇(x, t)

)

. (5)

It contains the flux quantity in form ofΦ′ and the potential quantity
in form of Φ̇. The standard PDE used for the air column model is
the well known horn equation of Webster. Based on known eigen-
functions for hyperbolic horns, it has been already investigated in
[3]. Here, we consider an extended version of Webster’s horn
equation with an additional termd1Φ̇, that causes a frequency-
independent damping effect in the air column model. This is a
severe simplification, as the damping in real brass instruments is
frequency-dependent. Details are available in [2]. The resulting
equation is valid for the sound particle velocity potentialΦ as well
as for the pressurep

Φ
′′

+
A′

(x)

A(x)
Φ

′

=
1

c2
Φ̈ + d1Φ̇ . (6)

The functionA(x) is the diameter of the wavefront within the in-
strument dependent on the coordinatex. A′

(x) denotes the the
1st order derivative ofA(x) with respect to the variablex. The
constantc is the speed of sound in air.

The scalar PDE of equation (6) is turned into a vector PDE,
corresponding to the notation in equation (1), with the following
matricesA andC.

A =

(

A
′(x)

A(x)
−d1

0 0

)

, C =

(

0 −
1
c2

−1 0

)

(7)

The matrixB equals the identity matrixI0. In the cylindrical part
of the instrument the radius of the instrument’s pipe is constant.
Thus we have a constant radius ofrc with

r(x) = rc,
A′

(x)

A(x)
= 0, x ∈ V1 . (8)

For the horn shaped part we assume that the shape of a brass in-
strument’s horn is close to a Bessel horn. The radius functionr of
such a horn is given with

r(x) = rhx
−ε

,
A′

(x)

A(x)
= −

2ε

x
, x ∈ V2 , (9)

whereε is the flare parameter of the horn andrh is a scaling factor.
A brass instrument’s shape is achieved by adjusting the parameters
xb1, xb2, xs, rc, rh andε properly. The excitation forces inV are
set to zero and the initial conditions are assumed to be homoge-
neous.

fe(x, t) = 0, (10)

yi(x) = 0 . (11)

The boundary conditions have to be adapted to our problem. At
the pointxb1, where the mouthpiece is connected to the air col-
umn, we assume the sound particle velocity being equal to a given
boundary excitation functionψ(t). At the boundary pointxb2 a
radiation load can model sound radiation from the instrument. To
keep the model simple, the radiation load is set to zero, which
means the pressure is zero atxb2. Thus the boundary conditions
are determined as follows:

f
H

b1y(xb1, t) = ψ(t) , (12)

f
H

b2y(xb2, t) = 0 , (13)

fb1 =

[

1

0

]

, fb2 =

[

0

1

]

. (14)

2.2. Discrete Model

A discrete solution of the continuous problem can be obtained by
performing the steps of FTM procedure as shown in Figure 1. Per-
forming the Laplace-transformation on the problem of equation (1)
leads to the following ODE with boundary conditions.

[L + sC]Y(x, s) = 0 x ∈ V (15)

f
H

b1Y(xb1, s) = Ψ(s) (16)

f
H

b2Y(xb2, s) = 0 (17)

Next step of the FTM is the Sturm-Liouville-Transformation (SLT)
that is used for the transformation of the space variable. The SLT
is an integral transformation with a kernel functioñK(x, β̃) that
has to be designed carefully in order to obtain a transfer function
model from the problem (see [1]). The transformation is defined
by

T {Y(x)} = Ȳ (β̃) =

∫

V

K̃
H

(x, β̃)CY(x)dx . (18)

Using a well designed kernel function transformation of equation
(15) yields an algebraic equation in the transformed domain that
includes the transformed boundary valuesȲb as follows:

βȲ (β̃, s) + sȲ (β̃, s) − Ȳb(β̃, s) = 0 . (19)
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In order to obtain an algebraic equation corresponding to (19) from
equation (15) a set of Sturm-Liouville eigenvalue problems has to
be solved. These problems are called the eigenvalue problem and
the adjoint eigenvalue problem. Details on this step are left out
here and can be found in [1]. Firstly the adjoint operatorL̃ is
introduced.

L̃ = A
H
− B

H
∇ (20)

Because the model divides the instrument in two parts described
with different PDEs due to the different matrixA in V1 andV2, the
eigenvalue problem and the adjoint eigenvalue problem have to be
solved in sections for the definition rangeV1 andV2 respectively.
The kernel functionsK andK̃ are then defined section-wise ( see
[4] for details). The problems are indexed withn = 1, 2.

LKn(x, β) = βCKn(x, β), x ∈ Vn (21)

f
H

bnKn(xbn, β) = 0 (22)

K1(xs, β) = K2(xs, β) (23)

L̃K̃n(x, β̃) = β̃C
H
K̃n(x, β̃), x ∈ Vn (24)

f̃
H

bnK̃n(xbn, β̃) = 0 (25)

K̃
H

1 (xs, β̃) = K̃
H

2 (xs, β̃) (26)

The adjoint boundary operatorsf̃b1 andf̃b2 are

f̃b1 =

[

0

1

]

, f̃b2 =

[

1

0

]

. (27)

For concise notation of the solution of (21) and (24) we introduce

ν = ε +
1
2
, M =

√

β2
−βd1c2

c
andM̃ =

√

β̃2
−β̃d1c2

c
. Jn andYn

denote the Bessel-Functions of ordern of 1st and 2nd kind. The
following solutions can be obtained by any symbolic mathematical
program as MAPLE, for instance. The solution of equation (21) is

K1(x, β) =

(

−
M

β
eMx M

β
e−Mx

eMx e−Mx

)

C
(1)
K

(28)

K2(x, β) = x
ν

(

jM

β
J1−ν(jMx)

jM

β
Y1−ν(jMx)

J
−ν(jMx) Y

−ν(jMx)

)

C
(2)
K

(29)

C
(1)
K

=

[

e−Mxb1

eMxb1

]

a
(1)
K

, C
(2)
K

=

[

Y
−ν(jMxb2)

−J
−ν(jMxb2)

]

a
(2)
K

(30)

with a
(1)
K

anda
(2)
K

being constants. The solution of equation (24)
is

K̃1(x, β̃) =

(

eM̃x e−M̃x

M̃

β̃
eM̃x

−
M̃

β̃
e−M̃x

)

C̃
(1)
K

(31)

K̃2(x, β̃) = x
1−ν

(

β̃

jM̃
Jν(jM̃x)

β̃

jM̃
Yν(jM̃x)

Jν−1(jM̃x) Yν−1(jM̃x)

)

C̃
(2)
K

(32)

C̃
(1)
K

=

[

e−M̃xb1

eM̃xb1

]

ã
(1)
K

, C̃
(2)
K

=

[

Yν(jM̃xb2)

−Jν(jM̃xb2)

]

ã
(2)
K

(33)

with ã
(1)
K

andã
(2)
K

being constants. Then the eigenvaluesβµ and
the adjoint eigenvalues̃βµ can be obtained from equation (23) and

(26) respectively. Inserting the kernels (28) and (29) in equation
(23) leads to the following complex equation:

j tanh
(

M(xs − xb1)
)

= (34)
(

Y
−ν(jMxb1)J1−ν(jMxs) − J

−ν(jMxb1)Y1−ν(jMxs)

)

(

Y
−ν(jMxb1)J−ν(jMxs) − J

−ν(jMxb1)Y−ν(jMxs)

) .

In order to avoid a numerical search for the eigenvalues in the
entire complex plane, we can take advantage of the frequency-
independent damping effects. It is known a priori that this kind
of damping gives the same real part for all eigenvaluesβµ. Un-

der the assumptionβµ = σ + jωµ =
d1c

2

2
+ jωµ the termM

simplifies toM = j

√

σ2+ω2
µ

c
. With this assumption equation (34)

simplifies to a real equation depending only on the variableωµ.
Solutions of this simplified equation can be found numerically in a
much easier way. The eigenvalues are related to the adjoint eigen-
values withβ∗

µ = β̃µ. The operation(·)∗ denotes the conjugate
complex of(·).

Application of the SLT provides the transformed boundary
conditionsȲb. Details on this step are available in [1].

Ȳb(β̃µ, s) = −g̃
H

b1K̃(xb1, β̃µ)Ψ(s) (35)

The operator̃gH

b1 is a vector operator of the form
[

−1 0
]

.
Reordering equation (19) and discretization by using the impulse-
invariant-transformation yields a discrete-time transfer function model
(T is the sampling interval).

Ȳ (β̃µ, z) = T
z

z − e−β̃µT
Ȳb(β̃µ, z) (36)

The boundary excitation functionψ has the quantity of a sound
particle velocity and is connected to the excitation volume flowue

atx = xb1 by ψ(t) =
ue(t)

A(xb1)
. Thus we can rewrite equation (36)

using equation (35) to

Ȳ (β̃µ, z) = Ȳ (β̃µ, z) e
−β̃µT

︸ ︷︷ ︸

ζ[µ]

z
−1 (37)

−

T

A(xb1)
g̃

H

b1K̃(xb1, β̃µ)

︸ ︷︷ ︸

ξ[µ]

Ue(z) .

The vector of unknown quantitiesy can be obtained by performing
the inverse SLT. Now it it possible to compute the pressure and the
sound particle velocity of the air column for all values ofx.

Y(x, z) = T
−1

{Ȳ (β̃µ, z)} =

∑

µ

K(x, β̃µ)

Nµ

︸ ︷︷ ︸

κ[µ,x]

Ȳ (β̃µ, z) (38)

In order to avoid aliasing the summation is limited up to the eigen-
valuesβµ that fulfill the conditionℑ{βµ} < π

T
. The norm factor

Nµ computes with

Nµ =

∫

xb1

xb2

K̃
H

(x, β̃µ)CK(x, βµ)dx . (39)
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3. MOUTHPIECE

The mouthpiece is the connection between the lips of the player
and the air column. There are brass mouthpieces in various shapes
and sizes. The details vary with the style of the instrument and the
player’s preferences, but all mouthpieces have the common general
design shown in Figure 3. The player presses the lips against the
surface of the mouthpiece cup, which has a characteristic volume
Vb. A narrower passage of the diameterSc and a length oflc
connects the cup to the main bore of the instrument.

Vb

Sc, lc

Figure 3:Profile of a typical brass instrument mouthpiece

3.1. Continuous Model

A simple physical model of a mouthpiece can be found in [2]. The
analogous acoustic network depicted in Figure 4 is used to describe
the basic physical behavior of a brass mouthpiece. The cup is mod-
eled as an acoustic complianceC and the passage of constriction
as an acoustic inertanceL. Lossy effects in the mouthpiece are in-
cluded in the model with an dissipative elementR. The impedance
quantities denote the ratio of the pressurep to the volume flowu.
For a common linear network like the mouthpiece model the un-

RL

C

u1 u2

p1 p2

Figure 4:Analogous acoustic network for a brass mouthpiece.

derlying ODEs are simple. Therefore a description of the mouth-
piece model is given directly in the frequency domain with the
following 2 × 2 input-output-system matrix
(

U1(s)
P1(s)

)

=

(

s2LC + sRC + 1 sC
sL + R 1

) (

U2(s)
P2(s)

)

. (40)

The valuesL andC of the physical model can be computed from
the mouthpiece geometry.

C =
Vb

̺0c2
(41)

L =
̺0lc

Sc
(42)

We assume as excitation a volume flowu1 entering the mouth-
piece. It is required to compute the flow out of the mouthpiece,

denoted byu2, from the flowu1, to be able to determine the ex-
citation functionψ for the air column. The air column behaves as
a load coupled to port 2 of the mouthpiece model. The pressure
p1 corresponds to the output of the instrument’s impedance model
given by the mouthpiece and the coupled air column.

3.2. Discrete Model

A discrete mouthpiece model can be obtained by performing the
impulse-invariant-transformation on the matrix description in equa-
tion (40). In the z-domain we get forU2 andP1

U2(z) =
[

a1z
−1

+ a2z
−2]

U2(z) + a3z
−1

U1(z) (43)

+
[

a4 + a5z
−1]

P2(z),

P1(z) =
[

a6 + a7z
−1]

U2(z) + a8P2(z) . (44)

The coefficientsa1, ..., a8 can be obtained from the discretization
procedure.

4. LIPS

So far a model for a brass instrument has been introduced. Beside
the properties of the instrument itself the interaction mechanism of
the player with the instrument has a strong influence on the pro-
duced sound and is fundamental for the characteristic sound of ev-
ery instrument. When playing a brass instrument the player inter-
acts with the instrument by using his lips, that are pressed against
the mouthpiece. Thereby the lips behave as an oscillator, that ex-
cites the air column inside the instrument. The lip oscillation is
supported with energy provided by the player himself and reflec-
tions coming back from the instrument. The lip model is chosen to
provide the behavior of lips towards a brass instrument in general
and neglects details.

4.1. Continuous Model

Physical lip models of different kinds are available from the pub-
lications of N.H. Fletcher, e.g. [5], and from various publications
of the group of X.Rodet at IRCAM, Paris, e.g. [6]. All these lip
models are pressure controlled valve models. Here a basic upward
striking model is used.

m0

r0 k0

u

p

0

xl

Ps

Figure 5: Schematic of a physical model for the lips of a brass
player according to [6].

A mathematical description of the model is given by the following
ODE.

m0ẍl(t) + r0ẋl(t) + k0xl(t) = γ(Ps − p(t)) (45)

Therebyxl is the opening of the lip,m0 the mass of the lip,r0

a damping constant andk0 the spring constant.γ is a constant
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related to the geometric details of the lip model,Ps indicates the
blowing pressure inside the mouth andp is the pressure inside the
mouthpiece. The volume flowu entering the mouthpiece is set to
zero except when the conditionxl(t) > 0 ∧ Ps − p(t) > 0 is
fulfilled. Then it is computed with

u(t) = l

√

2

̺0
xl(t)

√

Ps − p(t) . (46)

The parameterl is a constant describing the width of the lip. The
initial conditions are denoted withxi =

[

xl(0) ẋl(0)
]

.

4.2. Discrete Model

A discrete lip model can be easily obtained by performing the
Laplace-transformation and the impulse-invariant-transformation
on equation (45)

Xl(z) =
[

w1z
−1

+ w2z
−2]

Xl(z) + w3z
−1

(Ps − P (z)) (47)

+xiw0(z) .

The coefficientsw1, w2, w3 and the vectorw0(z) are available
from the discretization procedure.

5. CONNECTING THE MODELS

When the mouthpiece model is connected to the air column, the
volume flowu2 equals the excitation flowue of the air column
model. Furthermore the pressurep2 equals the pressure at the co-
ordinatexb1 of the air column. The lip model can be connected to
the mouthpiece by setting the lip flowu equalu1 and the mouth-
piece pressurep equalp1. But this straight forward approach of
joining the models yields an algorithm containing a delay free
loop. In order to get an implementable synthesis algorithm all
delay free loops have to be eliminated. Computingu2 with equa-
tion (43) does requirep2 to be known at the recent time step. But
with equation (38) the state vector of the FTM, and consequently
p2, can only be computed when all FTM computations (equation
(37)) of the recent time step are already performed. This would
require knowledge about the still unknown flowu2. Therefore this
straight forward way is not possible. An successful way of joining
the models is shown now. The output pressurep2 can be obtained
from the state vector of the FTM.

p2(t) = −̺0

(

0 1
)

︸ ︷︷ ︸

hp

y(xb1, t) (48)

Using equation (37), (38) and (48) yields the following expression
for p2:

P2(z) = − ̺0hp

∑

µ

κ[µ, xb1]ζ[µ]Ȳ (β̃µ, z)

︸ ︷︷ ︸

η(z)

z
−1 (49)

−̺0hp

∑

µ

κ[µ, xb1]ξ[µ]U2(z) .

Equation (49) can now be inserted into equation (43) and (44).

Reordering yields the following equations with the coefficients
e1..e8, that are available from the reordering procedure

U2(z) =
[

e1z
−1

+ e2z
−2]

U2(z) + e3z
−1

U1(z) (50)

+
[

e4z
−1

+ e5z
−2]

η(z)

P1(z) = [e6 + e7z
−1

]U2(z) + e8z
−1

η(z) . (51)

With equation (50)u2 can be computed without the knowledge of
p2, which means the delay free loop has been eliminated. So the

ζ[1]

ξ[1]

ζ[µ]

ξ[µ]

z−1

z−1

κ[1, x]

z−1 κ[µ, x]

+ +

+

+

y[x, k]

+

hpκ[1, xb1]ζ[1]

hpκ[µ, xb1]ζ[µ]

Ps

̺0

NL

Figure 6: Synthesis algorithm for brass instruments. Simulation
of the air column is performed with several complex 1st-order res-
onators in parallel. The excitation is computed with a nonlinear
loop back containing mouthpiece and lip model computations.

following algorithm provides a discrete solution of the previously
introduced continuous model. All equations given in the z-domain
are transformed to the discrete time domain by performing the in-
verse z-transformation:

for k ∈ simulation time

u2[k] = e1u2[k − 1] + e2u2[k − 2] + e3u1[k − 1]

+e4η[k − 1] + e5η[k − 2]

for µ = 1 : N

ȳ[µ, k] = ζ[µ]ȳ[µ, k − 1] + ξ[µ]u2[k]

η[k] =

∑

µ

̺0hpκ[µ, xb1]ζ[µ]ȳ[µ, k]

xl[k] = w1xl[k − 1] + w2xl[k − 2]

+w3 (Ps[k − 1] − p[k − 1])

p1[k] = e6u2[k] + e7u2[k − 1] + e8η[k − 1]

if xl[k] > 0 ∧ Ps[k] − p1[k] > 0

u1[k] = l

√

2

̺0
xl[k]

√

Ps[k] − p1[k]

else

u1[k] = 0
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6. RESULTS

The synthesis algorithm was implemented in MATLAB. The model
parameters were adjusted to fit the profile of a trumpet and a trum-
pet player. At first the instrument model without joined lips was
investigated by computing the impulse response of the system.
This allowed comparisons of the physical modeled computer in-
strument to measurements performed on real instruments. Com-
parable data is available in [6]. The results showed conformity
at least in the basic matters, which is reasonable when looking at
the rough simplifications of the underlying physical model. In the

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

6

Time [Samples]

P
re

ss
ur

e 
[P

a]

Figure 7: Impulse response of a brass instrument simulated at a
sampling rate of 44100 kHz. The parameters of the model are
adjusted to fit the measures of a trumpet.

next step the lip model was connected to the instrument. Simula-
tions yield results similar to those published in [7], where a similar
lip model and a measured impedance function of a real instrument
was used.

7. CONCLUSIONS

In this paper the way from a continuous physical model to a sound
synthesis algorithm is shown for a brass instrument. Basic physical
models for air column, mouthpiece and lips are introduced. Then
the continuous models are turned into the discrete domain. The
air column model is solved by performing the FTM procedures,
the mouthpiece model and the lip model are solved by perform-
ing Laplace-transformation, impulse-invariant-transformation and
inverse z-transformation. The discrete models are connected suc-
cessfully by eliminating a delay-free loop. Feasibility of FTM
based sound synthesis for brass instruments is demonstrated by
implementing the algorithm in MATLAB. The simulation results
show conformity to the basic properties of real brass instruments
but also the need for improvement in order to achieve a more real-
istic sound. On one hand it is possible to use a more sophisticated
lip model, on the other hand the instrument model itself can be
modified. Two suggestions seem to be useful to achieve a more
exact instrument model. Modeling frequency-dependent damping
close to the characteristic of real brass instruments may be possi-
ble when extending equation (6) with an additional damping term
d3Φ̇

′′. Using a high-pass impedance as radiation load at the point
xb2 may also yield improved results.
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Figure 8:State variablesp1, u1 andxl of a trumpet tone. Simula-
tion was carried out at a sampling rate of 44100 kHz.
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