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ABSTRACT

Physical (or physics-based) modeling of musical instruments is
one of the main research fields in computer music. A basic ques-
tion, with increasing research interest recently, is to understand
how different discrete-time modeling paradigms are interrelated
and can be combined, whereby wave modeling with wave quan-
tities (W-methods) and Kirchhoff quantities (K-methods) can be
understood in the same theoretical framework. This paper pre-
sents recent results from the HUT Sound Source Modeling group,
both in the form of theoretical discussions and by examples of K-
vs. W-modeling in sound synthesis of musical instruments.

1. INTRODUCTION

Real-world systems of interest in acoustics and computer music
are typically continuous in time and space, and therefore their dy-
namic behavior is inherently described by partial differential equa-
tions [1]. Computer-based modeling and simulation of them re-
quires, however, discretization of the underlying PDEs, which in
a general case corresponds to the continuous analog system only
when sample rate approaches infinity, i.e., temporal and spatial
sample intervals are made infinitesimally small.

In this paper we discuss several discrete-time modeling para-
digms, particularly the digital waveguides (DWGs), wave digital

filters (WDFs), and finite difference time domain schemes (FDTDs).

Their properties are compared and their mixing to hybrid model-
ing techniques are probed further from previous studies. Two cases
(wave digital bell and distributed nonlinearity by FDTDs) are used
to characterize realization principles.

1.1. General viewpoints

Discretization in time and space leads to interesting and difficult
problems that are not found in the ordinary continuous case. Par-
ticularly when systems are simulated or synthesized efficiently in
the time domain by discrete techniques, in contrast to being solved
from equations, the question of localized discretization (block-
wise construction of models through interconnection of elements)
and consistent scheduling (ordering of operations) are of major im-
portance.

In the analog world we may in the limit assume arbitrarily
short (infinitesimal) delays between spatial points of interest, and
the order of events follows the causality principle of physics. In the
discrete-time world, however, a single sample period is the shortest
possible non-zero time interval, in which explicit two-way phys-
ical interaction can happen. This leads easily to the problem of
delay-free loops, i.e., implicit equations where the output of an op-
eration needs an input value that may be dependent on the output
value not yet known. Particularly with nonlinear elements this is a
fundamental problem [2], in addition to aliasing.

It is now well-known that the delay-free loop problem is eas-
ier to overcome if computations are formulated by wave compo-
nents instead of ordinary physical quantities [3]. Referring to elec-
tric circuits, the latter ones are often called the Kirchhoff quanti-
ties, in contrast to wave quantities. Using dual K-variables (K for
Kirchhoff), such as voltage and current or force and velocity, is
very intuitive for circuits and their mechanical equivalents, but in
the discrete methodology they are not as easy to use. K-elements
formulated as transfer functions between dual K-variables cannot
form circuits and networks directly, but they in general must be
converted into wave-based formulation, in order to compute them
by explicit relations as local interactions. This is different from
solving system equations ' which permits global interactions.

This paper is organized as follows. Section 2 presents a con-
densed overview of the physical modeling paradigms of interest in
this study. In Section 3 we investigate the interrelations of these
paradigms, followed by a case study of a wave digital bell model
in Section 4. In Section 5, distributed nonlinear W-modeling is
investigated, followed by a summary of the paper.

2. PARADIGMS OF DISCRETE-TIME MODELING

A short characterization of different physical modeling paradigms
is presented in this Section, including digital waveguides, wave
digital filters, finite difference time domain schemes, and modal
decomposition.

2.1. Digital waveguides

Digital waveguide modeling is based on the fact that wave propa-
gation in a medium can be simply and efficiently simulated by two
delay lines [4], one for each directional wave component. This is
closely related to the d’Alembert solution of the wave equation.
By proper discretization in time and space the delay lines can be
updated simply by

—

Yentl = Z/)k—l,n and Zk,n+1 = Zk+1,n (D
where arrows denote the right- and left-traveling components of
the total waveform, and indices k and n refer to discrete position
and time, respectively. Lowpass and allpass filters can be cascaded
with delay elements to simulate damping and dispersion. Delay se-
quences between points of signal observation (output) and feed-in
(input) can be consolidated into subsystems that are computation-
ally highly efficient [4].

In addition to delays we need connecting junctions that full-
fil physical continuity constraints, i.e., the Kirchhoff rules. For a
parallel junction of acoustic components we may write:

!Time-domain simulation can also be based on solving global equations
for each time step, but that tends to be highly inefficient compared to block-
based simulation by localized interactions.
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W-admittance

Figure 1: 4 3-port parallel scattering junction for acoustic pressure
waves. Port 1 (left) is terminated by admittance Y1, port 2 (right)
is connected to a delay-line, and port 3 (top) is not connected.

Pi=P,=..=Py=P )
U1+U2+~~~+UN+Uext:0 (3)

where P; are pressure and U; volume velocities at the ports of the
junction, Pj is the common pressure of coupled branches and U exs
is an external volume velocity to the junction. When port pressures
are represented by incoming wave components P[" and outgoing
wave components P~ , admittances attached to each port by Y5,
and

P,=Pr+ P~ and UM =vP" )
the junction pressure Py can be obtained as:
1 N-1
Py = 5 (Ue +2 > viph) Q)
tot

1=0

where Yior, = Zf;l Y; is the sum of all admittances to the junc-
tion. Outgoing (scattered) pressure waves, obtained from Eq. (4),
are then P = P; — P, Figure 1 depicts this as a signal flow
diagram for the computation of such a scattering junction.

The same diagram can be applied to a series connection and
volume velocity waves so that pressures and volume velocities are
interchanged and admittances are replaced by impedances.

2.2. Wave digital filters

Wave digital filters (WDFs) are models that were originally de-
veloped for discrete-time simulation of lumped element circuits
and systems as they were known from the analog electric domain
[3]. The close relationship between them and digital waveguides
is well known [4, 5]. While DWGs emphasize delays and wave
propagation, WDFs have emphasis on lumped element modeling.
However, both are capable to both types, and actually they are
compatible and complementary approaches to wave-based mod-
eling.

The WDF formalism is based on a notation of (‘voltage’) waves
a and b as

=V +RI V= b)/2

a=V+RI (a+b)/ ©
b=V —RI I'=(a—b)/2R

where a is in-coming and b is out-going wave in a port, V' is volt-

age and [ is current as Kirchhoff variables, and R is port resistance

(reference resistance). In Fig. 2 a model for series connection of

Figure 2: (Left) A WDF series connection of resistor (R), capacitor
(C), and inductor (L) constructed by two three-port series adaptors
(SA1 and SA2). (Right) Equivalent analog circuit.

inductor L, capacitor C, and resistor R is depicted. It is constructed
by two three-port series adaptors (SA1 and SA2) that implement
wave scattering according to Kirchhoff laws. The implementa-
tion of the R, C, and L components is shown. Delay-free loops
are avoided by the structure of the components and by impedance-
matched reflection free ports denoted by — in the adaptors [3].

In a closer comparison of DWGs (Eq. (3-5) and Fig. 1) and
WDFs (Eq. (6) and Fig. 2) we can see that through acoustical-to-
electrical analogies PY = a, P = b, P, = V,U; = I, and
1/Y; = R, for the DWG we get

a=(V+RI/2 o V=(a+b) ™
b=(V —RI)/2 I=(a—-b)/R
which shows a difference in scaling compared to the WDF con-
vention in (6). In fact we may select the scaling quite freely if
we are interested just to get physically proper values of the Kirch-
hoff quantities V' and /. One useful convention is to apply power-
normalized waves [3, 4] by

a=(V+RNH/2VR o V= (a +b)VR
b= (V- RI/2VR I'=(a-b)/vVR

which have the favourable property that port power P =V - I =
a® — b is independent of changes in R.

If the port admittances/impedancesin DWG junctions are real-
valued, the DWG junctions and WDF adaptors implement the same
computation of K-variables, thus they are just two slightly different
formulations of the same W-modeling principle. The WDF theory
supports combinations of parallel and series connections (typically
by 2- and 3-port adaptors) using reflection-free ports as in Fig. 2.
The WDF theory includes a set of lumped one- and two-ports, and
it is generalized also to multidimensional modeling [3].

®

2.3. Finite difference models

Finite difference approximation is a popular method of numerical
integration of partial differential equations [6]. In physical model-
ing it is used particularly for multidimensional mesh structures [5]
but also for example in string modeling [7].

Second order differences applied to the wave equation with a
proper space and time discretization yield a simple recursion for-
mula

Ykntl = Yk—1,n + Yrti,n — Yk,n—1 ©)

for the computation of an FDTD node variable for a 1-D FDTD
structure, whereby indices & and n refer to spatial and temporal
indices, respectively [4]. In [8] we have derived an extension of
the scheme that allows FDTD structures with arbitrary connection
admittanced to be formed, see Fig. 3, in a way very similar to the
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Figure 3: A three-port parallel connection of FDTD type, corre-
sponding to the DWG in Fig. 1.

DWG diagram in Fig. 1. The generalized recursion formulation
for the structure (without excitation Uy ) becomes

9 N—-1
Ping1=c— > YiPin—Pins (10)
1=0

thot -

Notice that volume velocity excitation Uext must be fed through a
simple FIR filter H/(z) = 1 — 27>, The equivalence of the DWG
in Fig. 1 and the FDTD structure in Fig. 3 has been proven in [8]
and details of their relations will be discussed in Section 3.1.

2.4. Modal decomposition techniques

While the DWG, WDF, and FDTD methods above are explicit

time-domain simulation techniques, the modal decomposition meth-

ods rely on frequency-domain formulations of systems under study.
They decompose the behavior of a system into decaying expo-
nentials, whereby oscillatory components represent eigenmodes
of the system. Modal decomposition methods include the tradi-
tional modal synthesis [9] and a newer approach called functional
transformation method (FTM) [10]. In Section 4 we will study
semiphysical modeling of bells based on a modal decomposition
paradigm.

3. K- VS. W-MODELING

As mentioned above, it is well known that block-based modeling
with K-methods is difficult or impossible due to the delay-free
loop problem. There are special techniques, however, to use K-
modeling, and the combination of K- and W-blocks is of particular
interest. In this Section we discuss some related questions.

3.1. Comparison of DWG vs. FDTD models

In [8] we have presented a careful analysis of DWGs and FDTDs
as shown in Figs. 1 and 3, by proving their functional equivalence
in processing related K-variables. There are, however, a couple of
special questions related to the equivalence need to be addressed.
The first one deals with the ‘sporadic’ or ‘spurious’ oscilla-
tions that easily appear in the FDTD structure but not in DWGs.
The potential instabilities in FDTD are due to its inherent dual-
delay feedback, see the bottom part of Fig. 3. This creates poles
at DC and Nyquist frequency that need to be counteracted by the

KW-converter

Figure 4: KW-converter for mixed modeling with FDTDs (left-
hand side) and DWGs (right-hand side).

term H(z) = 1 — 27> when feeding external excitation Uext.
This pole cancellation means lack of numerical robustness close
to these frequencies. Without this term an impulse fed to the junc-
tion results in continuous Nyquist frequency oscillation plus step
function propagating from the junction in an FDTD array, which
means unbound generation of energy, thus being nonphysical in
the sense of passive systems.

One may ask if the instability is possible in a DWG. It is
only possible if the junction is fed through the inverse of H(z) =
1— 272, ie., through H(z) = 1/(1 — z77), which works as an
external source to make continuous energy generation.

Another special case is the inherent integration property of an
FDTD structure as utilized in [7] and [11]. If only the pole at
the Nyquist frequency is cancelled by feeding the FDTD junction
through H(z) = 142", the model is inherently integrating from
velocity V' (#) to displacement Y (2) by Y (2) = V(2)1/(1—="").
This is useful for example in string modeling [11] when the desired
pair of K-variables is force and displacement, instead of the ‘natu-
ral’ pair of force and velocity.

Now we can notice that DWGs in their basic form don’t inte-
grate. If we desire to have that property, we must use an explicit
integrator, approximated by H(z) = 1/(1 — 2™}, either in feed-
ing the input to a junction, or when taking the velocity output from
a junction. By such an external element we can again make the
FDTD and DWG structures fully equivalent functionally.

3.2. Compatibility of DWG vs. FDTD models

In [8] we have shown a way to construct mixed models by com-
bining FDTD and DWG elements (thus also WDFs) through a K-
to-W converter two-port, as shown in Fig. 4. The left-hand side
shows an FDTD junction and the right-hand side a DWG junction.
The KW-converter maps the K-variable terminals of an FDTD to
a wave port of a DWG junction and the other way around.

3.3. Arbitrary impedance as a part of W-model

To derive rules for attaching an arbitrary K-defined impedance to
a wave port we can write:

a=V+RI, b=V-—RI, and Z=V/I (1)

which can be solved for H (z) as a the ratio of b and « in the form

b V-RI Z-R
H = -= = =

) == VIR~ 7TR
Now it is obvious that in general H(z) includes a delay and is
explicitly computable only when 2(n), the inverse Z-transform of
Z(z), has a delay-free component 2(0) # 0, and port resistance
R is selected as B = £(0). We will next look at three common

12)
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cases of impedance H (z) specification: Polynomial (FIR), ratio-
nal (IIR), and a modal filterbank of second-order resonators.

FIR type impedance: When Z(z) is given as a Z-domain poly-
nomial expression, i.e.,

N-1
Zp(2) = a4z (13)
1=0
then the a to b scattering function H (z) will in a delay-containing
case R = gqo become
O D S HrSl
= = 2 B
Yido @r T4+ R 14>

2490

Hyp(z) =

which is an IIR filter cascaded with a unit delay.

IIR type impedance: When Z(z) is given as a Z-domain rational
expression (for simplicity numerator and denominator orders are
the same), i.e., _ i
Z _ Z,J‘\;()l qiz
T(Z) - N—1 —i
>ico Pi%
then the delay-containing requirement for port resistance becomes
R = go/po and H (#) according to Eq. (12) will be

ZN—2 Git+1—Rpiy1 Z—i

15)

Hy(z) = =520 2fpo ! (16)
IEDUAREE -

which is again an IIR filter with a cascaded unit delay.

Second order resonators: Second order resonators are of special
interest because they are useful in building modal decomposition
models. For example a series RLC-resonator having poles at DC
and Nyquist frequency can be simulated by

1+ qz7t 4 qz™?

7, =K 1
1—2z—2 an
that with R = K leads to realization
1 —1
H.(2) =05 ot (g 1)z =T

140.5¢27" +0.5(q2 — 1)z72

4. WAVE DIGITAL BELL

As a W-modeling case using modal decomposition, a ‘semiphysi-
cal’ driving point impedance of a bell is investigated next. In ear-
lier papers we have studied sound synthesis of bells using inhar-
monic digital waveguides and modal filterbanks [12, 13]. High-
resolution analysis of modal data was achieved using the frequency-
zooming ARMA analysis (FZ-ARMA) technique as developed in
[14]. This is able to resolve for each partial a set of modes, very
close in frequency, which produce the beating inherent in typical
bell sounds.

Real bells are physical objects that, as 3-D structures, have
an inharmonic set of partials [1]. By proper tuning several of the
lower partials can be made approximately harmonic, but there al-
ways remains at least one perceptually important inharmonic com-
ponent. In untuned small handbells there may not be any harmonic
structure. Slight asymmetries are the reason to partials as mode
groups and the perceivable beating (warble).

In a detailed model of a real bell the modal decomposition
should describe the spatial distribution of modal shapes so that a
force excitation in any point could be solved for the spatial dis-
tribution of the exponentially decaying modes as well as for the
sound radiated from bell surfaces. Instead we in this paper develop

Table 1: Modal data for the bell of the case study including two
modes per partial: mode frequencies (fi and f2), initial amplitudes
(A1 and Az), and decay time constants (T1 and T2) are given.

fl/HZ 7’1/8 A1 fQ/HZ 7'2/8 A2
850.8 | 0.165 | 0.0723 851.3 | 0.749 | 0.0965
1702.3 | 0.464 | 0.1497 1703.1 | 0.421 |0.0514
2026.7 | 0.355 | 0.1258 || 2032.8 | 0.048 | 0.0734
2787.2 | 0.131 | 0.0763 || 2792.5 | 0.079 | 0.0364
3404.7 | 0.251 | 0.0610 || 3407.0 | 0.098 | 0.0716
4552.1 | 0.028 | 0.0290 || 4559.6 | 0.110 | 0.0278
4889.6 | 0.149 | 0.0554 || 5050.5 | 0.259 | 0.0511
6881.5 | 0.149 | 0.1261 6889.2 | 0.051 | 0.0088
8549.8 | 0.153 | 0.0029 || 8631.9 | 0.023 | 0.0047
8695.0 | 0.109 | 0.0313 || 8842.0 | 0.153 | 0.0191

SO0V AW =S

a wave digital model based on modal decomposition that consid-
ers the bell only as a driving point impedance with related force
and velocity. We may calibrate such a semiphysical model simply
according to a sound recording of an existing bell and realize a
model that sounds realistic, being efficient for real-time synthesis.

We have taken a particular bell and analyze its prominent modal
components using the FZ-ARMA analysis. Table 1 lists the modal
data from a bell recording®. Two modes are fitted to each partial
below 10 kHz to realize proper beating for the partials.

For a wave-based modeling we may use the analyzed modal
data by constructing a wave port with a corresponding driving-
point impedance. The task is now to construct a port compatible
with W-modeling that implements a driving point impedance so
that when the bell is hit by a proper hammer-like object (force
excitation), it makes a desired sound (port velocity as output).

There are several ways to construct the port impedance of in-
terest, for example:

1. Make the modes by basic WDF components as series res-
onators, as shown in Fig. 2. Pairs of modes are then com-
bined in parallel into partials, which are further connected
in parallel to make a full port impedance.

2. Implement each mode or a mode group for a partial as a
filter structure according to the rules described in Section
3.3, and connect the partials in parallel.

3. Realize the whole impedance, composed of all modes, as a
single filter, according to Eq. (16).

It is obvious that progressing from case 1 to 3 the computational
efficiency of implementation can be improved, since consolidating
functionality can utilize the advantages of DSP more than compos-
ing a model from lumped WDF elements. Case 2 benefits from the
possibility of controlling the properties of each mode separately,
while in case 3 only the composite filter coefficients are directly
accessible. In case 1 the equivalent lumped components, corre-
sponding in some way to masses, spring constants and damping
factors, are directly controllable.

One particular design issue with case 1 is the bilinear mapping
when creating reactances with WDFs. The formulas of reference
resistance for capacitance C' and inductance L in electrical circuits
are:

Rc =1/2Cf, and Rp =2Lf, (19)
where Rc and Ry, are the related WDF port resistances and f is
the sample rate. However, due to the bilinear mapping between

2This is a relatively high-pitch bell from the Belfort bell recordings,
provided by Mark Leman.
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Figure 5: Synthesized bell port admittance function.

Figure 6: Temporal envelope of the third partial.

analog angle frequency w = 2xf and discrete-time angle fre-
quency €2 by

w = g() = (2/1%) tan(Q1:/2) (20)

the frequency scale is warped [3] so that while @ — f5/2, the cor-
responding analog angle frequency w — oco. Thus the inductances
and capacitances in a WDF realization have to be prewarped to
get correct modal frequencies and decay times. In cases 2 and 3
above the filter design process takes automatically care of proper
frequencies and decay rates. In each case 1-3 the wave digital port
realized is functionally equivalent.

Figure 5 shows the admittance function (dB scaled) of the port
implemented from data in Table 1, and Fig. 6 plots the temporal
envelope of partial number 3 showing beating in decay.

To make a full bell model with a hammer striking the driving
point, the hammer has also to be modeled. The contact is a nonlin-
ear (time-varying) one, thus special techniques are needed to make
it energetically correctly to guarantee stability. There are two prin-
ciples available to this: using power-normalized waves discussed
above (see also [15]) or by nonlinear reactance through mutator
type of adaptor [2]. These techniques allow for complex nonlin-
ear contact of the hammer and the bell as it happens also with the
piano hammer [15].

The WDF bell with impulsive hit sounds different from the
recording used for calibration for two reasons. First, the attack
needs a more complex bell model for more realistic sound, and
secondly, reverberation and reflections of the space surrounding
the bell. In other aspects the timbre is very realistic, including
correct type of beating and decay envelope.

5. DISTRIBUTED NONLINEARITIES BY DWG’S

Distributed nonlinearities are among the most challenging tasks
in physics-based modeling. They are quite common in musical
instruments, although in many cases a linearized model is a use-
ful approximation. In this Section we investigate how the tension
modulation nonlinearity in strings can be realized through digital
waveguide principles.

When a real string is displaced, it is elongated causing an in-
crease in its tension and thus also in its fundamental frequency.
The elongation of the string can be expressed as [16]

lnom
laev(t) = V 1+ (yo(t,2))%dz — luom 21
0
where {50, is the nominal string length, « is the spatial coordinate
along the string, and y is the displacement of the string. Note, that
since the elongation calculation is done globally, i.e. for the whole
string in one piece, we lose the information concerning local elon-
gations and effectively consider the tension as being uniform for
the whole string. In real strings this is not the case, although longi-
tudinal waves do propagate considerably faster than the transversal
ones. The elongation can be approximated for the digital waveg-
uide as [17] i
Lo (m) = £ 5 [se(n,m) + 1 (n, m)]? 22)
2 = b b

where s;(n, m) and s1(n, m) are the slope waves at time instant ro
and position m, propagating right and left, respectively, and Lnom

is the rounded nominal string length.

Since the transversal wave propagation velocity is proportional
to the string tension, the change in tension corresponds to a change
in the wave velocities. In DWGs this can be implemented by mod-
ulating the delay line lengths. This is done by inserting first-order
allpass filters between each unit delay in the delay line and then
varying the allpass-filter coefficients. This is illustrated in Fig. 7.
The excitation to the string can be inserted during run-time as a
force signal using an interaction block, denoted by I. This block is
essentially a 3-port parallel junction of Fig. 1, with the third port
omitted and the excitation signal used as an external force.

The first-order allpass filter is of the form
—a+z7"

1

Az) = (23)

1 —az—
where a is the filter coefficient which defines the length of the
delay caused by the filter. The approximated delay for each allpass
filter can be expressed as [17], [18]

n—1

1 EA . Laev (1)
2N Z (1+ Ko) Lnom 24

dap(n) =

l:n—l—f/nom

where E is Young’s modulus, A is the cross-sectional area of the
string, and Ko is the nominal tension corresponding to the string at
rest. N denotes the total number of allpass filters in the structure.
The allpass-filter coefficient @ can now be written as

a=(1—dup)/(1+dap). 25)

It is important to note that the string model presented in Fig. 7
simulates a string vibrating in one polarization only. For a more
realistic model, another such structure should be used for modeling
the second polarization. This is especially true in the case of the
kantele, a traditional Finnish plucked-string instrument, where the
two vibration polarizations have different effective lengths due to a
knotted termination of the string [19]. Using two nonlinear DWG
string models with slightly different lengths, a synthesis model of
the kantele can be generated. For a more thorough discussion of
the kantele model and the nonlinear DWG string, see [18].

The synthesis results reveal that the initial pitch glide phe-
nomenon can be realistically modeled using the nonlinear DWG
string. The fundamental frequencies of a real kantele recording
and the synthesized tone are illustrated in Figure 8.
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Figure 7: A nonlinear DWG string. The string consists of allpass lters, denoted A (z), connected via unit delays for avoiding delay-free
loops. Hi, and Hr denote loop lters simulating the frequency-dependent losses and g is a scaling coefficient for modeling frequency-
independent losses. F'(n) represents the excitation force signal applied on the string.
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Figure 8: Illustration of the fundamental frequency glide in the
synthesized tone (solid line) and in a real kantele tone, obtained via
measurements (dashed line). The approximated detection thresh-
old of a pitch drift [20], illustrated as a dotted line, suggests that
the fundamental frequency drifts in both cases are audible.

The generation of missing harmonics can also be simulated, if
the boxcar integration of Eq. (24) is replaced with a leaky integra-
tor, as suggested in [17]. Then, the leaky integrator parameters can
be used to control the amplitudes of the missing harmonics. Note
that this solution is not physics-based, since the error in the inte-
gration creates the mode-coupling, but it still is an efficient way of
emulating the phenomenon.

6. SUMMARY

In this paper we have presented recent results from the HUT Sound
Source Modeling group. A theoretical discussion covered different
discrete-time modeling paradigms, divided in W- and K-modeling
approaches, their interrelationships, and how they can be com-
bined. Two particular cases have been described: a wave digital
bell based on modal decomposition of a port impedance and dis-
tributed nonlinearity modeling by digital waveguides.
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