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ABSTRACT

There has recently been increased interest in the modelling of string
vibration under large amplitude conditions, for sound synthesis
purposes. A simple nonlinear model is given by the Kirchhoff-
Carrier equation, which can be thought of as a generalization of
the wave equation to the case for which the string tension is “mod-
ulated” by variations in the length of the string under deformation.
Finite difference schemes are one means of approach for the simu-
lation of nonlinear PDE systems; in this case, however, as the non-
linearity is spatially invariant, the solution may be broken down
into sinusoidal components, much as in the linear case. More im-
portantly, if time discretization is carried out in a particular way, it
is possible to obtain a conserved energy in the numerical scheme,
leading to a useful numerical stability guarantee, which can be dif-
ficult to obtain for strongly nonlinear systems. Numerical results
are presented.

1. INTRODUCTION

When it is desired to simulate the transverse motion of a vibrating
string, in a single polarization, a simple starting point is the 1D
wave equation [1]. There are many approaches to the simulation
of such an equation: the most straightforward makes use of finite
difference approximations [2, 3, 4]. In this case, the defining PDE
is discretized, leading to a solution approximated at various grid
points, and at a finite set of time instants. Digital waveguides [5]
represent a particularly elegant special case of a finite difference
method, for which the numerical solution may be calculated as a
sum of discrete travelling waves, at a greatly reduced computa-
tional cost. When the wave equation is complemented by addi-
tional terms which model such perceptually crucial effects as loss
and dispersion [6, 7], finite difference schemes may still be used;
for certain schemes, an equivalent digital waveguide formulation
also follows [8], and it is also possible to construct quasi-physical
waveguide structures which remain relatively cheap, computation-
ally speaking [9].

Because the wave equation (and its extensions as mentioned
above) is linear and time-invariant, a complete description is avail-
able in the frequency domain; the behavior of the string may be
broken down into independent contributions from various modes,
each of a particular shape and frequency. The shapes and frequen-
cies are strongly dependent on the particular type of boundary con-
ditions applied. Synthesis based on such a decomposition is often
referred to asmodal synthesis[10]; it may be extended to deal
with general linear and time-invariant systems. If the system is,
in addition, spatially-invariant (i.e., if there is no material param-
eter variation), all solutions may be expressed in terms of modal

contributions, the shapes of which are complex exponentials; the
wave equation for a string of constant density is of this form, but
the vocal tract, for instance, is not (it still possesses modes whose
time-dependence is complex exponential, but these are not spa-
tially complex exponentials).

Under high-amplitude conditions, the 1D wave equation is no
longer a good model of transverse wave propagation. The most
general models of string vibration are nonlinear, and involve point-
wise coupling among the two transverse polarizations and the lon-
gitudinal displacement [1, 11]. Under certain assumptions [12],
generally valid for many types of strings which appear in a mu-
sical setting, transverse motion in a single polarization may be
decoupled, and a simplified nonlinear equation, sometimes called
the Kirchhoff-Carrier equation [13, 14], results. In this model,
the effect of the nonlinearity is global—in other words, though
nonlinear, the equation remains spatially shift-invariant. Such a
model has served as the starting point for extensions of digital
waveguides [15, 16, 17], as well as finite difference schemes [18].
Due to the spatial invariance of the nonlinearity, one might ex-
pect that a modal-type description will be available for this non-
linear model; although the string does not possess modes as such,
a breakdown of the string into simple sinusoidal shapes suggests
a numerical simulation approach which is similar to modal syn-
thesis. One of the great benefits of such an approach is that it is
possible to arrive at a useful stability condition on the numerical
scheme; stability-checking machinery such as von Neumann type
analysis [19, 20, 21] is generally not valid in the nonlinear case.
Such analysis, as in the case of finite difference schemes, relies on
strict energy conservation properties [22, 21].

In Section 2, we present the Kirchhoff-Carrier equation, as
well as its expansion into a first order system, and briefly review
its energy conservation properties. In Section 3, we first present a
Fourier decomposition of the solution to the system, and show how
this leads to a system of ordinary differential equations, which may
be discretized in such a way as to yield a conserved energy-like
quantity. We then discuss the conditions under which this con-
served quantity leads to a numerical stability guarantee, and con-
clude with a look at spurious oscillatory behavior and some imple-
mentation details. Numerical simulation results are presented in
Section 4.

2. THE KIRCHHOFF-CARRIER EQUATION

The Kirchhoff-Carrier equation, as mentioned above, is a good first
approximation to nonlinear behavior of a string, in a transverse
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polarization. It can be written as

ρ
∂2u

∂t2
=

(
T0 +

EA

2L

∫ L

0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
(1)

Here, u(x, t) is the transverse string displacement,t ≥ 0 is a
time variable, andx ∈ [0, L] is a space variable. The string is
characterized by the parametersρ (linear mass density),T0 (ap-
plied tension),E (Young’s modulus), andA (cross-sectional area)
[17, 23, 24, 25]. When the spatial derivative∂u

∂x
is small, it ap-

proaches the wave equation. It is simple, as in the linear case, to
introduce a term (proportional to∂u

∂t
) in order to model loss; such a

term has little impact on the energy and stability analysis to follow,
other than to render conserved quantities dissipated.

2.1. First-order System

As discussed in [18], for energetic analysis purposes, it is useful to
reduce (1) to a system in the new variablesp andq defined by

p =
√

ρ
∂u

∂t
q =

√
T0

∂u

∂x

in which case it can be written as

∂p

∂t
= c0G

∂q

∂x
(2a)

∂q

∂t
= c0

∂p

∂x
(2b)

where we have introduced the quantitiesc0 =
√

T0/ρ andG, as
defined by

G ,
(

1 + B

∫ L

0

q2dx

)
(3)

with B , EA/2LT 2
0 .

2.2. Energy Conservation

As also discussed in [18], the Kirchhoff-Carrier equation implies
a conservation law, given by

EKC =
1

2
‖p‖2 +

1

2

(
1 +

B

2
‖q‖2

)
‖q‖2 = constant (4)

where‖f‖ =
(∫ L

0
f2dx

)1/2

for square-integrable functionsf ∈
L2(0, L). This further implies the bounds

‖p‖ ≤ √
2EKC ‖q‖ ≤

√
−1 +

√
1 + 4BEKC

B
(5)

In other words, the size of the state of the solution is bounded in
terms of the initial energy present in the string.

3. FOURIER DECOMPOSITION AND A NUMERICAL
SCHEME

Under fixed boundary conditions at either end of the string, i.e.,
u(0, t) = u(L, t) = 0, in terms ofp andq, we must have

p(0, t) = p(L, t) = 0
∂q

∂x

∣∣∣
0,t

=
∂q

∂x

∣∣∣
L,t

= 0

These conditions suggest the following sine and cosine decompo-
sitions ofp andq:

p(x, t) =

√
2

L

∞∑
m=1

Pm(t) sin(πmx/L) (6a)

q(x, t) =

√
2

L

∞∑
m=1

Qm(t) cos(πmx/L) (6b)

which satisfy the above boundary conditions automatically; for
free terminations, one may proceed equally easily. (We note that,
although in general, the expression forq(x, t) could contain a DC
termQ0(t), the identification ofq(x, t) with

√
T0

∂u
∂x

means that
q(x, t) will be zero mean for any differentiable initial condition
∂u
∂x

∣∣∣
t=0

.)

Parseval’s relation implies that

‖P‖ = ‖p‖ ‖Q‖ = ‖q‖

where‖F‖ =
(∑∞

m=1 F 2
m

)1/2
for any square-summable sequence

Fm (such asPm or Qm above. An equivalent form of the con-
served energy (4) is then

EKC =
1

2
‖P‖2 +

1

2

(
1 +

B

2
‖Q‖2

)
‖Q‖2 = constant (7)

Upon substituting the expressions (6) into system (2), one ob-
tains

dPm

dt
= −c0G

πm

L
Qm (8a)

dQm

dt
= c0

πm

L
Pm (8b)

for m = 1, 2, . . . which is an infinite set of coupled ordinary
differential equations, with the coupling occurring throughG =
1 + B‖Q‖2. Such a Fourier decomposition for the Kirchhoff-
Carrier equation was analyzed some time ago by Dickey [26].

3.1. Time Discretization

In order to numerically integrate the system (8), there are two ap-
proximations which must be made. First, we truncate the Fourier
series representation ofp andq to M terms. It is useful to intro-
duce vectors containing the firstM components, namely,

P(t) = [P1, . . . , PM ]T Q(t) = [Q1, . . . , QM ]T

Then, we approximatedP/dt, anddQ/dt as

dP

dt

∣∣∣
t=(n− 1

2 )k
≈ 1

k

(
Pn −Pn−1)

dQ

dt

∣∣∣
t=nk

≈ 1

k

(
Qn+ 1

2 −Qn− 1
2

)

The quantitiesPn andQn+ 1
2 are second-order approximations to

P((n− 1
2
)k) andQ(nk), respectively;k is the time step. Notice,

in particular, that the approximations are interleaved, i.e., we cal-
culatePn andQn+ 1

2 in alternation, at intervals ofk/2 seconds.
The inner product of twoM -component expansionsF andG

is defined in the usual way as

〈F,G〉 = FT G =

M∑
m=1

FmGm (9)
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and the norm of any expansionF follows as

‖F‖ = 〈F, F〉1/2 (10)

3.2. An Interleaved Finite Difference Scheme

System (8) then becomes

Pn −Pn−1 = −c0kGn− 1
2 DQn− 1

2 (11a)

Qn+ 1
2 −Qn− 1

2 = c0kDPn (11b)

Here,D, as defined by

D =
π

L
diag(1, . . . , M) (12)

is the spatial derivative operator, andGn− 1
2 is an approximation

to G at timet = (n − 1
2
)k, to be specified shortly; in order that

the scheme (11) remain second-order accurate, the approximation
Gn− 1

2 should be second-order accurate. In order that the scheme
remain explicitly computable, it should also be a function only of
Qn− 1

2 .

3.3. Energy Conservation

In order to examine the energetic behavior of system (11), we
may proceed in the following way: first, left-multiply (11a) by
1
2

(
Pn + Pn−1

)T
to get

‖Pn‖2
2

− ‖Pn−1‖2
2

= − c0k

2
Gn− 1

2 〈Pn
+ P

n−1
, DQ

n− 1
2 〉

= − c0k

2
Gn− 1

2 〈D
(
P

n
+ P

n−1
)

, Q
n− 1

2 〉

Noting, from (11b), that

c0kD
(
Pn + Pn−1) = Qn+ 1

2 −Qn− 3
2

we then arrive at

‖Pn‖2
2

− ‖P
n−1‖2
2

=−G
n− 1

2

2

(
〈Qn+ 1

2 , Q
n− 1

2 〉 − 〈Qn− 1
2 , Q

n− 3
2 〉

)

At this point, we may make the following choice forGn− 1
2 ,

namely,

Gn− 1
2 = 1 +

B

2

(
〈Qn+ 1

2 ,Qn− 1
2 〉+ 〈Qn− 1

2 ,Qn− 3
2 〉

)
(13)

which is consistent with definition (3), and second order accurate.
This then yields

‖Pn‖2
2

− ‖Pn−1‖2
2

= − 1

2

(
〈Qn+ 1

2 , Q
n− 1

2 〉 − 〈Qn− 1
2 , Q

n− 3
2 〉

)

−B

4

(
〈Qn+ 1

2 , Q
n− 1

2 〉2 − 〈Qn− 1
2 , Q

n− 3
2 〉2

)

from which we can extract a conserved quantityEn
KC , defined by

En
KC =

1

2

(
‖Pn‖2 + 〈Qn+ 1

2 , Q
n− 1

2 〉+
B

2
〈Qn+ 1

2 , Q
n− 1

2 〉2
)

(14)

which is similar to the energy definition (4), but which is not nec-
essarily positive. The determination of conditions on its positivity
(so that it may be used as a numerical stability guarantee) follows
in the next Section.

We also note that from definition (13), it would appear that
Gn− 1

2 is dependent onQn+ 1
2 , thus rendering our difference scheme

implicit. It is simple to show, however, thatGn− 1
2 may be rewrit-

ten as

Gn− 1
2 =

1 + B‖Qn− 1
2 ‖2

1 +
Bc20k2

2
‖DQn− 1

2 ‖2
(15)

Notice, in particular, that a choice ofGn− 1
2 = 1 + B‖Qn− 1

2 ‖2,
perhaps the most straightforward choice, does not lead to a simple
energy conservation property.

3.4. Numerical Stability

The conserved quantityEn
KC given by (14), unlike its continuous-

time counterpart (7), is not necessarily positive. In this Section, we
find the conditions under which it is positive, in which case it can
be used to bound the size of the calculated solution, thus serving as
a numerical stability guarantee. We first rewrite (14), using (11b),
as

En
KC =

1

2

(
‖Pn‖2 + ‖Qn+ 1

2 ‖2 − c0k〈DP
n

, Q
n+ 1

2 〉
)

+
B

4

(
‖Qn+ 1

2 ‖2 − c0k〈DP
n

, Q
n+ 1

2 〉
)2

Examine now the term〈DPn,Qn+ 1
2 〉 in the above expression.

From the Cauchy-Schwarz inequality [27], we clearly have

〈DPn,Qn+ 1
2 〉 ≤ ‖DPn‖ · ‖Qn+ 1

2 ‖
and, furthermore,

〈DPn,Qn+ 1
2 〉 ≤ |||D||| · ‖Pn‖ · ‖Qn+ 1

2 ‖
where|||D||| is the induced matrix 2-norm ofD [27]; asD is sim-
ply a scaled diagonal matrix, as given by (12), we have|||D||| =
πM
L

, and thus

〈DPn,Qn+ 1
2 〉 ≤ πM

L
‖Pn‖ · ‖Qn+ 1

2 ‖
It then follows that

En
KC ≥ 1

2

(
‖Pn‖ − c0kπM

2L
‖Qn+ 1

2 ‖
)2

+
1

2
(1− (

c0kπM

2L
)
2
)‖Qn+ 1

2 ‖2

+
B

4

(
‖Qn+ 1

2 ‖2 − c0k〈DP
n

, Q
n+ 1

2 〉
)2

The quantity on the right-hand side of the above inequality is clearly
positive if

k ≤ 2L

c0πM
(16)

If this condition is satisfied (and notice that it does not depend in
any way on values of the solution), then we further have that

‖Qn+ 1
2 ‖ ≤

√
2EKC

1− ( c0kπM
2L

)2
(17)

Thus the norm ofQn+ 1
2 is bounded in terms of the energyEKC ,

which remains constant. An identical bound can be found for
‖Pn‖. (We note that it should be possible to find tighter bounds
through further analysis.)

This bound implies a further bound onGn− 1
2 , as defined by

(15), namely

Gn− 1
2 ≤ 1 +

2BEKC

1− ( c0kπM
2L

)2
(18)

which holds for alln.
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3.5. Oscillatory Behavior

We have found, above, a condition for numerical stability; it is
not, however, sufficient to ensure that our calculated solution is
acceptable from a physical point of view, as numerical oscillatory
behavior may be present, even if the solution is stable. To this end,
we rewrite system (11) in state-space form as

[
Pn

Qn+ 1
2

]
=

[
IM −c0kGn− 1

2 D

c0kD IM − c2
0k

2Gn− 1
2 D2

] [
Pn−1

Qn− 1
2

]

whereIM is theM ×M identity matrix. The2M eigenvaluesλn

of the update matrix (which is dependent on the time indexn) are
given by

λn = −νn ±
√

(νn)2 − 1 νn = −1 +
c2
0k

2π2m2Gn− 1
2

2L2

for m = 1, . . . M . For |νn| ≤ 1, or, in other words, if

k ≤ 2L

c0πM

√
Gn− 1

2

(19)

then all eigenvalues occur asM complex conjugate pairs, of unit
magnitude; if, however,νn > 1, some eigenvalues are both real
and negative, and in particular, one will be of magnitude greater
than one. We thus expect, in this case, to find sign-flipping (ac-
companied by amplification) occurring in the modes whose eigen-
values violate this condition. It is thus important to ensure that this
does not occur. Using (18) and (19), we may find another bound
onk,

k ≤ 2L

c0πM

√
1 + BEKC −

√
(1 + BEKC)2 − 1

which is expressed in terms of the initial energyEKC .
We again emphasize that as long as the stability condition (16)

is satisfied, the solution must remain numerically stable, i.e., the
computed values of the solution may be bounded by (17). The
amplification of oscillatory modes, discussed above, is a differ-
ent phenomenon; essentially, energy is drawn from other modes
into the oscillatory ones (typically high frequency), leaving the to-
tal energy constant. The buildup of this spurious energy must be
bounded in terms of the total energy.

3.6. Implementation Details

The algorithm itself, described by (11), operates entirely on the
sinusoidal expansion coefficients. The most important practical
consideration is the transformation between the coefficients of the
sinusoidal expansions ofp andq and the physical solution; this can
be done rather simply using Fourier transforms, though it must be
kept in mind that the expansionsP and Q are sine and cosine
series, not general Fourier series expansions of functions over an
interval of lengthL. Also, due to the incorporation of boundary
conditions into the series, we have chosen to expand into sinu-
soids of wavelengths2L/m, for m = 1, . . . , M . For example, for
a sequencepn

i , for i = 0, . . . M − 1, representing some approx-
imation top, (here,p0 is constrained to be zero by the boundary
conditions), we can generate the expansion coefficients by taking
the Fourier transform of the sequence

[p0, p1, . . . , pM−1, 0,−pM−1, . . . ,−p1]

and taking the imaginary parts of the firstM values (in other
words, we expandpi to an odd sequence of length2M samples).
Similarly, a set of values representingq can be expanded to a
length2M even sequence, and the real parts of the firstM values
will represent the cosine series coefficients. Simplifications are
certainly possible, given the various symmetries of the sequences;
we do not enter into the details here. It is important to note that if
one is merely interested in viewing the state of the string after an
elapsed time, there is no need to perform a Fourier transform until
this instant. Otherwise, for synthesis purposes, a Fourier trans-
form must be taken at each sampling instant. For this reason, it
will probably be of interest to constrainM to be a power of two,
so that the FFT algorithm may be used.

Another question is that of initialization. As mentioned previ-
ously, the Kirchhoff-Carrier system (1) requires two initial condi-
tions,u(x, 0) and ∂u

∂t
(x, 0). Scheme (11) also requires two initial

conditions,P0 andQ
1
2 ; due to interleaving, they do not occur at

the same time instant.P0 may be rather simply set as
√

ρ times

the Fourier expansion coefficients of∂u
∂t

at t = 0, butQ
1
2 requires

a more delicate treatment. The simplest means of proceeding is
simply to find the setQ

1
2 to be

√
T0 times the cosine expansion

coefficients of the spatial derivative∂u
∂x

at time t = 0 (perhaps
through spectral differentiation of the initial displacementu(x, 0),
or some other means). This means that we will have to accept a
first-order error, due to the offset in the initial data. Alternatively,
it is possible to develop a special scheme to be used only once, for
initialization purposes [19].

4. NUMERICAL SIMULATIONS

In this Section we present a few simulation results, using the algo-
rithm (11). In Figure 1 we show snapshots of the time evolution of
a steel string, under center-plucked conditions, for a variety of am-
plitudes (parameters as given in the caption to the figure). For low
amplitudes (left column), the motion is, as expected, very similar
to what one would expect from the wave equation, i.e., a triangular
initial displacement gives rise to simple propagating “corners.” As
the amplitude is increased (second and third columns), the trun-
cated triangular shape becomes progressively more distorted; no-
tice also that the corners propagate more rapidly for higher ampli-
tudes. This is in line with what we expect of nonlinear plucked ex-
citations, i.e., there should be an increased wave speed, leading to
an increased perceived frequency of oscillation (if it can be called
that). This point is made more clearly in the upper row of Figure
2, where we show the displacement of the string center as a func-
tion of time, for the same plucking conditions as in the columns
of Figure 1. As a test of the energy conservation properties of the
algorithm, we have also plotted the difference between string en-
ergy and the initial energy, normalized by the initial energy, as a
function of time, in the bottom row of Figure 2, for the same set
of excitations. Notice that the energy error is zero, to machine
precision.

5. CONCLUSIONS

We have discussed here an extension of Fourier techniques to a
nonlinear model of string vibration. The algorithm presented in
this paper is a special case of what is known as aspectral method
[28, 29]. In short, the spatial derivative operator has been approxi-
mated by frequency domain multiplication, and is thus exact (i.e.,
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Figure 1:Time evolution of the profile of a string described by the
Kirchhoff-Carrier equation, under the application of the energy-
conserving difference scheme(11); the string is of length0.65 m,
made of steel (of linear densityρ = 6 × 10−4 kg/m and with
Young’s modulusE = 2 × 1011N/m2), of cross-sectional area
A = 3.6×10−8m2, under tensionT0 = 120N, and is subject to a
triangular (center-plucked) initial condition. Snapshots are taken
at timest = 0 s, t = 0.000166 s, t = 0.000333 sandt = 0.0005
s, for a variety of initial amplitudes: (a)0.01 m, (b)0.05 m, and
(c) 0.1 m.

has no truncation error), at least over the range of solutions which
may be expressed in terms of a fixed number of sinusoidal compo-
nents. In particular, the spatial accuracy is far greater than that of a
finite difference scheme for the same system [18]. Time discretiza-
tion limits temporal accuracy to second order; it would, of course,
be possible to use higher-order accurate methods (perhaps of the
Runge-Kutta variety) for time integration, but we have chosen a
simple interleaved scheme in order to highlight the special energy
conservation property which is crucial for stability analysis. In-
deed, a robust stability guarantee is of paramount importance for
sound synthesis, especially for real-time applications; this can be
difficult to achieve for nonlinear systems. We have also shown
a means of controlling parasitic oscillations, which, interestingly,
arise independently of numerical stability.
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Figure 2: Time waveforms and energy error, for the string of pa-
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plucked) initial conditions, of amplitudes (a)0.01 m, (b) 0.05 m,
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