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ABSTRACT

Soundsynthesismethodscan be interpreted,from a mathe-
matical point of view, as a collection of techniquesof selecting
and conceptuallyorganizingelementsof a Hilbert space.In this
sensemathematicspeing a highly structuredand sophisticated
systemof classificationmodelingandcategorizationseemso be
the naturaltool to describeexistingsynthesisnethodsandto pro-
posenew ones. Becausefrom this perspectivepne canthink of
any available(or theoreticallypredictable or imaginable)synthe-
sis methodasa collectionof procedureso dealwith meaningful
parametersyith theterm”synthesisby mathematicainodels”we
meanan extensiveuseof the modelingand categorizatiorpower
of mathematics applied to the world of sounds.

In this paperwe give a few examplef soundsynthesigech-
nigues,basedon mathematicamodels. After reviewing shortly
FM synthesisand synthesidiy nonlineardistortion,and suggest-
ing some,to our advice,interestingopenproblems,we propose
two different new methods:synthesisby meansof elliptic func-
tionsandsynthesidy meansf nowhere(or almost-nowhereglif-
ferentiable functions and lacunary series.

The resultingwaveformshave beenproducedusing CSound
as an audio engine, driven by Pythseripts.

1. INTRODUCTION

A soundsynthesismethodis mainly an organizationtechnique:
eachmethodselectsa parametrizectollection of soundsamong
all theelementf a Hilbert space.To everychoiceof afrequency
v it is naturallyassociatedhe Hilbert spaceof functionsof period
T = % interpretedasthe collectionof all possiblesynthesizable
soundswith thatfundamentafrequency.Fromthis point of view,
a synthesistechniqueis a selectionstrategy. FM synthesis for
example selectssoundshy meansof threeparametersthe carrier
frequencyw., the modulatorfrequencyw,, andthe modulation
index I. The celebrated formula

sin(wet + I sin(wmt)) = Z Ji(I) sin(wet + kwmt)
keZ

which is at the basisof the FM miracle, allows us to think of an
FM soundasan elementof a Hilbert spaceH of functionsof a
certainperioddeterminedvy we, wm, I. Whenw,, is a multiple
of w., for everyvalueof I the soundproducedstaysin the same
Hilbert spaceof functionsof periodT = ui The mathemati-

cal modelis a curve, for which we proposefhe nameof Bessel
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curve, : Ry — H definedby 5(I) = {Jr(I)}rez. Leaving
w, fixed, changingw,, causes/our curve wanderingarounddif-

ferentHilbert spaceswhoseperiodis determinedoy w,, andI.

Thereforethe completemodelof FM synthesicanbeinterpreted
geometricallyas a surface(the Besselsurface)in a mathemati-
cally complicatedbbject,definedasthe parametrizedamily of all

Hilbert spacef functionsof positive periods. Adding variabil-

ity in w. generates three-dimensionamnanifold (the Bessel3D

manifold.)

An obviousquestionto askis how manysoundsyou getem-
ploying this procedure. Fourier’s theoremessentiallysaysthat
you canproduceeverypossiblesound(with a given fundamental
frequency)by additive synthesis. It is unlikely to expectto ob-
tain with just two oscillators(as opposedo infinitely many)the
sameresult.In geometricaterms,thiswould meanthatthe Bessel
curveis a space-fillingcurve,whatfor manygoodreasonsve are
temptednot to believe. Still, the questionremains. Experience
suggestshat the numberof FM soundsis huge,which is akin to
say that the Besselcurve goesarounda lot. The mathematical
questionis whatdoesa lot mean.Maybe,evenif it doesnot pass
throughevery point of the Hilbert space the Besselcurve might
eventuallypassneareach. Thenthe questionbecomesvhatdoes
nearmean.Analogousquestionsanbe askedfor the Besselsur-
faceandthe BesseBBD manifolds.We think of theseasinteresting
open problems.

More generally. FM synthesiscanbe seenasan exampleof
nonlineardistortion. You takea sound(the carrier)andyou mod-
ulateit with the help of a function (the modulator). The abstract
frameworkis to takea function f : R — R, anddefinea non-
linearoperatorf : H — H by the obviousformula[f(s)](t) =
f(s(t)), Vs € H. Takinginto accountsometechnicahypotheses
onthefunctionf, whichwe arenotgoingto discusshere this pro-
videsyou with agood(in somesuitablesensenonlinearoperator
ontheHilbert spaceH (mathematiciansall it a Nemytskiopera-
tor.) FM modulatorsareanexample pthersareChebisheypolyno-
mialsandoperatorglefinedin termsof finite summatiorformulas.
Hereagain,thereis a vastamountof pure-mathematicajuestions
to be answeredwhich arelikely to be meaningfulfor the world
of synthesisAre thereotherexamplef Nemitskyoperatoraith
a predictablebehaviourfrom a spectralpoint of view? In mathe-
maticalterms,canyou describethe actionof someNemytskiop-
eratorsvia the actionon somebasef the Hilbert space”™aybe
basesothersthanFourier’s, like Bessel’'sor Gabor’sor wavelets,
orwhatever.Or: whathappensf you perturbanice-behaveodper-
ator (like,for example, &hebyshev polynomial?nd so on.We
think of theseasa sampleof manyinteresting(very) openprob-
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lems.

In this paperwe proposetwo examplesof soundsynthesis
methoddasednwell-knownandhighly developegiecef math-
ematicalknowledge,the theory of elliptic functionsandthe the-
ory of lacunaryserieswith its cornucopiaof nowhereor almost-
nowhere differentiable functions.

Elliptic functionsare complexfunctionsof a complexvari-
able,doubly-periodicandmeromorphic Double-periodicityis the
main reasonof interestfor the synthesisof sounds. The classof
doubly-periodidunctionscontainsasa particularcasethe classof
simply-periodicones.But, asis frequentlythe casein mathemat-
ics, the passagérom realto complexworld allows the discovery
of deeprelationswithin objects,invisible from a one-dimensional
perspectiveThink, asa perspicuousnetaphorpf therelationsbe-
tweentrigonometricfunctionsandthe exponentialwhich demand
the introductionof complexnumbersto becomeapparent. One
of the mostimportantresultsof the theoryis thatanytwo elliptic
functionsareconnectedy an algebraicrelation. This is patently
falsefor simply-periodicfunctions: think of e* ande®”. Theim-
plicationsarethatyou can,in principle,transformany soundinto
any otherby manipulatinga few coefficientsof two polynomials.
Also, asa consequencejou canexpressany elliptic function as
arationalfunction of somechosersimpleones,which play, soto
say,therole of abasisthemosthistorically establisheahoicebe-
ing that of the Weierstrasso andits derivative’. Meromorphy,
which is the causeof the beautifulformulas,bringsin singulari-
ties. In an expressivevay (see[4]), one couldsay thanoiseis the
price one hasto pay in orderto havean algebraof sounds. But
noiseappearsn avery controlledandstructuredmanner.Sounds
producedby elliptic functionsarevery rich, the richnesscoming
from thefine structureof the spectrumproducedby the existence
of singularities.

Theinterestfor synthesiof continuoushowhereandalmost-
nowheredifferentiablefunctionslies in the fact thattheir graphis
incrediblyjagged.Again, this givesriseto interestingsounds.The
surprisingfact is that this wild behaviourcan be describedvery
simply in termsof Fourier coefficients. Here are two examples,
discussed later on:

oo

R(z) = % sin(k*z) 1)
k=1

which is called the Riemann function, and

W(z) = i a” cos(b"rx) (2)
k=0

0<a<1l, b>1 ab> 1+ 3n/2, banoddintegerwhichis

the Weierstrasgunction. In both casednehasgapsbetweerthe
frequencie®f two adjacentermsof theserieqthereasorthesese-
riesarecalledlacunary),gapswhichincreaseask becomedarger.
Herethe situationseemso be oppositewith respecto the former
case. While spectraof soundsproducedby elliptic functionsare
veryrich, dueto thepresencef zoneswith ahigh densityof spec-
tral lines,in this casethe spectralinesaresparse Still, thephilos-
ophyis the same:to producea largeorganizecdlassof interesting
soundspy manipulatingfew well-understoocgarametersAt the
end of the paper,we reproducethe image a simple interfacein

CSoundo play aroundwith lacunaryseriesandto experimenthe
dramaticakchangesn timbredueto smallvariationsin theparam-
eters. The CSoundfiles, plus an archiveof soundswaveforms,
spectraPythonscriptsand Mathematicanotebookgelatedto the
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items discussedn this article can be downloadedfrom the site
http://www.musicainaudita.it.

2. COMPUTATION AND SOUND SYNTHESIS

All the waveformsdescribedn this article havebeencomputed
using Pythonand CSound. The main strategyis to performall

the computationausing free softwareavailablefor different plat-
forms (to havea tight control both at computationandrendering
level). Theideato coupleanaudioengine(the acousticcompiler
CSound)with a scriptinglanguage(Python)is motivatedby our
maingoal: high flexibility andefficiency,togethemwith high qual-
ity audio files.

Amongthe possiblechoicesof acousticcompilersandscript-
ing languagesthere were many reasonsto choosePython and
CSound. First of all, CSoundis free and availablefor all plat-
forms. lIts file format (a coupleof ASCII files, namedOrchestra
andScore)is awell knownstandardvith thousandsf usersspread
aroundthe world. Finally Csoundcouldrun offline on a personal
computer, on a workstation or even atinux cluster.

About the scriptinglanguagespur interestwas addressedo
Python,sinceit is free,cross-platformandobject-orientedPython
allowsin naturalwaythecreationof efficientandeasy-to-maintain
softwareenvironmentmoreoverit allowstheintegrationinto web-
sites, using CGl.

Python hasbeenusedto producethe right CSoundfiles to
drive the acousticcompiler,accordingto the mathematicamodel
takeninto account. In somecases,thanksto the mathematical
librariesavailable(math for usualtrigpnometryand cmath for
complexanalysis),it hasbeenusedto quickly developnumerical
calculationpackageso computeactualvaluesof the audio sam-
ples. After thecomputationsPythonscriptspreparehe scoreand
orchestrdiles to generatehe waveformaccordingto the sampled
valuesobtained. In a certainsensewe can say that CSoundis
playing the role of digital-to-analog converter.

In other situations(for exampleswhen computingwith the
RiemannandWeierstrassowheredifferentiablefunctions),audio
files havebeencreatedby CSoundby additive synthesis.In this
casePythonhasbeenusedto setup theinstrumentusingCSound
opcodes.

Couplingan acousticengineand a scripting languagewhich
includesacomplexandwide setof mathlibraries,opensupawide
rangeof possibilities which run from algorithmiccompositiorus-
ing CSoundnstrumentsandscoresto thecompletdow-level con-
trol of audio samples.

Soundsynthesidy mathematicainodelsbecomesin thisway,
the combinationof two well distinct activities,eachof them per-
formed by an optimized system: numerical calculations(using
Pythonscripts)and soundproduction(CSound). The two phases
could be carriedon independentlyevenat differenttimesandon
different platforms.

3. SYNTHESIS BY MEANS OF ELLIPTIC FUNCTIONS

3.1. Elliptic functions

Synthesisby meansof two-variablesfunctionshasbeeninvesti-
gatedin manydifferentways(see.e.g.,[1], [2]) sincethe pioneer-
ing articleof Mitsuhashi([3]). Theusualpointof viewis to choose
a surface,a closedcurve (orbit) on the surface,andto producea
waveformsamplingthe function on the curve. Orbits play a very
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importantrole in n-variablesynthesistheir shapeandgeometrical
characteristicaffectingthe final waveform. Closedorbits return
periodicwaveformsandopenorbits (suchasspirals)seemto bea
promising tool to explore time-evolving sounds.

With respecto theexistingliterature we decidedto usecom-
plex functionsof a complexvariable,asopposedo realfunctions
of two real variables. The main reasonfor this choice, alluded
to alreadyin the Introduction,is that complexanalysisis a very
rich andsuccessfuinathematicatheory,with astrongtendencyto
bring to the surfaceunseerrelationsbetweenreal objectsandto
organize sparse arguments in a very articulated structure.

Let us come to the definitions.

A function f : C — CU {co} is doublyperiodicwith periods
wy andws if w1 andwy arelinearly independenbver R and if
f+w) = f(z) = f(z 4+ we) forall z € C. An elliptic
functionis a meromorphicdoubly periodicfunction. For w; and
wy fixed, the correspondingelliptic functionsform a field. The
parallelogranwith vertices0, w1, w2, w1 +ws containingthesides
adjacento the origin, but not containingthe othertwo, is called
the fundamentaparallelograniI. Beingperiodicwith respecto
thelattice L in the complexplanedefinedby the periods,onecan
think of elliptic functionsasfunctionsonthetorusC/L. Thishas
not only the structureof a two-dimensionasmoothmanifold, but
alsoanintrinsic structureof a Riemanrsurface determinedy the
periodsv: andws. Varyingtheperiodsyougetadifferentcomplex
structureon the same(on a topologically equivalent)underlying
realtorus. You associatsoundgo elliptic functionswith thesame
methodasin everyn-dimensionakynthesisyou choosea closed
curveon the torusandrestrictthe function to the curveto obtain
a coupleof periodicwaveforms,the real andimaginaryparts. It
is temptingto think of the coupleasa stereophonisound andtry
to createauditoryimagesof complexanalysis. Anyway you can
enjoythefreedomto experimentwith anyalgebraic(or evennon-
algebraic,for that matter)combinationof the two. It is worthy
to point out that, as opposedo the real case,you do not havea
single soundassociatedo a function and a closedcurve, but an
infinite family. Of course,the shapeof the chosenclosedcurve
playsalsoa dominantrole in the sonicresults.To beginwith, one
candistinguishbetweentwo big families: shrinkablecurvesand
non-shrinkabldcurveswhich wind aroundthe holesof thetorus.)
Within the former class,the meaningfuldistinction seemsto be
betweercurveswhichgoaroundapole (andhowmanytimes),and
curveswhich do not. In the latter classthe meaningfulparameter
is probablythe numberof tours the curve makesarounda hole
(winding number). The simplestfamily of curvesof the second
classarehelices,obtainedby projectingon thetorusC/ L straight
linesin thecomplexplanes Extensiveexperimentationkavebeen
carriedon, usingthe slope(which affectsthewinding numberin a
readablevay) asavaryingparameteiWe referagainto thequoted
site of Musica Inaudita for the records.

Thereis an entire zoology of famouselliptic functions,con-
nectedto eachotherby a variety of well-known (andlesswell-
known) formulas. We referto [5] and[6] for an extensivetreat-
mentof the subject. In this paperwe give just one example the
Weierstrass g, defined as follows:

1 1 1
o0 =5+ Y | soon - ) ©)
weL
wherethe sumis takenover the setof all non-zeroperiods,de-
notedby L’. This seriesconvergesiniformly on compactsetsnot
including the lattice points. What makeselliptic functionssoin-
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terestingfor audio synthesisis the fact, alreadyrecordedin the
Introduction,thatyou candescribeany of themin termsof some
chosencollection of specialfunctions. Electing, aswe did, the
Weierstras$unctionasour maincharacterthesignificanttheorem
becomes:

Theorem. Any evenelliptic functionis a rational
functionof . Anyelliptic function f canbewritten
uniquely in the form

f(2) = g(p(2)) + ¢’ hp(2))
where gand hare rational functions.

Theexistenceof sucharesultpermitsasystematie@xploration
of the soundquality of different elliptic functions,exploiting the
different possibleformulas. To fix the ideas,one can study the
additive synthesidormulasoffered by the theorem startingwith
p andg’, andproducingrationalfunctionsof increasinglegredn
pand g:

p(z)  +  ©'(2)p(2)

0’(z2) + ¢ (2)p2)

0(z) + ©(2)0%(2)

0’ (z2) 4+ 9 (@) (2)+ p(2))

O"(x) +  o(x) e

3.2. Sound synthesis

Audio samplesobtainedusingelliptic functionshavebeengener-
atedby CSoundusingthe sampledvaluescalculatedby a Python
script. Forthecomputationswe usedthefollowing formulawhich
expresses Weierstrass'sag the sum of an infinite series

2
— s 1 o 2 (z—2kwa)
gO(Z) - 4w% -3 + Zk:—oo cse 2wy n

oo 2 (kwa)
- Zszoo,k;éo cse w1 ™

Thanksto the complexanalysisPythonlibraries,all the com-
putationshavebeenperformedwithout any needfor externalpro-
gramsor resourcesThesamescripthasbeenusedto first compute
the valuesof the elliptic functions,at regularsteps,on the given
orbit, andthento producea couple of scoreand orchestréfiles,
processed by CSound and conveiitedd an audio file.

The revolutionfrequencyof the orbit hasbeenchosenin the

audio range, namely 440 Hz, to have a perceivable audio signal:

x = cos(440 2xt), y = sin(440 27t) 4

In Figuresl-5welist somewaveformsbtainedrom Weierstrass'’s
, using different closed orbits.

4. SYNTHESIS BY MEANS OF CONTINUOUS
NOWHERE DIFFERENTIABLE FUNCTIONS
AND LACUNARY SERIES

4.1. Introduction

In the previous Sectiorwe havepresente soundsynthesigech-
niguearticulatedin two phasessamplecomputingandsoundre-
alization(or better,conversionsinceCSoundworksin this caseas
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Figure 1: Waveformof R calculatedon the circular orbit x =
cos(440 2nt), y = sin(440 27t)

Figure 2: Waveformfrom R calculatedon the openorbit z =
sin(440 27t), y = t(1 + cos(44027t))

Figure 3: Waveformfrom S calculatedon the openorbit z =
sin(440 27t), y = t(1 4 cos(440 27t))

MARAAN

Figure4: Wavefornfrom Rp calculatedon the openorbit z = ¢,
y = 3t (helix)

—
e,
——

Figure5: Waveformfrom Rp calculatedon the openorbit z = ¢,
y = 50t (helix)

adigital-to-analogconverter) For the soundgeneratiorprocedure
describedn this Sectionwe takefull advantagef the capacitieof
CSoundasan additive synthesizerWe againusedPythonscripts
to preparehe Csoundnstrumentsaddingthe right numberof el-
ementanposcillators(describedy theoscil opcode)akinginto
accountthe frequencyand amplituderelations. Once more, the
main advantagen usingthis kind of organizationis a high flex-
ibility andthe possibility to easily createa collectionof CSound
orchestragndscoresaccordingo acertainprinciple (performing
asystemati@xplorationof aparameterandthenrunall thesound
processing together afterwards.

4.2. The Riemann function

The Riemannfunction R : R — R is definedas follows (we
referto [7] for an accuratedescriptionof the world of nowhere
differentiable functions):

R(z) = W2 sin(k*x) (5)
k=1

The Riemannfunction R is continuouson all of R but dif-
ferentiableonly on a setof pointsof measurezero(i.e. R is non
differentiable on a dense subset of R.)

It hasbeenproved,by Gerver[8] [9], Hardy[10] and Smith
[11], that,despitethefactthat R is almostnowheredifferentiable,
it has a finite derivative at points of the form:

. 2p+1 _ _1
To=To Pa€Z Rlzo)=—3 (6)

It might beinterestingto observethatthe valuesof R canbe

explicitly computed at the numbers=z p/q, p,q € Z:

. (B) _ Lq_l si.n<k;m'> "

4.3. The Weierstrass function

TheWeierstrassunctionwasthefirst publishedexampleof acon-
tinuous nowhere differentiable function (1875):

W(x) = i a® cos(b¥rx) (8)
k=0

0<a<l1, b>1 ab>1+3n/2, banoddinteger.
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AN

Figure 6:Waveform obtained from Riemann’sfihction.

Figure 7: Waveformobtainedfrom Weierstrass'siW (a = 0.5,
b =5).

4.4. A graphical interface for lacunary series

Both Riemann’sand Weierstrass'sunctionsare examplesof the

largeclassof functionsdefinedby convergentacunaryseries.Let

{n} (k € N) beastrictly increasingsequencef naturalnumbers
such that w41 /n% > g > 1. The series

E ), einkt (9)
k=1

is called lacunary.

Undersuitableconditionson coefficientsandfrequenciegHardy
conditions}thelacunaryseriesconvergaapidly, offeringthepossi-
bility to easilyobtaininterestingsonicresultsevenusingalimited
numberof oscillators. In this Sectionwe discussan implemen-
tation of aninteractiveinterfacefor soundsynthesisy meansof
lacunary series using eight oscillators.

The formulawhich describeghe waveformsobtainablewith
this software tool is

8
Z an sin(nk27rft) (10)

n=1

1.504500 55,0000

al a2 a3 ad4 a5 a6 a7 ab Exponent BaseFreq

Figure8: CSoundnterfaceto explorethe lacunaryFourier series
with 8 oscillators.
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Figure9: Waveforncorrespondingo the lacunaryFourier series
corresponding to the configuration Bigure 8.

TheinterfacehasbeendevelopedisingMacCsound12] by Matt
Ingalls. The eight sliders on thieft act on the Fourier coefficients
ai,...,as. Theslidersontheright (labeledrespectivelyasexpo-
nentandbasefrequencygctin a self-explanatoryvay. Thechoice
k = 1 givesafull Fourierseries.Choosinganinteger> 1 gives
riseto lacunasin the spectrum.Onecanexperimentn realtime
theenrichmenbf thesoundproducedy themigrationof theeight
spectrakomponentsowardsthe high frequenciesFigure8 shows
a screenshobf the programwhile runningandthe Figure 9 dis-
playsthe waveformobtainedfrom the parametergorresponding
to thesliderconfigurationof Figure8. A lastword onthesliderk.
Theslidermovescontinuouslyandthereforepasseshroughevery
(ideally) realnumberwhile thesymbolk appearingn theformula
standdor naturalnumbers So, this little toy producesnuchmore
thansoundsbtaineddy lacunaryseries.In facttheactionobtained
onasoundtakingrealexponentsnightbedescribedisanonlinear
distortion,definedon a basisof theHilbert spaceof functionswith
the choserbasefrequency.This is relatedto the regular transfor-
mationsdefinedoy MacAdamg13]. To ouradvice,it seemsavery
interesting subject to investigate.

5. CONCLUSIONS

We haveproposedwo (asfar aswe know) newmethodsof synthe-
sis, basedon mathematicamodels. Our belief is thatthe param-
eters,which are significantfor the synthesisare also meaningful
from a pure-mathematicgboint of view. The hopeis that, once
the correspondencsynthesis-mathematiestablishedthe whole
organizingpower of mathematicatheoriescanbe appliedto ob-

tain an analogous conceptual frame by which interpreting sounds.
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