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ABSTRACT 

We present a computationally efficient real-time algorithm for 
constructing audio signals from spectrograms. Spectrograms 
consist of a time sequence of short time Fourier transform 
magnitude (STFTM) spectra. During the audio signal construction 
process, phases are derived for the individual frequency 
components so that the spectrogram of the constructed signal is as 
close as possible to the target spectrogram given real-time 
constraints. The algorithm is a variation of the classic Griffin and 
Lim [1] technique modified to be computable in real-time.  We 
discuss the application of the algorithm to time-scale modification 
of audio signals such as speech and music, and performance is 
compared with other methods. The new algorithm generates 
comparable or better results with significantly less computation. 
The phase consistency between adjacent frames produces 
excellent subjective sound quality with minimal fame transition 
artifacts.   

1. INTRODUCTION 

Magnitude and power spectra, and their time sequences in the 
form of spectrograms, are widely used to represent the time-
frequency structure of audio signals such as speech and music. By 
combining the real and imaginary part of each spectral frequency 
component into a single number, they provide a valuable 
visualization tool with a strong correspondence to how signals are 
heard in terms of frequency content.  However, they do so at the 
expense of information which must be provided in order to 
convert the representation back into an audio signal. 
 

Frequency magnitude representations are also used 
computationally in a number of applications (such as noise 
reduction, signal enhancement, signal source separation etc.), 
where the frequency domain representation of a signal is modified 
before being transformed back into a time-domain signal. In 
general however,  a modified (or arbitrary) magnitude spectrum is 
not a valid representation of an audio signal in the sense that there 
may be only a complex, but no real signal whose STFTM exactly 
matches the modified one. In such cases, we would like to find a 
signal with an STFTM as close as possible to the modified or 
target STFTM. Griffin and Lim [1][2] developed an iterative 
least-squares error method for estimating a real audio signal from 
a modified STFTM (that we abbreviate ‘G&L’). Their algorithm 
monotonically reduces the difference between the target 
magnitude spectrum (MS) and the MS of the reconstructed signal. 
The error measure reaches a plateau for most sounds after 
between 20 and 100 iterations. Though computation is becoming 
less of an issue as computers get faster, G&L is inherently not 

real-time since each iteration must loop over all time frames in the 
signal before the next iteration is computed. As it was originally 
formulated, the method is unusable for applications with real-time 
requirements such as noise reduction in real speech transmission, 
or any application requiring interactive manipulation of the 
analysis and synthesis parameters. Slaney [11] also developed 
techniques to reconstruct time-domain audio signals from 
cochleagrams and correlograms exploiting the G&L technique.  

 
Time-scale modification (TSM) is a process for modifying the 

rate of signals such as speech or music while keeping other 
characteristics such as pitch or formants unchanged. TSM is 
useful in a variety of applications such as music playback. In 
media production for example, TSM is frequently used to 
synchronize the audio signal with the video signal.  TSM is 
typically implemented in the time-domain for computational 
efficiency, but we will demonstrate some advantages to using a 
frequency domain method.  

 
The rest of the paper is organized as follows. In Section 2 we 

review the G&L algorithm and show the details of our Real-Time 
Iterative Spectrogram Inversion algorithm (RTISI) to reconstruct 
the time-domain signal from a given spectrogram. In Section 3 we 
briefly introduce the synchronized overlap and add (SOLA) 
method for time-scale modification and apply the RTISI 
algorithm to that task as well. In Section 4 we evaluate our 
method and compare the results with related methods. In Section 
5 we make conclusions. 

2. RECONSTRUCTION OF TIME-DOMAIN SIGNALS 
FROM THE MSTFTM 

A discrete signal x(n) can be represented as a sequence of STFT’s 
as follows: 

∑
∞

−∞=

−−=
n
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where w is the analysis window, S is the analysis step size and m 
is the index of  the frames of STFT’s. The STFT can be 
considered to be generated by sliding a window w across the time 
domain signal with step size S.  From X(mS,ω) we can exactly 
reconstruct the time-domain signal x(n). However in many 
applications we need to recover the time-domain from the 
magnitude spectrum |X(mS,ω)|, or a modified version |X’(mS,ω)|. 
In Section 2.1 we take a brief look at the G&L method and in 
Section 2.2 we present the details of the RTISI algorithm. 
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2.1. The Griffin and Lim (G&L) Algorithm 

Starting with an initial estimate x0(n) of the original time-domain 
signal x(n),  the G&L algorithm iteratively renews the estimate 
xi(n) at the ith iteration so that the STFTM of the new estimate is 
monotonically closer to the STFTM of the original signal x(n) in 
terms of the distance measure function )](),([ nxnxD i

M
. The 

distance measure is defined as 
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where |X(mS,ω)| is the STFTM of original signal x(n) and 
|Xi(mS,ω)| is the STFTM of the ith estimate xi(n).  
 

G&L uses the following function to update the estimate in each 
iteration, 
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where | X
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i(mS,ω)| is the STFT of xi(n) with the magnitude 
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By the magnitude constraint, X
^

i(mS,ω) has the same phase as    
Xi(mS,ω) and the same magnitude as X(mS,ω) .  A Hamming 
window with L=4S is used, with scaling such that the sum of the 
squares of the overlapping windows is always 1.   This simplifies 
the update function in Equation (3), as the denominator will be 1 
for all n.  

 
Although Griffin and Lim [1] showed that the distance 

measure function monotonically decreases with the increasing 
number of iterations, it was not proven that the algorithm 
converges to a solution with the globally minimum possible error. 
Convergence to a local minimum is possible depending on the 
initial estimate x0(n). The initial estimate also determines the 
number of iterations required. In practice, however, within 100 
iterations this algorithm generally gives a high quality 
reconstruction [4]. 

2.2. The Real-Time Iterative Spectrogram Inversion (RTISI) 
Algorithm 

In order to enable the use of magnitude spectra in interactive and 
real-time applications, the G&L algorithm needs to be modified 
so that a given frame is dependent only upon the current and 
previous frames of the target spectrogram. G&L could also be 
sped up significantly by finding a better initial estimate of phases 
for each frame.  We accomplish both of these goals by employing 
a G&L iteration strategy on the current frame alone, using 
information from the audio frames already reconstructed that 
overlap with the current frame to construct an initial current frame 
phase estimate.  
 

Suppose we already have reconstructed the first m-1 frames of 
the synthesis signal, which we denote as ym-1(n). Let us consider 
the problem of generating frame m. The signal frames already 
generated at this point are illustrated in Figure 1. 

 

 
 
As shown in Figure 1, for m>1 before we estimate the frame 

m, the overlap interval is partially filled by the former frames. We 
use a fixed 75% synthesis window overlap (i.e. S = L/4) in our 
system so that the mth partial frame comes from the overlap-added 
results of the estimation of the frames m-1, m-2, m-3 of y(n), 
while the 4th quarter of frame m is all zero. The partial frame will 
be used to estimate the initial phase in our system as discussed 
below. To distinguish the partially filled frame from the fully 
constructed frame m, we notate the former partially filled frame as 
ym-1(n)w(n-mS), where w(n) is the window function. Now we 
estimate frame m and overlap-add it with the partial frame ym-

1(n)w(n-mS) to generate ym(n).  
 
To generate an initial estimate for the phases of frame m, we 

compute the phase of the partially reconstructed signal using an 
analysis window positioned at the partially constructed frame m. 
This ensures that even the initial phase estimate for frame m will 
provide good phase continuity with the partially-reconstructed 
signal. The Fourier transform of this partial frame is calculated 
with the same normalized Hamming window as in Section 2.1. 
We then apply the magnitude constraint of Equation (4) to this 
Fourier transform keeping the phase unchanged. Next we 
calculate the inverse Fourier transform of this new frequency 
domain signal to get a new estimate of frame m.  If the maximum 
iteration number is not reached, we add frame m to the partial 
frame ym-1(n)w(n-mS), apply the window, and calculate the 
Fourier transform of the windowed summation to get a new 
estimate of the phase. We thus use the update Equation (3) from 
the G&L algorithm in our iterative process but instead of updating 
the estimate of the whole signal x(n), in each step we update the 
estimate of the current frame only. The iterative process is 
illustrated in Figure 2. 
 

There is a special case at the beginning of the signal, where 
we do not have a partial frame to be added to our estimate. Any 
initial phase can be used as the initial phase estimation for the 
first frame. In our experiments we simply use a zero initial phase 
estimate with the target magnitude spectrum and follow the above 
iterative process to generate the first frame of y(n).  

 
When the iterative process ends, frame m is combined with 

the partial frame ym-1(n)w(n-mS) and the process continues with 
advancing frames until the spectrogram frames are exhausted. We 
will refer to this method as the Real-Time Iterative Spectrogram 
Inversion (RTISI) algorithm. 

Figure 1.  An illustration of the partially reconstructed
frames of signal y(n). Before frame m is estimated, there
exists an overlap-added result of the frames m-1, m-2, m-
3 in the range of the frame m window.  The solid line
shows the magnitude contour of the previously
synthesized signal and the dashed lines indicates the
individual frames. 

Frame m Ss Ss Ss Ss 
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Where G&L uses partially reconstructed audio information 

from frames m-3 through m+3 to reconstruct frame m, the RTISI 
method uses information from previous frames only. Also, the 
partial information used to construct frame m with G&L changes 
with each iteration, whereas in the RTISI method, each frame is 
estimated strictly in time order.  

 
The frame-by-frame method admits an obvious source of error 

in that the computation of frame m is based only on part of the 
signal that the target frame m is based upon.  For this reason, 
RTISI cannot generally be expected to match the spectral error 
measure achieved by G&L. The overlap-add procedure adds 
audio to frame m from “future” frames m+1, m+2 and m+3 after 
frame m has already been estimated. This will change both the 
magnitudes and the phases of the given frame when it is analyzed 
following the complete construction of the signal. This can cause 
the addition of spectral energy where the magnitude has already 
been closely matched. However, the future frames overlapping 
with frame m can also compensate for the error resulting from any 
inability to approach the target magnitude spectrum due to 
frequency content not present in the partial signal used in the 
estimation of frame m. Thus, the error in the resulting 
spectrogram is in practice not great, and in any case, inter-frame 
phase consistency is maintained during future frame overlap, 
which prevents a common source of perceptual degradation. 
Furthermore, in the trade-off we gain in speed of convergence 
given the greater information for the initial phase estimate 
available using RTISI. 

3. TIME-SCALE MODIFICATION OF AUDIO SIGNALS 

Time-scale modification (TSM) of signals has long been a subject 
of interest in the audio and speech processing domain.  A key 
challenge in TSM is to change the audio rate, while preserving 
other characteristics such as pitch and timbre. There have been 
several approaches reported to modify the time-scale of an audio 

signal. Such approaches include the G&L method [1], the 
synchronized overlap and add algorithm (SOLA) [4] and its 
various modifications such as WSOLA[5]/SAOLA[6] 
/PSOLA[7], the phase vocoder algorithm [8] and some methods 
for building specific models of speech processes such as the vocal 
tract model[9] and a probabilistic inference model[3].   
 

To achieve time-scale modification, for polyphonic signals 
the phase vocoder method [8] is a common choice. For 
monophonic signals, a time-domain process of overlap and add 
(OLA) is often used as follows. The original signal is first 
windowed at length L with an analysis step size Sa. Then for each 
windowed frame a reconstruction signal of the same length is 
generated and all the regenerated signal segments are overlap-
added with appropriate weights for the synthesis step size Ss.  
However a simple time-domain OLA method does not generally 
work well because the signal segments being overlap-added may 
not be consistent when the audio modification rate (Ss/Sa) is other 
than 1. Different OLA variants modify the basic process to 
improve quality. For example in the SOLA method, the 
reconstructed frame varies within a small range to maximize a 
correlation function to improve the consistency of the scaled 
result.  

 
The reconstruction of the windowed signal can be 

implemented in either the time-domain with a method such as 
SOLA, or in frequency domain with a method such as the phase 
vocoder or the RTISI algorithm do.  Because traditional 
magnitude-spectra-only reconstruction methods in [1][2] require a 
large number of iterations of the analysis-synthesis cycle to 
achieve good performance, the time-domain methods are 
considered to be economical in computation and have been 
applied in many commercial implementations. The time-domain 
TSM methods work well when the modification factor is close to 
1 and when the signal source is monophonic, but the performance 
is often degraded when they are applied to polyphonic sounds or 
when the modification factor is large [10].  

 
The RTISI method is applicable to both monophonic samples 

and polyphonic samples. The relatively small amount of 
calculation required by RTISI and the consistency between the 
adjacent regenerated frames make it applicable to real-time 
applications. In Section 3.1 we describe the use of synchronized 
overlap and add (SOLA) for TSM. In Section 3.2, we discuss the 
implementation of TSM using the RTISI approach, and then 
compare the methods in the evaluation section. 

3.1. Synchronized Overlap and Add Method 

SOLA is a modification of the simple OLA method and it 
provides more consistency between the reconstructed adjacent 
frames. Consider a pulse train across two adjacent windowed 
frames in the source signal. If the TSM rate is other than 1, the 
pulses in neighbouring frames do not line up for the overlap and 
add. This creates artifacts such as additional clicks, false 
frequencies, and reverberation effects. The additional 
synchronization step in SOLA provides a more consistent solution 
across frames.  
 

SOLA aligns the adjacent frames in a way that they are of 
highest similarity where the windows overlap during 
reconstruction in order to maintain original characteristics of the 
audio signal such as pitch. It is achieved by sliding the new 
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Figure 2. Frame-by-frame iterative phase 
estimation process 
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analysis frame along the signal reconstructed so far, which is 
noted as y(n), by an alignment offset kp in a range of [kmin, kmax] 
that maximizes the following normalized cross-correlation 
function: 
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where L is the length of analysis window, Ss is the synthesis step 
size, Sa is the analysis step size, m is the index of current frame, 
and y(n) is the reconstructed signal as so far. The SOLA 
implementation can perform the cross-correlation function of the 
two signals g1(t), g2(t) efficiently by first taking the Fourier 
transform G1(w),G2(w) of g1(t) and g2(t) separately and then 
calculating the inverse Fourier transform of G1(w)*G

_

2(w), where 
G
_

2(w) denotes the complex conjugate of G2(w). 
 

After the best synchronization position kp is found, the 
windowed frame m is overlap-added to the synthesis signal with 
offset kp and the process is repeated for the next frames until the 
whole signal is exhausted. 

3.2. The RTISI Method for Time-Scale Modification 

The way we apply RTISI to time-scale modification follows the 
traditional frequency domain method: for a modification rate α, 
we use an analysis step size Sa to obtain the STFTM and use a 
synthesize step size Ss such that Sa = Ss/α.  The frame lengths in 
the analysis and synthesis process are both L. Here we use a fixed 
synthesis step size Ss = L/4, which keeps computational 
requirements consistent for various modification rates. Given α, 
we use an analysis step size of Ss/α to achieve the modification 
rate. The process is shown in Figure 3. 
 
 

  

RTISI can efficiently achieve excellent inter-frame consistency 
thereby removing the primary obstacle to applying a frequency-
domain method to TSM.   

4. EVALUATION 

The evaluation section is divided into two parts: the evaluation of 
the phase reconstruction performance and the evaluation of the 
TSM application.   

4.1. Phase Reconstruction Performance 

We evaluate the phase reconstruction result using an SNR 
function similar to the one in [3] comparing the spectrogram of 
the reconstructed signal to that of the target: 
 

∑ ∑
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where |Sw(f)| is the STFTM of the original signal,  |S
^

w(f)|  is the 

STFTM of the reconstructed signal, E
^

 is the total energy in the 
reconstructed signal, summations over w and f are over all 
windows and frequencies respectively. 
 

We applied the frame-by-frame time-domain signal 
reconstruction algorithm on a set of 24 test audio samples 
including chirp samples, frequency modulation samples, pulse 
train samples, male speech samples, female speech samples and 
music samples. The average SNR computed by Equation (6) is 
shown in Table 1 for different numbers of iterations. 
 

Iteration 
number 

1 2 3 4 5 10 

Average 
SNR(dB) 

9.25 15.55 16.42 16.62 17.71 18.41 

 
Table 1.  Average SNR measures for RTISI 

 
Table 2 shows a comparison of RTISI with G&L on the same 

test set. We run G&L with 5, 10 and 50 iterations, and we run 
RTISI with 5 and 10 iterations. Figure 4 illustrates the error in the 
frequency magnitude domain for a typical data (taken from a 
vowel sound in male speech). 
 

 SNR  (dB) 
G&L (5 iterations) 10.37 
G&L (10 iterations) 12.16 
G&L (50 iterations) 15.50 
RTISI (5 iterations) 17.71 
RTISI (10 iterations) 18.41 

 
Table 2.  Average SNR results for G&L and RTISI on a 

test set of 24 signals for different levels of iteration. 
 

 
 

L Sa Sa 

spectra 

time-scale  
modified signal 

Figure 3. Time-scale modification in RTISI. 

L Ss Ss Ss 

original 
signal 
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Figure 4.  Magnitude spectra at a particular frame of a 
male speech vowel. Shown are comparisons between the 
original magnitude spectra and  (a) RTISI at 5 iterations, 

(b) G&L at 5 iterations, and (c)G&L at 100 iterations. 
 

Achan[3] recently introduced a method of probabilistic 
inference for computing an estimate of reconstructed signals 
given a spectrogram. To compare RTISI with their method, we 
downloaded the female speech example published by the authors 
on the website http://www.psi.toronto.edu/~kannan/spectrogram/.  
Both the original signal and the reconstruction result of the 
method described in that paper were provided.  A comparison of 
the two methods is shown in Table 3. The SNR figures show 
some improvement using RTISI, however, there are click artifacts 
apparent in the result of the Achan method, the perceptual 
salience of which is not adequately reflected in the SNR numbers.   
  

 SNR  (dB) 
Achan’s method 7.05 
Achan with AR model 7.04 
RTISI (5 iterations) 10.68 
RTISI (10 iterations) 11.86 

 
Table 3.  SNR from different methods for a specific sample 

 
Figure 5 shows the distance between the original signal and 

the reconstructed signal using the measure in Equation (2) for 
both the RTISI method and for G&L.  The initial error of the 
G&L algorithm is large because of the zero phase initialization in 
all frames. Because RTISI uses the partially constructed frame as 
a starting point, RTISI produces a much smaller initial error.  
Furthermore, the algorithm converges quickly compared with 
G&L.taking only a few iterations before reaching a stable value. 
The error for G&L decreases monotonically and it typically 
becomes smaller than that of RTISI after about 15 iterations. 
After the point at which the error functions of the two methods 
cross, the reduction in error for further iteration of G&L is quite 
slow, and reasonable stopping criteria can be chosen to limit 
computational cost.  
 

 

 
 

Figure 5.  Change of distance between the original 
signal and the reconstructed signal for G&L (solid line) 

and RTISI (dotted line).  
 

An obvious extension to the standard G&L algorithm for non-
real-time applications is to run RTISI for one or two iterations to 
produce initial signal and phase estimates, and then proceed with 
G&L thereafter if a further reduction in error is still required. 
Comparing the tradeoffs in detail is part of our current research. 

4.2. Time-Scale Modification Performance 

For TSM applications, we applied the SOLA and RTISI 
algorithms to a variety of audio signal types including speech, 
music and generated signals such as chirp and pulse train.  For a 
pulse train, which is the kind of signal SOLA was specifically 
designed to address, SOLA generates somewhat better results 
than RTISI. But for almost all other sound samples, SOLA does 
not perform as well as RTISI. The computation time for each 
iteration in RTISI is dominated by the fast Fourier Transform 
(FFT) and in each iteration for each N-sample frame we need to 
perform one N-point FFT and one N-point inverse FFT. For 
SOLA, each N-sample frame requires two 2N-point FFT’s and 
one 2N-point inverse FFT.  Generally RTISI achieves very good 
performance using 4 or 5 iterations, in which case the 
computational requirements for the two algorithms are similar.  
 

When applied to polyphonic signals such as pop music, there 
are perceptually obvious artifacts with SOLA, even with a 
modification rate close to 1. Such artifacts include warbling, 
transient doubling and skipping, and tempo modulation. Informal 
listening tests show that RTISI works well for speech as well as 
for polyphonic signals such as music, even at modification rates 
far from 1. For TSM, there are no reference magnitude spectra to 
compare with the modified signal so we do not provide an 
objective evaluation function here, but the artifacts and distortions 
from RTISI are far less audible than those from SOLA. There is 
slight “phasiness” that can be perceived for simple nonstationary 
signals such as a chirp, similar to the problem addressed in [12] 
and [13] in the context of the vocoder, but for richer real audio 
signals the phasiness is not obvious.  

 
Another advantage of RTISI over many time-domain TSM 

methods is that the algorithm makes no pitch estimates or 
periodic-versus-noise decisions. The straight-forward overlap-
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and-add process of RTISI generates high quality results and the 
consistency between successive frames remains across a wide 
range of modification rates. 

 
The most salient artifact produced by RTISI audio 

constructions is a smearing of transient information. The sub-
frame sample-rate temporal information from the original signal 
is not used in the method, and the phase choices are made to 
enforce inter-frame consistency rather than any kind of transient 
pattern. Thus, there are less distracting artifacts like clicks and 
reverberation in RTISI than SOLA, but music loses some its 
“punch” and speech loses a small degree of articulation. The 
effect is most noticeable in highly transient signals such as click 
trains or the sound of a crackling fire. Examples are available at 
http://www.zwhome.org/~lonce/Publications/RTISI.html. 

5. CONCLUSIONS 

The Real-Time Iterative Spectrogram Inversion (RTISI) 
algorithm for constructing real audio signals from a sequence of 
magnitude spectra was presented. The method is based a strategy 
presented by Griffin and Lim [1], but is modified to estimate 
audio frames in sequence rather than in parallel. In addition to 
making the method applicable to real-time audio signal 
construction, the modification allows for better initial phase 
estimates which significantly speed up the convergence toward 
target spectra.  
 

The RTISI method generally approaches, but not matches the 
performance of G&L run at 100 iterations in terms of magnitude 
spectrum error, however, the perceptual quality of RTISI after 5 
iterations is quite good.  If a magnitude spectrum error better than 
that which RTISI can deliver is necessary, the RTISI approach 
with one or two iterations can be used to produce an initial phase 
estimate for the G&L providing a significant speed improvement.  

 
When applied to time-scale modification, RTISI compares 

favourably with the SOLA time-domain method of signal 
modification in terms of computational complexity, and 
favourably in terms of perceptual results on all but a few specially 
constructed signals.  RTISI provides considerable improvement at 
both small and large scaling factors in terms of the absence of the 
clickiness, pitch and reverberation artifacts that plague time-
domain methods of TSM. 

 
Future work is necessary to quantify the frame transition 

artifacts that are not reflected in spectral SNR measures for this 
family of signal reconstruction techniques.  The RTISI method 
will also be explored further in the context of other signal 
modification applications, and for improving the ability to capture 
and incorporate transient behavior from source signals in 
applications where such information is available.   
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