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ABSTRACT

Fast browsing of digital collections of music would largely ben-
efit from the availability of representative audio excerpts of the
pieces. Similar to their visual counterparts found in digital photo
albums, music thumbnails should offer a comprehensive listening
experience while requiring a limited storage space or communica-
tion data rate.

The approach to the generation of musical thumbnails of mu-
sic proposed in this paper is based on an application of the Pitch-
Synchronous Wavelet Transform, where the “pitch” is tuned to
the elementary measure of the piece. The music thumbnail is en-
coded by the low rate coefficient sequence pertaining to the scal-
ing residue of the transform. The scaling component represents
the pseudo-periodic trend of the piece over several measures. Due
to pseudo-periodicity, the time duration of the thumbnail can be
arbitrarily extended in listening with no audible artifacts.

1. INTRODUCTION

In this paper we present an extended application of the Pitch-
Synchronous Wavelet Transform, introduced by one of the authors
[1] [2], which concerns the production of musical thumbnails. We
define an Event-Synchronous Wavelet Transform, whose compo-
nents represent averages and differences of large segments of audio
signals. When applied to the comparison of signal segments of du-
ration equal to a musically relevant period− for example measure,
beat or even phrase− it produces musically relevant components
that can be used in order to enhance the variations of the piece or
to produce average themes.

The problem of both representing and identifying musical
pieces by means of thumbnails has recently gained the attention
of several researchers (see, for example [3], [4], [5], [6], [7], [8]).
Our approach aims at obtaining a representative fingerprint of a
musical piece− or of part of it− by means of a peculiar aver-
age performed over several measures. In some cases a piece can
be well represented by extracting a signal segment whose dura-
tion is a single measure. However, the choice of the proper mea-
sure is very critical so that when the selection has to be performed
by automatic means, chances there are that the extracted measure
will not be very significant. The strategy of averaging over sev-
eral measures makes our thumbnails more robust with respect to
arbitrary selection. Furthermore, the thumbnail includes several
features of the original piece, which are played “in parallel” in a
single measure. This usually provides a comprehensive flavor of
the sonorities present in the piece in the shortest amount of time, a
characteristic that is essential in fast browsing of musical pieces in
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Figure 1:Block diagram of the PSWT.

a database by means of acoustic feedback. Moreover, the particu-
lar organization of the algorithm in an exact transform allows for
progressive downloading of the signal, starting from the thumb-
nail, which is then refined by adding the complementary details
as fluctuations or small scale components. This is the exact coun-
terpart of what is currently available for progressive downloading
of images. The thumbnail provides the flavor, which can be en-
riched in content, if desired, by the detail components to form the
original piece. A further direction of this work, which will be de-
veloped in the near future, aims at automatically classifying and
recognizing musical pieces from their low-rate thumbnails. The
thumbnails extracted with the methods described in this paper are
mostly oriented to perceptual recognition of the piece as opposed
to audio fingerprinting [9], where the problem is that of retrieving
a musical piece from a short fragment.

2. THE EVENT-SYNCHRONOUS WAVELET
TRANSFORM

The thumbnail extraction algorithm developed in this paper is
based on the Event-Synchronous Wavelet Transform (ESWT).
This representation is an offspring of the Pitch-Synchronous
Wavelet Transform (PSWT), which was applied to the separation
of the harmonic resonance from the excitation noise, transients and
wave shape fluctuations in pseudo-periodic (voiced) sounds of mu-
sical instruments [1] [2]. The Wavelet Transform (WT) is a well-
known tool for the multiresolution representation of signals and
images. In the finite representation, the signal is decomposed in
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a low-pass trend (scaling component) plus fluctuations (details) at
several scales. This is obtained by implementing a multirate aver-
age and difference scheme on adjacent signal samples. The PSWT
is a vector generalization of the WT in which signal segments of
one period length are averaged and differenced sample by sample.
The block diagram of the PSWT is shown in Figure 1. There, the
sequenceP (k) represents the local period expressed in number of
samples. By means of a demultiplexer, whose number of output
channels is selected byP (k), the signal is decomposed into syn-
chronous frames, each of one period length. Each frame is stored
in a vectorv(k), whose components correspond to the samples in
one period of the signal. As functions of the time indexk, these
components are individually wavelet transformed in order to ob-
tain the PS wavelet coefficients. The transform can be inverted by
applying the inverse wavelet transform to each vector component
and by multiplexing the result. The sequence of pitch periodsP (k)
is generally time varying, allowing the transform to tune to the lo-
cal pitch even when the latter is a function of time. WhenP (k)
is constant the pitch-synchronous wavelets are comb sequences,
characterized by regularly spaced peaks in the frequency domain,
as shown in Figure 2. The peaks of the scaling functionΦn(ω)
are tuned to the harmonics of the pseudo-periodic signal, while
the peaks of the wavelet functionsΨk(ω), k = 1, 2, ..., n, form
sidebands of the harmonics. Given a set of discrete-time wavelets

ψ̄s,m(k) = ψ̄s,0(k − 2s
m), m = 0, 1, ...; s = 1, 2, ..., n (1)

and associated scaling sequences

φ̄n,m(k) = φ̄s,0(k − 2n
m), m = 0, 1, ... (2)

the PS wavelets and scaling sequences are, respectively, defined as
follows:

ψs,m,q(r) =
∑

k

δ(r − q − P (k)) ψ̄s,m(k) χq(k) (3)

φn,m,q(r) =
∑

k

δ(r − q − P (k)) φ̄n,m(k) χq(k) (4)

where

δ(k) =

{

1 if k = 0
0 otherwise

(5)

and, in terms of the pitch period sequenceP (k), we have:

χq(k) =

{

1 q = 0, 1, ..., P (k) − 1
0 otherwise

(6)

The scaling component in the PSWT representation, which is ob-
tained by projecting the signal over the space spanned by suit-
ably translated versions of the scaling function, represents the pe-
riodic trend of the signal. The projections of the signal over the
PS wavelet subspaces represent fluctuations from the periodic be-
havior at several scales. It must be pointed out that the scaling
projection is encoded in the scaling coefficient at a rate that is2n

slower than the original signal sampling rate.
The characteristic functionχq(k) in (3) and (4) allows us to

deal with time-varying pitch. This method extends the signal as
zero outside the local period. Each change of pitch is regarded as
a transition, mostly shown in the wavelet components. It must be
pointed out that the period extension is arbitrary and it does not
influence the completeness of the representation; other options are
available [1].
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Figure 2:Magnitude Fourier Transform of the PS Wavelets, show-
ing a comb structure tuned to the frequency of the event repetition
(highly increased for display purposes).

The decomposition of signals into a periodic trend plus fluc-
tuations offered by the PSWT representation can be exploited, at
time intervals much larger than the pitch period of audio signals,
for the purpose of deriving thumbnails of music. In this case the
period can be made to coincide to musically significant quanti-
ties, such as the beat or the measure intervals. In fact, in a large
amount of pieces in western music these elements constitute the
smallest units delimiting musical content subject to repetition and
variation. For these reasons we denote the PSWT tuned on mu-
sically relevant time intervals as the Event-Synchronous Wavelet
Transform (ESWT). Intuitively speaking, if the ESWT is tuned
to the time interval of a measure and if the piece is selfsimilar at
this scale then the scaling component will provide a good “thumb-
nail” of the piece, while the wavelet components will complete the
thumbnail with all of the variation details. The pitch-synchronous
wavelet analysis of a limit music piece, where each measure is
equal to the previous one, would have zero wavelet components
and the piece would be entirely represented by the scaling com-
ponent. Similarly, a constant rhythmic pattern will contribute for
most of its energy to the scaling component.

An example of ESWT analysis of a drum pattern hidden in
equal level running water noise is shown in Figure 3. The plots
in Figure 3 (b) and (c) were normalized to the same level and do
not reflect their original levels. In Figure 3(b) the superposition
of all the wavelet components is shown, which audibly represents
the ever changing water noise component. Figure 3(c) shows the
scaling component, which audibly represents the drum pattern. It
should be noted that, due to edge effects (a rectangular window
was applied to both water and drum signals before mixing), a cer-
tain amount of energy of the drum pattern is present at the be-
ginning and ending portion of the separated water noise. Accord-
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Figure 3: Event Synchronous analysis of drum pattern hidden in
running water noise: (a) mixed signal, (b) water noise extracted
by means of sum of wavelet projections and (c) drum pattern ex-
tracted as scaling projection.

ingly, the separated drum pattern presents smaller amplitude at the
beginning and ending portions of the analysis interval. Addition-
ally, some of the water noise leaks into the separated drum pattern
and is audible as low-amplitude periodized noise. This effect de-
pends on both the sharpness of the wavelet analysis filters and on
the number of scale levels, which in the example was fixed to 3.
Since the transform is invertible, the sum of the signals reported in
Figure 3 (b) and (c) is exactly equal to the signal in Figure 3(a).
This property will be of interest in progressive download schemes,
allowing to increase the audio resolution from the thumbnail to the
entire piece. Furthermore, the scaling component is encoded by
low-rate sequences given by the expansion coefficients.

3. EXTRACTION OF MUSIC THUMBNAILS BY MEANS
OF THE ESWT

The ESWT can be directly applied to the problem of extracting
meaningful music thumbnails from recorded pieces. Since the
scaling component of the transform represents an average over mu-
sically significant time intervals (e.g., beat or measure), its charac-
teristics are “musically” periodic. For this reason, in a large num-
ber of pieces a good representative element is given by the central
portion of the ESWT scaling component of duration equal to one
or more musical periods. The duration of the thumbnail can be
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Figure 4: ESWT analysis of excerpt from Mark Isham’s “Many
Chinas”: (a) original signal; (b) sum of wavelet components; (c)
scaling component.

periodically extended in order to provide a longer listening expe-
rience, which perceptually helps to better identify the piece at no
extra data exchange costs. Due to pseudo-periodicity, the juxtapo-
sition of identical “periods” does not introduce listening artifacts.
Moreover, since the transform performs averages over2nM mu-
sical periods, wheren is the number of scale levels andM is the
length in samples of the impulse responses of the filters employed
to compute the transform, then the obtained average spans several
musical periods. For example, if the chosen musical period is the
measure, then a 3 scale level transform based on 11 samples im-
pulse responses yields an average over 88 measures! The ESWT
scaling component is robust with respect to transitory variations
of the musical content. Even replacing an entire measure with si-
lence, as we did in a few experiments, does not affect the scaling
component, which tends to replace the missing part with the aver-
age period.

An example of ESWT analysis of the piece “Many Chinas” by
Mark Isham (Vapor Drawings, Windham Hill Records) is reported
in Figure 4. The central period (≈ 0.8 sec.) of the scaling compo-
nents in Figure 4(c) yields the music thumbnail shown in Figure 5.
Here again the components were amplitude scaled to equal level.
The sound of the obtained thumbnail contains most of the accom-
panying atmosphere and is devoid of variations, which allows one
to closely identify the piece.

Tuning the transform to the given piece presents a two-fold
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Figure 5:Music thumbnail of the piece by Mark Isham correspond-
ing to one period (≈ 0.8 sec.).

problem. The first issue is both aesthetical and interpretative and
concerns the choice of the suitable musical period. While for
a large class of music pieces the choice of the period equal to
the measure is particularly relevant, there are many exceptions in
which other quantities such as beat or phrase length intervals are
more interesting and produce more meaningful thumbnails. An
approach to the automatic extraction of the suitable period could
exploit the similarity analysis concepts described in [10], [11], [5]
[8], where the piece is first scanned in order to detect similar parts
and then similar parts are averaged via ESWT in order to obtain
the thumbnail.

The second issue concerns the development of a reliable event
detection algorithm that allows one to synchronize the ESWT with
the chosen musical period throughout the piece. It should be noted
that the ESWT allows for time-varying tracking of musical period
in order to synchronize, e.g., with variable tempo. In our simple
examples we employed an estimate based on the deterministic au-
tocorrelation of the signal. In order to enhance the estimate, the
signal is bandpass filtered before computing the autocorrelation.
The result is shown in Figure 6. The position of the leftmost max
at non-zero lag provides the relevant estimate of the large-scale
periodicity of the piece. It can be noted that the autocorrelation
function peaks at points coinciding with the tempo. However, the
largest peak corresponds to a 4/4 measure lap, which allows us
to synchronize the ESWT to this interval. With this choice, the
music excerpt of Figure 4(a) yields an ESWT thumbnail capturing
the self-similarity of the piece. This is apparent if one compares
Figure 7 with Figure 8, where Foote’s similarity measure based
on normalized MFCC scalar products are reported, respectively,
for the original piece and for the ESWT scaling component from
which the thumbnail was extracted.

It must be pointed out that the autocorrelation based measure
tracking algorithm works well with musical pieces with rhythms
cadenced by drums, claps or periodic musical textures. In more
critical situations one should resort to more refined note onset, beat
and measure estimation methods, as found in [12], [13], [14].
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Figure 6: Autocorrelation of bandpass filtered M. Isham’s piece
excerpt.

4. RESULTS AND CONCLUSIONS

In this paper we introduced an algorithm for extracting thumb-
nails of a musical piece based on the suitably defined Event-
Synchronous Wavelet Transform. The obtained thumbnails cor-
respond to averages of the musical content over several musical
periods (measures). These averages can be computed by means of
a comb filter (obtained by periodization of a low-pass filter) whose
spacing is tuned to the relevant musical period. A property that
supports the use of wavelet transforms rather than generic comb
filters is the possibility to implement progressive download from
the thumbnail to the entire piece.

The results illustrated in the figures correspond to a sin-
gle piece. However, we tested the algorithm for a variety of
pieces in different genres. We remarked that our thumbnail ex-
traction method works expecially well with music cadenced by
stable rythmic patterns and it works worse with pieces consist-
ing of solo music themes. Examples are available at the site
http://acel.na.infn.it/thumbnails. More accurate
psychoacoustic tests to be performed both on musicians and on
wider audience are on the way.

A further direction of our work is to explore the use of the
ESWT thumbnails for the classification of musical pieces, as ap-
plied to the search in large databases. In this context, it will be
relevant to study the influence on recognition of the wavelet com-
ponents containing the details.
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Figure 7: Similarity map of M. Isham’s piece showing regularity
over measure.
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Isham’s piece, showing highly increased regularity over measure.
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