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ABSTRACT 

This paper presents digital models for analog phaser and flanger / 
chorus effects. The structure of analog phasers is reviewed. The 
operation of two phaser implementations is analyzed and nonlin-
ear digital models are presented for them. The models are based 
on cascades of one-pole filters with embedded nonlinearities and 
are suitable for real-time implementation. Modifications to stan-
dard digital flanger / chorus effect are also presented. A method to 
warp the delay time to more closely resemble the behavior of 
bucket brigade delays is presented. Also a simple model for com-
panders used in such analog effect units is presented. 

1. INTRODUCTION 

The term “modulation effect” generally means an audio effect 
where some parameter is changed (modulated) in a periodic fash-
ion. This differs from the stricter signal processing interpretation, 
where modulation means some form of shifting the frequency 
spectrum of a signal [1]. The most common modulation effects are 
phaser, flanger and chorus, which will be dealt with in this paper. 
For more comprehensive treatise on audio effects, see [2]. 

A phaser, or a phase-shifter as it was originally called, gener-
ates a number of notches in the signal spectrum. The position of 
the notches is modulated by a Low Frequency Oscillator (LFO) 
using typically a sinusoidal or a triangle wave. The synchronized 
sweeping of the notches causes a characteristic “whooshin” sound. 
Phasers are popular among guitarists but they are also often used 
with synthesizers. 

A flanger mixes a slightly delayed signal with the original, 
acting as a comb filter. This produces a large number of regularly 
placed notches in the spectrum. As the delay time is varied (again 
with an LFO), the notches move up and down in the spectrum, 
creating a somewhat similar sound to phaser. As the notches are 
spaced regularly and extend up to infinity, flangers tend to sound 
more metallic than phasers. Flangers often add feedback from 
delay output to input to produce a number of peaks to emphasize 
the effect. 

For chorus, a longer delay is used. The ear perceives this as a 
doubling effect, giving the impression of several instruments 
playing at once (such as in a string ensemble for example). Vi-
brato can also be produced with a modulated delay, although it is 
not a very common effect. Vibrato is otherwise similar to flanger, 
but only the delayed signal is used. 

1.1. Digital modulation effects 

The phaser effect has been implemented digitally using time-
varying allpass filters [3]. A number of allpass filters are placed in 
series and the phase shifted signal is mixed with dry signal. This 
results in notches (destructive interference) at frequencies where 
the phase shift of the allpass chain is (1+2N)180 degrees. This is 
similar to the analog approach, but as the allpass filters are sec-
ond-order filters, the center frequency and the bandwidth can be 
independently controlled. 

Digital flanger and chorus effects use fractional delay lines to 
produce a time varying delay [4]. Mixing the delayed signal with 
dry signal makes them essentially time-varying comb-filters. 
Adding feedback transforms the comb-filter from pure FIR to IIR 
comb-filter. Digital fractional delay lines have been extensively 
reviewed in [5]. 

Recently there has been interest in modeling specific analog 
circuits. Certain effect units are held in high regard for their char-
acteristic sound. For example the Moog lowpass filter has been 
modeled in [6]. 

This paper presents a generic model for analog phaser effects, 
as well as two different implementations for the individual phase 
stages. The implementations model the inherent non-linearities of 
the analog circuits. All parameters of the digital model are based 
on values of the analog components, and thus no hand tuning is 
required. 

Additions to existing flanger / chorus models are also sug-
gested that alter the behavior to more closely resemble analog 
implementations. A separate variable speed delay line is used to 
model the delay-time behavior of analog bucket brigade delays. A 
method of warping the modulation curve of standard modulated 
delay is also presented for a simple approximation. Additionally, a 
model for a compander often present in such devices is shown. 

2. ANALOG PHASERS 

Figure 1 shows the structure of a typical analog phaser. Analog 
phasers have four or more first-order allpass filters connected in 
series whose output is mixed with the input. Each allpass filter 
generates a total phase shift of 180 degrees, producing one notch 
for every two stages. Modulating the center frequencies with an 
LFO moves the notches in frequency and produces the characteris-
tic swooshing sound. Typically the sound is accentuated by feed-
ing back some of the unmixed allpass chain output to produce one 
or more frequency peaks in the spectrum. 
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Figure 1: Structure of typical analog phaser. 

A digital model likewise uses four or more allpass filters in se-
ries. First-order digital allpass filters are used to preserve the 
allpass nature of the circuit. If a specific analog circuit is to be 
emulated, the center frequencies should be selected to match it’s 
properties. The feedback is also implemented in the same way, but 
a unit delay is inserted to make the structure realizable. This 
causes the frequencies of the resonances to differ from those of the 
analog circuit, but as the feedback amount is typically low the 
difference can likely be ignored. 

The allpass filters can be implemented by several different 
methods [7]. Early designs, such as the Uni-Vibe, used light de-
pendent resistors to alter the cutoff frequency of an RC-circuit. 
Later in the 70s, Field Effect Transistors (FETs) were used as 
voltage controlled resistors in units such as MXR Phase90. Elec-
tro-Harmonix Small Stone phaser used Operational Transconduc-
tance Amplifiers (OTAs). Even pulse-width modulation has been 
used to imitate a voltage controlled resistor (the technique is 
similar to switched-capacitor filters). 

The FET and OTA circuits will be analyzed in closer detail 
next. 

3. OTA ALLPASS STAGE 

Figure 2 shows a schematic of an OTA based allpass stage [7]. An 
Operational Transconductance Amplifier produces output current 
that is the product of control current Ictrl and voltage between the 
V+ and V- input terminals [8]. In the circuit, the OTA is used as a 
voltage controlled resistor, which sets the center frequency in 
combination with capacitor C. Resistors R1 sum the input voltage 
and the buffered capacitor output voltage while resistor R2 attenu-
ates this combined voltage suitable for the OTA input. 

R1

C

Vin

R1R2

Vout

Ictrl

 

Figure 2: Schematic for OTA allpass filter circuit. 

3.1. Differential equation for OTA allpass stage 

The OTA output current is given [8] by 
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where V+ and V- are the voltages at the OTA input terminals and 
Vt is the thermal voltage of a transistor [9] (typically 25 mV at 
room temperature). As V+ is connected to ground, this can be 
written as 
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The differential equation for voltage over capacitor C is then 
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We leave the solution in this form as it results in a simpler discrete 
time model instead of writing the equation in terms of input Vin 
and output Vout. 

3.2. Difference equation for OTA allpass stage 

This differential equation can be solved using Euler’s method to 
produce a digital difference equation. To simplify the process, we 
use an extra variable w(n) to denote the voltage over capacitor C. 
Euler’s solution for Eq. (3) is  
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where xn is the input signal and fs is the sampling rate. The final 
output is then  
 )()()( nwnxny += . (5) 

For small signals the tanh-function can be considered linear 
and the difference equation behaves as a first-order digital filter. 
When analyzed, the filter has two flaws. The filter only ap-
proaches allpass for low center frequencies with substantial low-
pass effect appearing with high center frequencies. Substituting 
x(n)+x(n-1) for 2x(n) in Eq. (4) makes the filter true allpass. 

Another problem is the non-linear tracking of center fre-
quency to control current unlike with the analog version. This can 
be remedied by observing that, for small signals, Eq. (4) is very 
similar to the scaled impulse invariant transformed one-pole low-
pass filter [10]. 

Figure 3 shows the corrected filter structure. 
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Figure 3: Digital model of an OTA allpass filter circuit. 
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The corrected difference equation is 
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4. JFET ALLPASS STAGE 

Figure 4 shows the schematic for a first-order allpass filter where a 
JFET-transistor is used as voltage controlled resonance [7]. Resis-
tor Rp is inserted in parallel with the JFET to ensure that the signal 
is never completely cut off. Control voltage Vg determines center 
frequency along with capacitor C.  The two resistors R along with 
the operational amplifier form the rest of the circuit. 

R

R

C

Vin Vout

Vg
Rp

 

Figure 4: Schematic for FET allpass filter circuit. 

4.1. Differential equation for JFET allpass stage 

A JFET transistor has the following current-voltage characteristic 
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where Ids is the current through JFET, IDSS is the drain-source 
saturation current (manufacturing constant, typically around 1 
mA), Vgs is the voltage between the gate and the source terminals, 
Vds the voltage between the drain  and the source, Vp is the pinch-
off voltage of the JFET (also a manufacturing constant, typically –
1 V to –5 V) and λ depends on the so-called Early-voltage [9]. λ is 
typically very small and can in this case be safely ignored. 

Figure 5 shows the Ids-Vds transfer curve of a typical JFET 
transistor (Vp = –3 V, IDSS = 1 mA). The nonlinearity can be 
clearly seen, especially for low Vg. 

The voltages at the operational amplifier terminals are 
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Figure 5: JFET transfer curve. 

Eq. (9) can now be written as 
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As Vg and V+ are the only non-constant terms in Eq. (13), we will 
use Ids(V+,Vg) in its place. The current through capacitor C is then 
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For small signals 
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Some phasers used a method of linearizing the JFETs by feeding 
some of the drain signal to the gate. For these circuits, equation 
(16) should be used. 

From equations 14-16, it can be seen that the center frequency 
is  
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which will prove to be useful for a discrete-time model of FET 
phase stage. 

4.2. Difference equation for JFET allpass stage 

For discretization of equation 14 we again introduce a temporary 
variable wn denoting the voltage over capacitor C. Euler solution 
for Eq. (14) is 
 )1()()( −−= nwnxnu , (18) 
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The final output is then 
 )(2)()( nwnxny −= . (20) 

This difference equation suffers from the same problems as 
the first attempt for OTA-based phaser stage. The stage is easily 
converted to true allpass filter by splitting 2wn in Eq. (20) so that 
 )1()()()( −−−= nwnwnxny . (21) 

Figure 6 shows the corrected FET allpass stage. 
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Figure 6: Digital model of a FET allpass filter. 

The filter still suffers from the digital warping of center fre-
quency. wn is seen to be a first-order lowpass filter. For a lowpass 
filter in the form 
 ( ))1()()1()( −−+−= nynxgnyny , (22) 

coefficient g can be calculated with 
 )2exp(1 sc ffg π−−= . (23) 

Then if Rp is held constant, the center frequency of the digital 
allpass filter can be corrected by scaling Ids so that 
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Figure 7: Comparison of OTA and JFET phasers for sinu-
soidal input. 

4.3. Comparison of OTA and JFET phasers 

Figure 7 shows the output from the two phaser models for a single 
sinusoidal input. The frequency of the input sinusoidal is 1000 Hz. 
The input amplitude is higher than usual to better illustrate the 
effects of the nonlinearities. 

The center frequencies of the phasers have been selected to 
better show the generated harmonics by placing a notch at the 
sinusoidal frequency. The symmetric distortion in OTA lowers the 
gain and thus center frequency. Therefore the actual center fre-
quency has been adjusted to match that of the JFET phaser. 

5. ANALOG FLANGER AND CHORUS 

The flanger is a close relative of the phaser effect. While phaser 
produces a constant limited number of notches in the spectrum, 
the flanger produces infinitely many notches that are spaced at 
constant intervals. The flanger works by mixing a delayed copy 
with the original signal and modulating the delay time. As such, 
the flanger is a special case of a comb filter. Typical delay times 
are around a few milliseconds. If the delay time is increased to 
tens of milliseconds, ear perceives the effect as an additional 
voice, producing a chorus effect. 

Analog delays are realized with so-called Bucket Brigade De-
lay (BBD) chips [11]. These have a large number of capacitors in 
series with switches between them. An external clock is used to 
turn on and off the switches and thus propagate the signal within 
the chip. As the number of capacitors, or taps as they are called, is 
fixed, the delay time is changed by varying the clock. 

While a BBD delay is analog and does not quantize the signal 
like digital delays, it still samples the signal. Therefore, proper 
anti-aliasing and anti-imaging filters are required before and after 
the delay IC. These are typically 2nd to 4th order filters. The output 
anti-imaging filter also serves to filter out the considerable clock 
bleed-through noise. 

Because BBD delays have a large number of stages in series 
through which the signal is propagated, the signal-to-noise ratio is 
typically poor. This is especially true for longer delays, such as 
those used in chorus effects. To alleviate this, the circuits often 
contain a compander, which contains a matched compressor and 
expander. The compressor is placed before the BBD delay and the 
expander after. Figure 8 shows the structure of a typical system 
using a BBD delay line. 
 

Compressor

BBD delayline

Expander

LPF LPF

LFO
 

Figure 8: Structure of analog flanger / chorus circuit. 

158 - DAFx'05 Proceedings - 158



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFX-05), Madrid, Spain, September 20-22, 2005 
 

 

5.1. Simulating a BBD delay line 

A BBD delay line differs from a digital delay in several ways. The 
most obvious is the limitation of constant length and severely 
limited output tap choices (typically only one). BBDs also suffer 
from heavy clock bleed-through at the output, attenuation of high 
frequencies, distortion and generally poor signal-to-noise ratio. 
Emulating these latter artifacts would require intimate knowledge 
of the BBD chip internals and likely heavy computation. For these 
reasons we limit our simulation to modeling only the limit on 
constant delay line length. 

As the delay line length is fixed, the delay time can be varied 
only by changing the clock rate. This is equivalent to changing the 
sample-rate with time and has two effects: First, if the clock rate is 
varied linearly, the delay time will be roughly proportional to 1/x. 
Second, as the clock-rate changes, the output sample-rate is not 
the same as the rate the audio was sampled in to the BBD. This 
causes some warping of the delay-time curve, especially if there 
are fast transitions or abrupt changes in the clock rate. Note that, 
unlike with digital delays, discontinuities in the modulating signal 
do not produce discontinuities in the delay time. 

Figure 9 shows the delay time curves for BBD and digital de-
lay in a chorus effect. Both BBD and digital delay are modulated 
with 2.5 Hz triangle wave and their minimum and maximum delay 
times are matched. The warping of the BBD delay-time is clearly 
visible.  
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Figure 9: Delay time of a BBD and a digital delay. 

A straightforward emulation of a BBD delay line would con-
sist of resampling the input audio to BBD delay line. The BBD 
output would likewise be resampled back to DSP samplerate. This 
is obviously a very costly operation. Most resampling methods 
require some lookahead, which will additionally complicate mat-
ters. An alternative is to store time positions instead of samples in 
the BBD delay. Figure 10 shows the process.  

 

Sampling
instant Sampling

instant

BBD input BBD output

 

Figure 10: Digital simulation of a BBD delay line. 

For each sample, the BBD output is sampled to find the stored 
time position. Current time is subtracted from the stored time and 
the result is used to address a conventional fractional delay line to 
produce the final output. After this, the BBD delay line position is 
advanced fclock/fs bins. If this counter rolls over one or more bins, 
the time positions of the roll-overs are stored in those bins. 

Compared to the naïve resampling algorithm, this method can 
use linear interpolation for evaluating the time positions. For the 
final output any fractional delay algorithm can be used. These 
have been heavily researched, with a good overview given in [5]. 
The computational cost is then the cost of fractional delay and 
calculating the time positions. Calculating the position for output 
sample requires just a single multiply (for linear interpolation). 
However, calculating the time position of each bin requires a 
division and a multiply. If several bins fall within a single sample, 
the positions of additional bins can be calculated by simple addi-
tion. Therefore the total cost is approximately one division, two 
multiplies and some additions per sample. 

One might ask if it was possible to still reduce the computa-
tional cost. For an N tap BBD, as the clock rate fclock approaches 
constant, the delay time td becomes 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

clock

s

clock
d f

Nf
f

Nt ,avg , (25) 

where avg(x, M)  is an M-point moving average filter. As the 
length of the moving average filter is fractional and varies with the 
clock rate, the equation does not produce exact results. However, 
as the main effect on the delay time is some smoothing, the re-
maining inaccuracy is unlikely to be significant if fclock is replaced 
by its average value when calculating M. This modified algorithm 
then requires only a single division, a single multiplication and 
two additions per sample. 

5.2. Compander model 

As mentioned before, the BBD delays have a poor SNR. This gets 
worse as the number of taps is increased and the clock rate de-
creased, so circuits that use long delays often contain a compander 
to increase the SNR. A compander consists of a matched compres-
sor to reduce the dynamic range before a low SNR transmission 
path and a matched expander to restore the dynamics back to 
original. For more detailed discussion on workings of compressors 
and expanders, see [2].  

One such common IC is NE570 [12]. The circuit contains two 
matched 1:2 expanders, each having a precision full-wave rectifier 
with averaging capacitor, a variable gain amplifier and an op-amp. 
A 1:2 expander has the transfer function 
 xxy )avg(= . (26) 

As the input drops by 6 dB, the average also drops by same 
amount, resulting in a total drop of 12 dB, hence 1:2 expansion. 
Similarly as the input increases, the gain increases by the same 
amount. If such expander is placed in the feedback loop of an op-
amp, the transfer function becomes 

 
)avg( y

xy = . (27) 

By series expansion, it can be seen that for a constant input, the 
gain approaches √2, resulting in a 2:1 compressor. 

159 - DAFx'05 Proceedings - 159



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFX-05), Madrid, Spain, September 20-22, 2005 
 

 

The averaging is accomplished by a full-wave rectifier, two 
resistors and a capacitor in the NE570. Figure 11 shows an equiva-
lent circuit for the averager. 
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Figure 11: Schematic of the averager in NE570. 

The differential equation for voltage over capacitor C is  
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where R1 is the input gain resistor and R2 is an internal resistor 
(10kΩ). Equation (27) can be written as 
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making it obvious to be a lowpass filter with cutoff frequency 
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and gain 

 
1

2

R
RG = . (31) 

The compander can therefore be trivially modeled by equa-
tions (26) and (27) and two first-order lowpass filters. 

6. CONCLUSIONS 

Operation of analog phasers has been reviewed and digital models 
have been presented for two different analog phase stages. The 
phase stages have been shown to be first-order allpass filters with 
embedded nonlinearities, resulting in a simple digital implementa-
tion. The models can be used to emulate various different analog 
phaser effects with only minor parameter changes and possible 
modifications to the overall effect structure. As the phase stages 
contain nonlinearities, some oversampling is required. Informal 
tests suggest that two to four times oversampling is enough for 
almost all cases. The oversampling also helps to reduce any mis-
match in the position of feedback resonances. 

Additionally, a simple model has been shown for modeling 
some characteristics of analog delay based effects, such as flang-
ers, choruses and delays. The model works together with tradi-
tional fractional delay line techniques, resulting in more accurate 
delay time behaviour. The model requires only a small number of 
additional operations making it well suited for real-time systems. 
A model for companders often present in such effects is also 
shown. The model is equivalent to simple expander and compres-
sor and two first order lowpass filters requiring only minimal 
computation. 
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