
Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

J-DAFX - DIGITAL AUDIO EFFECTS IN JAVA

Mijail Guillemard, Christian Ruwwe and Udo Zölzer

Department for Signal Processing and Communications
Helmut-Schmidt-University

University of the Federal Armed Forces Hamburg, Germany
{mijail|christian.ruwwe|udo.zoelzer }@hsu-hh.de

http://ant.hsu-hh.de

ABSTRACT

This paper describes an attempt to provide an online learning plat-
form for digital audio effects. After a comprehensive study of
different technologies presenting multimedia content dynamically
reacting to user input, we decided to use Java Applets. Further
investigations regard the implementation issues - especially the
processing and visualization of audio data - and present a general
framework used in our department. Recent and future digital ef-
fects implemented in this framework can be found on our web site.

1. INTRODUCTION

The purpose of our work is to provide a learning platform for stu-
dents and everyone interested in digital audio signal processing [1]
and digital audio effects [2]. This guidance should come in a very
handy andeasy-to-useformat so that everyone can handle it with-
out being a computer expert. In contrast to the general purpose
investigations of [3] and [4], we will concentrate on this e-learning
platform only.

Several approaches for usage in this application have been
investigated: a stand-alone application, plugins for well-known
audio applications and web-enabled multimedia tools including
Macromedia’s Flash and Java Applets. Chapter 2 will give a short
summary of these tools and their pros and cons. We decided to
use Java Applets for our purpose. In Chapter 3 you will find some
details of the implementation done in Java.

2. MULTIMEDIA TOOLS

2.1. Key Features

There are several possibilities to provide students with guidance
and helping tools for the lectures like [1] and [2]. To select the one
fitting to our needs, four key issues have been proposed:

1. the algorithmic functionality

2. the user interface (GUI)

3. sound I/O

4. and the local computer environment

The first question is, what functionality is needed? In the end
there should be at least some kind of sound produced by the com-
puter, demonstrating the effect. This could be done by a simple

playback of audio files, but there would be no dynamics enclosed -
reacting to user input. In this simple approach parameter changes
have to provided as different audio files.

Another requirement is to provide some adjustable parameters
of the effect algorithm to the user. Of course, this should be in a
handy and easy-to-use format like a graphical environment (GUI).
The user can twist the knobs or move sliders up and down. The
algorithm has to adapt these changes (almost) immediately.

After including some parameters, the next question is, what
kind of audio source the algorithm will process. A generated sinu-
soid, a more complex but fixed melody or a complete audio file?
The first two choices are easy to handle: build and pack everything
what is needed into the code. But the latter one is more appropri-
ate for demonstrating different audio effects. Every effect has its
own goodsounds where it behaves well and produces clearly its
effect, and vice versa. In some effects there isn’t any hearable dif-
ference when applied to single sinusoids, for example. So we have
to provide some entry points for audio files in our application. The
benefit of this effort is that the user can even use his own private
and favored audio files.

So far we only handled the application side. Now we will
come to the environmental side. Every application needs an op-
erating system (OS) around it to provide some basic input/output
functions. Most of this world is divided into two parts: the Mi-
crosoft one and the rest, called Unix/Linux (nowadays the Mac
users belong to them). For use on the campus or even the World
Wide Web, there is noright choice to be made. To be precise, for a
wider range of users and user acceptance, one should at least serve
these two OSs.

2.2. Implementational Issues

In the following we will compare different approaches to use in
presenting digital audio effects. In addition to the four key issues
above, there are more to keep in mind: as always, an algorithm
or an application will not be static over time, so there is need for
some maintenance. But the more complex the application, more
time will be wasted for bug fixing and maintenance. Besides the
easy-to-use issue we have to regard it to beeasy-to-program.

Since there are several audio effects to implement in the fu-
ture, all of them bare a common base: in its core every effect is

161 - DAFx'05 Proceedings - 161

http://ant.hsu-hh.de

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

a black box working as a simple input/output machine with some
additional parameters. So there is a need to represent this com-
mon basic functionality in a programmable framework used for all
forthcoming audio effects. We will investigate the possibilities of
every approach in this sense, too.

2.3. Stand-alone application

The very first and (not mandatory) easiest way to do this is to write
a single stand-alone application. You are not fixed to any program-
ming language, but instead you can use anyone you like. Using
this language for all audio effects, you can surely build up your
own framework to use. You can even switch between different
programming languages - if you want, but this will make it even
harder to maintain the bunch of code in the future.

There are at least two drawbacks in writing your own applica-
tion: there is no software or library already written for use in audio
applications, for example, well-known applications like Steinberg
Cubase or Adobe Audition. So you really have to do everything on
your own, including handling driver problems with the audio hard-
ware and building your own graphical environment from scratch.
The second - and even bigger - drawback is the platform depen-
dency: you have to maintain two (totally different) applications,
one for each of the OSs. To circumvent this problem, one can use
platform-independent programming tools like Sun’s Java (as we
will see later) or Microsoft’s .NET.

2.4. Plugins

Why don’t we use the well-known audio applications as the basis
for input/output of audio files and only provide the audio effect
as an optional plugin (or AddIn) inside this application? Well,
instead of arguing with platform dependencies, now you have to
handle different plugin-architectures. Favored architectures are,
for example: Steinberg VST (Virtual Studio Technology) [5] or
Microsoft DirectX.

Another possible drawback is the installation of a host appli-
cation on every users PC, which provides this VST- or DirectX-
interface. In our campus-orientation this is not applicable because
in general there is no student who owns one of this general-purpose
audio applications, and even there are few ones who are willing to
do a test installation with a demo version.

All in all, we don’t need this bunch of functionality these ap-
plications provide. Going back to a simple input/output system, we
will find tools almost everyone will already have on his computer:
audio players like Windows MediaPlayer, WinAmp or the Linux-
correspondent XMMS. These tools provide all we need, and even
use a plugin architecture to extend their functionality. Microsoft’s
MediaPlayer uses DirectX again, of course. WinAmp and XMMS
share a different but common plugin framework. So again, we
have to provide and maintain at least to different versions of the
audio effect: one for the Microsoft Windows world, and one for
the rest.

All of the plugin architectures provide a more or less sophisti-
cated abstraction layer for the graphical environment. This way it

is easier to build your own GUI, without programming the details
and platform specific things. For example in Steinberg’s VST a
complete general purpose GUI is included (as far as the host ap-
plication provide the whole interface!), and you simply have to
announce the number of your parameters.

2.5. Macromedia Flash

Macromedia Flash is a browser plugin used in the World Wide
Web to present multimedia content and to handle user interaction.
This tool seems to fit perfectly our needs: platform-independent,
small amount of user effort for installation of the flash-plugin (if
not already done), easy handling of multimedia content (audio and
video) and basic GUI elements for user interaction. But coming to
the point: there is no possibility to interact directly with the mul-
timedia content! You can arrange and playback different parts of
audio/video files but you cannot process them through an effect al-
gorithm.

So, besides all the positive properties of this technology, it vi-
olates our very first key issue. Therefore it is not usable for our
purpose.

2.6. TheProcessingLanguage

Processing[6] is an open source and cross platform programming
language for multimedia content. It is based on the Java program-
ming language, but with new graphics and utility API, and it is
tailored to the specific needs of processing and presenting mul-
timedia content. Even being a rapidly growing environment, it
currently doesn’t support processing of audio content. You can, of
course, playback audio files (i.e. wav-files), but there is no entry
point for your algorithm to process the audio samples. Maybe this
will be an interesting alternative in the future.

2.7. MATLAB implementation

The well-known engineering environmentMATLAB is always a
good idea when designing an algorithm. Programming is done in
a script-like manner, and debugging is very easy due to its inter-
pretative nature.

Despite these obvious advantages this is not an interactive tool
and there is no way to use it over the internet or some other remote
protocols in an easy-to-use manner. The tutorials are intended to
give a very brief overview of what can be done with digital au-
dio effects without having to know anything about audio samples,
programming and data representation. So we will spend no further
time for a deeper investigation on this field. (For audio effects us-
ing MATLABsee for example [7], [8], [9] and [10].)

2.8. Java Applets

Finally, driven by the platform-dependencies of all the other tech-
nologies, we come to the Java programming language. Its purpose
is to provide a platform-independent layer, a so called runtime-
environment, on which you can build up your specific application.
Again you can choose to build stand-alone applications written in

162 - DAFx'05 Proceedings - 162

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

Java. Alternatively - coming back to the World Wide Web - you
can develop small applications, called applets, and include them
directly on a web page.

We choose the latter one because there is no need for the user
to download or install anything on the computer. Regarding our
campus-driven development, this is a big issue, since the adminis-
trative access to university-PCs is prohibited for normal users.

Keeping in mind the other 3 key features:

• Adding effects to an audio file:
we have to grab some source of sound, process the audio
sample with an effect algorithm and play them back to the
soundcard.

• The graphical environment:
we can build using Java libraries like Swing for GUI ele-
ments.

• Using arbitrary audio files:
opening and closing of files either from the web server or
from the local file system.

When trying to access the local file system, Java will prevent
this at first hand due to the strict security settings of applets. To cir-
cumvent this problem, one can provide some kind of certification
to the applet. The author certifies his code and the user can trust or
deny this certificate. Applying the certificate the access to the file
system will be granted, denying it the applet can only access the
files stored at the remote web server. Albeit it is still usable, only
restricted to some predefined sound files. The full functionality
can only be retrieved by downloading the applet and running it on
a local web page or by accepting the provided certificate.

In the following section we will describe our basic framework
implemented in Java. All recent and future audio effects built for
our web page are based on this framework as a common base.

3. JAVA IMPLEMENTATION

So far we have implemented the following audio effects, that can
be found on on our website

http://ant.hsu-hh.de/jdafx

• Quantization
Demonstrates audio effects resulting from Quantization. It
is designed for a first insight into the perceptual effects of
quantizing an audio signal. It is a Quantizer with optional
Dither and Noise Shaping.

• Audio Filters
This applet demonstrates audio effects resulting from Au-
dio Filters. The following filter functions can be selected:
Low-Pass/High-Pass, Shelving Filter and Peak Filter

• Nonlinear Signal Processing
Audio effects resulting from signal distortion with a nonlin-
ear transfer function.

• Psychoacoustics
It is designed for a first insight into the perceptual experi-
ence of masking a sinusoidal signal with band-limited noise.

• Delays
This applet demonstrates audio effects resulting from delay-
based algorithms. One amplitude-modulation and three delay-
based audio effects can be selected: tremolo, vibrato, cho-
rus, and flanger.

• Fast Convolution
An applet calculating a room impulse response using the
fast convolution technique. The user can adjust the shape of
the impulse response by the amplitude and the exponential
decay of a random signal.

For a more specific view, we will describe some details of our
Delay Applet(Figure 1).

3.1. The Delay Applet

The code in an audio effect applet is divided into two main parts:
a common base class (controlling the audio data flow and manag-
ing the GUI elements) and the algorithm class (depending on the
effect itself). The interface between these classes descibe all the
dependencies like parameters used in the GUI, or processed sam-
ple values by the effect algorithm.

Depending on the context of the algorithm, there may be sev-
eral helper classes, i.e. for calculations with complex values or
computing the FFT [11].

Figure 1:Screenshot of the Delay applet.

3.2. The GUI

The current GUI used in the DAFx applets has three components:
buttons for loading and playing audio files, graphical display of
algorithm information, and controls for algorithm settings. The
objective of this structure is to provide an easy to use interface that
can process an audio file while varying algorithm parameters. The

163 - DAFx'05 Proceedings - 163

http://ant.hsu-hh.de/jdafx

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

graphical display of algorithm information is a central component
of the GUI: it can represent block diagrams, frequency response
curves, or any graphical view representing parameters modifica-
tions.

This GUI structure is an answer to some key features origi-
nally discussed in section 2: as a target we want to demonstrate an
audio effect by playing and processing an audio file, and offer the
user the possibility to adjust algorithm parameters. The option of
playing a predefined audio sample, or processing a local audio file
are also considered.

3.2.1. Playing audio files

The first GUI component is then composed of several buttons for
loading and playing audio. There are two predefined files that can
be downloaded from the main server. The idea of this feature is
to prepare for the user special audio examples that can be used for
each specific algorithm. For instance, the vibrato and other delay
effects can be conveniently experienced with clean guitar music
sounds. A plain sine wave is more adequate for understanding
a quantization and dithering procedure. Psychoacoustic masking
phenomena can be tested with band limited noise. The playback
of each of these predefined audio files can be activated or stopped
with buttons in the upper side of the applet graphic interface. An
additional button for loading local audio files allows the user to
experiment with its own audio material.

3.2.2. Visual Presentation

The second GUI component displays algorithm information. Each
algorithm has different characteristics that are useful to represent
graphically. In addition to the listening experience we have then
a diagrammatic explanation of the audio effect. For instance, in
the equalization applet the frequency response of each filter is the
main graphical interface output. For the case of the quantization or
delays applets, the block diagram of the algorithms are used as vi-
sual representations. For some audio effects, plotting the spectrum
or waveform makes the understanding of the algorithm functional-
ity easier.

3.2.3. Control elements

The third GUI component are sliders, knobs and other controls
used for the interaction with the algorithm. Modifying the param-
eters of the algorithm has an auditive and graphical interface ef-
fect. In the case of the equalization applet, sliders can be used to
modify the filter behavior. This modification is perceived almost
immediately in the processed sound, and represented graphically
in the plot of filter frequency response.

Notice that in this case different slider behaviors are available.
On the one hand, a linear scale allows controlling linearly the filter
frequency position. On the other hand, a logarithmic behavior is
also available, as it is more convenient for handling low frequency
limits.

In the case of the quantization applet, we have option knobs
that can be used to select different algorithm configurations: among

others we have quantization with or without dithering or quantiza-
tion with or without noise shaping. When the user selects a spe-
cial algorithm configuration, the graphical interface is updated by
showing the corresponding block diagram.

jSlider1.addChangeListener(this);
jSlider1.setMaximum(200);
jSlider1.setValue(0);

All the handling of GUI elements is event based. The cor-
responding event handler for the sliders is included in the applet
class as follows:

public void stateChanged(ChangeEvent e)
{

JSlider source = (JSlider)e.getSource();

if (source.equals(jSlider1)) {
// automatic filter correction
double scale = (double)

jSlider1.getValue();
mAlgorithm.setParameter(scale);

}
...

// destroy the drawing
// (paint() will make a new one)
repaint();

}

3.3. Java Sound

Sound routing and processing is included in the Java libraries since
the very first Java version1.0. But this first implementation only
supports8 kHz sampling rate. It is not usable for presenting audio
effects.

Few things have been added in version1.1, but since version
1.3 several enhancements have been made to the core libraries.
Now different (and higher) sampling rates are supported, and all
the classes managing the different I/O interfaces - described in the
next section - have been introduced.

A new technology - the Java Media Framework (JMF) - gives
rise to new possibilities in processing and presenting multimedia
content. Since the JMF is an enhancement to Java, it is not in-
cluded into the basic runtime environment. We don’t consider it
here, because the user has to make some additional installations of
the JMF.

The audio administration routines in the DAFx applets are per-
formed with three main structures

• AudioSystem
TheAudioSystem is a class that acts as an entry point for
the sampled-audio system resources. In particular this class
allows loading a specific audio file requested by the user.

• AudioInputStream
TheAudioInputStream is the class responsible for read-
ing the requested audio data.

164 - DAFx'05 Proceedings - 164

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

• DataLine
TheDataLine is an interface that prepares, together with
theAudioSystem class, a line target for the audio (a sound-
card or a loudspeaker).

Additionally the algorithm class is a fourth structure playing
a main role in a DAFx applet. This class encapsulates the main
processing function, and all required mechanisms for the actual
algorithm. For example, in the equalization applet a filter class
supports the algorithm by administrating different filter structures
(low pass filters, high pass filters, Shelving filters and peak filters).

// get the file
inputStream = AudioSystem.

getAudioInputStream(inputFile);

// open AudioInputStream
AudioFormat format =

inputStream.getFormat();

// open a dataLine as target
// (soundcard/speaker)
DataLine.Info info = new DataLine.Info

(SourceDataLine.class, format);

SourceDataLine dataLine = null;
dataLine = (SourceDataLine)

AudioSystem.getLine(info);
dataLine.open(audioFormat);
dataLine.start();

As soon as the audio input is loaded with theAudioSystem ,
aDataLine is prepared to be used with the audio output. A loop
is then activated, and successive chunks of audio data are read by
theAudioInputStream .

// allocate memory for the audio data
ByteBuffer data =

ByteBuffer.allocate(BLOCKSIZE);
data.order(ByteOrder.LITTLE_ENDIAN);

ShortBuffer shortData =
data.asShortBuffer();

byte[] byteData = audioData.array();

// read the samples blockwise
nBytesRead = inputStream.

read(byteData, 0, BLOCKSIZE);

The applet algorithms are sample-based, although the support-
ing Java classes are block-based [12]. In reducing the block-size,
the overhead in processing time is increased, but the introduced
block delay gets lower. So there is a tradeoff between available
CPU and processing resources and the hearable delay. For the
sake if simplicity we are working with a constant blocksize of128
samples.

All the internal calculations are done in floating point arith-
metic. So the integer values - 2 bytes in little-endian order - have
to be transformed in a normalized floating point value, and vice
versa afterwards.

// the main process algorithm block
// is now done for this data block
for (int n=0; n<nBytesRead/2; n++) {

short sampleIn = shortData.get(n);

double outValue = mAlgorithm.process
(sampleIn/32768) * 32768;

shortData.put(n, (short)outValue);
}

The processed audio is then sent to theDataLine , and the
final result is an audio output flow played by the loudspeaker.

// write the processed block
if (nBytesRead >= 0) {

int nBytesWritten = dataLine.
write(byteData, 0, nBytesRead);

}

3.4. Design patterns: Strategy pattern

The object oriented features of the java language allows to design
flexible code for the dafx applets. For instance the delays applet
has several algorithms that can be selected at run time. The cor-
responding graphical interface, as slider positions, need to be up-
dated accordingly.

Figure 2:The Strategy Pattern.

For this case, astrategydesign pattern (Figure 2) allows a sim-
ple and clean implementation of these features [13]. An abstract
class representing the algorithm is handled by the graphical inter-
face classes. Each specific algorithm is implemented as an instance
of this abstract class. Due to the abstraction, and the common in-
terface, it is then possible to conveniently switch between several
algorithms dynamically.

abstract class delaysAlgorithm {
public abstract void

cleanStateCoefficients();
public abstract void

setParameter(double input);
public abstract String

getStringParameter();
public abstract double

process(double entry);
}

165 - DAFx'05 Proceedings - 165

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

class tremoloAlgorithm
extends delaysAlgorithm {

public void cleanStateCoefficients()
{ ... }
public void setParameter(double input)
{ ... }
public String getStringParameter()
{ ... }
public double process(double input)
{ ... }

}

3.5. Design patterns: Mediator pattern

The communication between several classes is an important issue
when handling multiple algorithms in the same applet. It is nec-
essary to avoid a tangled class structure, and instead it is better to
build a clean design where the code is easy to maintain.

Figure 3:The Mediator Pattern.

In the previous example of the delays applet, several algo-
rithms are interacting with the graphical interface. For this situ-
ation amediatordesign pattern (Figure 3) can be used as a com-
municator between the graphical interface classes and the algo-
rithms [13]. When the user selects an option in the applet interface
(e.g., the user wants to bypass the algorithm), the mediator is up-
dated. All algorithm instances are then notified via the mediator.
In this way the communication complexity is concentrated in the
mediator class. We can then maintain the code with a minimum
amount of changes, keeping the same design and class communi-
cation flow.

4. CONCLUSIONS AND OUTLOOK

We have presented a basic but extendable framework for imple-
menting digital audio effects. Our effects can be used online - di-
rectly through the internet - and they are interactive. No additional
hard- or software except an internet browser and a soundcard is
needed.

So far we have implemented several applets for use in research
and teaching. And still there is much more to do. The applets and

their source code are freely available for everyone interested in par-
ticipating the development. Licence details and contact addresses
can be found on our website

http://ant.hsu-hh.de/jdafx .

The next steps include converting the common Java base classes
into a general purpose effect framework as in [14]. It should be
possible to derive a new effect class directly from the framework,
without knowing all the internal processes.

5. REFERENCES

[1] Udo Zoelzer, Digital Audio Signal Processing, John Wiley
& Sons, New York, 1997, ISBN 0-471-97226-6.

[2] Udo Zoelzer et al.,DAFX - Digital Audio Effects, John Wiley
& Sons, New York, 2002, ISBN 0-471-49078-4.

[3] Nicola Bernardini and Davide Rocchesso, “Making Sounds
with Numbers: A Tutorial on Music Software dedicated to
Digital Audio,” in Proc. of the COST G-6 Conference on
Digital Audio Effects (DAFX-98), Barcelona, Spain, Nov.
1998.

[4] Nicola Bernardini, Damien Cirotteau, Free Ekanayaka, and
Andrea Glorioso, “Making Sound with Numbers, six years
later,” inProc. of the COST G-6 Conference on Digital Audio
Effects (DAFX-04), Naples, Italy, Oct. 2004.

[5] Steinberg,VST 3rd Party Developer Support,
http://ygrabit.steinberg.de/.

[6] Ben Fry and Casey Reas,Processing,
http://processing.org/.

[7] Fernando A. Beltŕan, Jos R. Beltŕan, Nicolas Holzem, and
Adrian Gogu, “Matlab Implementation of Reverberation Al-
gorithms,” in First COST-G6 Workshop on Digital Audio
Effects (DAFX98), Barcelona, Spain, Nov. 1998.

[8] Yusuf Jafry, “A modular realtime PC-based Audio Process-
ing Tool for Efect Developers, Engineers, Musicians and Ed-
ucators,” inProceedings of the COST G-6 Conference on
Digital Audio Effects (DAFX-00), Verona, Italy, Dec. 2000.

[9] Joseph Timoney, Thomas Lysaght, Marc Schoenwiesner, and
Lorcn Mac Manus, “Implementing Loudness Models in
MATLAB,” in Proc. of the COST G-6 Conference on Digital
Audio Effects (DAFX-04), Naples, Italy, Oct. 2004.

[10] Bob L. Sturm, “MATConcat: An Application for exploring
concatenative Sound Synthesis using MATLAB,” inProc. of
the COST G-6 Conference on Digital Audio Effects (DAFX-
04), Naples, Italy, Oct. 2004.

[11] Robert Sedgewick AND Kevin Wayne,Introduction to Com-
puter Science, http://www.cs.princeton.edu/introcs/home/.

[12] Daniel Arfib, “Different Ways to write Digital Audio Effects
Programs,” inProc. of the COST G-6 Conference on Digital
Audio Effects (DAFX-98), Barcelona, Spain, Nov. 1998.

[13] James W. Cooper, Java Design Patterns: A Tutorial,
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[14] Pablo Fernandez-Cid, Javier Casajus, and Lino Garcia, “A
Java Framework for FX Development,” inProc. of the
COST G-6 Conference on Digital Audio Effects (DAFX-00),
Verona, Italy, Dec. 2000.

166 - DAFx'05 Proceedings - 166

http://ant.hsu-hh.de/jdafx
http://www.hsu-hh.de/ant/index_pQHYME4jIWn0nHAS.html
http://www2.hsu-hh.de/ant/dafx2002/DAFX_Book_Page/index.html
http://www.iua.upf.es/dafx98/papers/BER42.PS
http://www.iua.upf.es/dafx98/papers/BER42.PS
http://www.iua.upf.es/dafx98/papers/BER42.PS
http://dafx04.na.infn.it/WebProc/Proc/P_350.pdf
http://dafx04.na.infn.it/WebProc/Proc/P_350.pdf
http://ygrabit.steinberg.de/
http://processing.org/
http://www.iua.upf.es/dafx98/papers/BEL05.PS
http://www.iua.upf.es/dafx98/papers/BEL05.PS
http://profs.sci.univr.it/~dafx/Final-Papers/pdf/JafryFinalDFX00.pdf
http://profs.sci.univr.it/~dafx/Final-Papers/pdf/JafryFinalDFX00.pdf
http://profs.sci.univr.it/~dafx/Final-Papers/pdf/JafryFinalDFX00.pdf
http://dafx04.na.infn.it/WebProc/Proc/P_177.pdf
http://dafx04.na.infn.it/WebProc/Proc/P_177.pdf
http://dafx04.na.infn.it/WebProc/Proc/P_323.pdf
http://dafx04.na.infn.it/WebProc/Proc/P_323.pdf
http://www.cs.princeton.edu/introcs/home/
http://www.iua.upf.es/dafx98/papers/ARF36.PS
http://www.iua.upf.es/dafx98/papers/ARF36.PS
http://www.patterndepot.com/put/8/JavaPatterns.htm
http://profs.sci.univr.it/~dafx/Final-Papers/pdf/Fernandez_PaperJava.pdf
http://profs.sci.univr.it/~dafx/Final-Papers/pdf/Fernandez_PaperJava.pdf

	P_161.pdf
	J-DAFX - DIGITAL AUDIO EFFECTS IN JAVA
	1 Introduction
	2 Multimedia Tools
	2.1 Key Features
	2.2 Implementational Issues
	2.3 Stand-alone application
	2.4 Plugins
	2.5 Macromedia Flash
	2.6 The Processing Language
	2.7 MATLAB implementation
	2.8 Java Applets

	3 Java Implementation
	3.1 The Delay Applet
	3.2 The GUI
	3.2.1 Playing audio files
	3.2.2 Visual Presentation
	3.2.3 Control elements

	3.3 Java Sound
	3.4 Design patterns: Strategy pattern
	3.5 Design patterns: Mediator pattern

	4 Conclusions and Outlook
	5 References

	Guillemard
	Ruwwe
	Zölzer

