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ABSTRACT

The Digital Wave Guide (DWG) method is one of the most popular
techniques for digital sound synthesis via physical modeling. Due
to the inherent solution of the wave equation by the structure of
the DWG method, it provides a highly efficient algorithm for typ-
ical physical modeling problems. In this paper it will be shown,
that it is possible to use this efficient structure for any existing
linear sound synthesis algorithm. By a consequent description of
discrete implementations with State Space Structures (SSSs), suit-
able linear state space transformations can be used to achieve the
typical DWG structure from any given system. The proposed ap-
proach is demonstrated with two case studies, where a modal solu-
tion achieved with the Functional Transformation Method (FTM)
is transformed to a DWG implementation. In the first example the
solution of the lossless wave equation is transformed to a DWG
structure, yielding an arbitrary size fractional delay filter. In an-
other example a more elaborated model with dispersion and damp-
ing terms is transformed, resulting in a DWG model with parame-
ter morphing features.

1. INTRODUCTION

Physical Modeling (PM) techniques became an established method
for digital sound synthesis in the past decade. They model the
sound production mechanisms rather than the sound itself and achieve
not only realistic sounds, but also a realistic interaction with the
sound. Consequently it is used by most recent synthesizers at least
in hybrid forms.

The common starting point for most PM techniques is a set
of Partial Differential Equations (PDEs), as given by the laws of
physics. However the approach for realization differs a lot between
the various PM methods. Currently there are a number of these re-
alizations, Finite Difference Time Domain (FDTD) schemes [1],
transfer function techniques like the Functional Transformation
Method (FTM) [2, 3], and the Digital Wave Guide (DWG) method
[4] to mention just a few ones.

The most popular of the above mentioned techniques is the
DWG method. It is based on the analytic d’Alembert solution of
the wave equation (see [4]) by forward and backward traveling
waves. These waves can be realized by simple delay lines in the
discrete-time system, yielding highly efficient algorithms with a
typical structure (see [5] for instance). As most physical models
for sound synthesis are somehow based on the wave equation, this
is the reason for the popularity of the DWG method.

On the other hand all linear systems can be represented by
so called State Space Structures (SSSs) [6, 7], and SSSs can be
transformed from one form into another form [8, 9]. Therefore

in this paper a method for the implementation of arbitrary linear
sound synthesis algorithms by DWG structures is presented. It
is shown how to transform arbitrary SSSs into typical DWG im-
plementations by usage of linear state-space transformations (also
called similarity transformation). In particular three examples are
demonstrated, where a FTM implementation is transformed into a
DWG structure and vice versa. In doing so, the first example in
section 4.1 demonstrates the use of fractional delay filters in DWG
implementations. The second example in section 4.2 shows the
inverse transformation of the same problem. The third example
in section 4.3 yields a DWG implementation of a dispersive string
with damping terms, where the physical meaning of the parameters
is preserved in the DWG implementation.

The paper is structured as follows. As a first step, in sec-
tion 2, the typical structure of DWG implementations and the cor-
responding SSS is introduced. Then in section 3, the required
state-space transformations for the transformation into this DWG
SSS are given. The example scenarios are demonstrated in sec-
tion 4, conclusions and an outlook for the usage of the proposed
method are discussed in section 5.

2. STRUCTURE OF DIGITAL WAVE GUIDE
IMPLEMENTATIONS

First of all, a closer look has to be taken on the principal structure
of DWG implementations. Both as a block diagram, as normally
given in literature [5], and important in this scope, as a SSS.

2.1. Block Diagram

The typical structure of DWG implementations (see e.g. [5]) is
depicted in figure 1 in a simplified scheme. All signals are time
discrete values, denoted by the square brackets and the discrete
time step k. The input function v[k] is assumed to be suitable pre-
filtered, i.e. plucking position and type are included in v[k].
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Figure 1: Simplified structure of the DWG-method. The different
physical effects are modeled by the filter H(z), which includes at
least one sample delay. The input signal v[k] is suitable scaled and
filtered.
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The delay of the feedback filter H(z) (z is the time discrete fre-
quency variable) determines the pitch of the tone. Although fig-
ure 1 is a simplified scheme, it constitutes a quite general model,
as there are no restrictions for the feedback filter. In practice H(z)
includes a delay line, fractional delay filters, and a model specific
allpass filter. Here we describe it in the frequency domain as a di-
vision of nominator and denominator polynomial in z (see [6, 7])

H(z) =
Z(z)

N(z)
=

bn� 1zn � 1 + . . . + b1z + b0

zn + an� 1zn � 1 + . . . + a1z + a0
. (1)

2.2. Corresponding State Space Structure

Using this filter description (1) we can derive the transfer function
G(z) of the complete system from figure 1 by

Y (z) = V (z) + H(z)Y (z) =
1

1 � H(z)
V (z)

G(z) =
Y (z)

V (z)
=

N(z)

N(z) � Z(z)

=
zn + an� 1zn � 1 + . . . + a1z + a0

zn + cn� 1zn � 1 + . . . + c1z + c0
, (2)

with the coefficients ci := ai
� bi , i

���
0; 1; . . . ; n � 1 � .

The corresponding SSS is well known in literature (see [9]
for instance). For a state space description in the form (bold face
notation denotes vectors resp. matrices)

z[k + 1] = Az[k] + Bv[k]

y[k] = Cz[k] + Dv[k] ,
(3)

a permissible system matrix Â that corresponds to equation (2) is
the so called Frobenius or companion matrix. In detail the state
space matrices are given by

Â =

������
�

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1� c0
� c1

� c2 . . . � cn� 1

	�





� (4)

B̂ = 
 0 0 . . . 0 1 � T
Ĉ = 
 a0

� c0 a1
� c1 . . . an� 1 � cn� 1 �

D̂ = 1 . (5)

3. STRUCTURE TRANSFORMATION

With the state space description of the DWG implementation in
equation (3) to (5) we can maintain, that the only difference be-
tween a DWG implementation and an arbitrary linear and discrete
system is in the appearance of the system matrices A, B, C, and
D. The only remaining task to transform the different system de-
scriptions into each other is the transformation of the system ma-
trices.

3.1. Linear state space transformation

This transformation can be performed by the the so called linear
state-space transformation, which is well known from systems the-
ory (see [8] for instance). It is based on the linear transformation

of the state space vector z[k] by the non singular transformation
matrix T

ẑ[k] = Tz[k] . (6)

The transformed state-space description is in the same form as the
original one (see equation (3))

ẑ[k + 1] = Âẑ[k] + B̂v[k]

y[k] = Ĉẑ[k] + D̂v[k] ,
(7)

except for the transformed system matrices, which can be obtained
by

Â = TAT
� 1

B̂ = TB

Ĉ = CT
� 1

D̂ = D .
(8)

3.2. Controllability canonical forms

Normally it is not trivial to find suitable transformation matrices.
However, fortunately the SSS given by the system matrices (4)
to (5) is one of the so called controllability canonical forms. It
is proven, that any completely controllable system can be trans-
formed into the controllability canonical form with a system ma-
trix A in the form of (4) (see [8]). Furthermore, algorithms for this
transformation are available.

The first step of the transformation from an arbitrary SSS (3)
towards a SSS (7) with the system matrices in form of equation (4)
to (5) is the computation of the controllability matrix Kc by (see
[8])

Kc = 
 B,AB,A
2
B, . . . ,A

n � 1
B � .

Then, with t
T

n denoting the last row of K
� 1
c , we select the trans-

formation matrix by

T =

����
�

t
T

n

t
T

nA

...
t

T

nA
n � 1

	 



� . (9)

The application of the matrix transformations from equation (8)
leads to the desired form in equation (4) to (5) (see [8] chapter
7.2). The coefficients of the complete transfer function (2) can
be directly obtained from the controllability canonical form which
leads to the coefficients of the DWG feedback-filter H(z) (see
equation (1)) with ease.

3.3. Inverse transformation

The inverse procedure from a DWG system description to other
structures is presented in this section. From systems theory it is
known, that any system with single eigenvalues λi can be trans-
formed to the diagonal form (synonym for the parallel system de-
scription) with the matrix of its eigenvectors vi. The eigenvalues
together with their corresponding eigenvectors solve the so called
eigenvalue problem

(A � λiI)vi = 0 . (10)
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For distinct eigenvalues (which is a valid assumption for sound
synthesis models), one always achieves n eigenvalues and n lin-
early independent eigenvectors vi for a n � n system matrix A.
These eigenvectors form the transformation matrix T, by

T = (v1

�
v2

�
. . .

�
vn) . (11)

As the system order n normally equals the number of complex har-
monics of the resulting sound, one has to find the zeros of e.g. a
200th order (for a normal guitar string) polynomial to find the
eigenvalues with equation (10). This is difficult, but not impos-
sible.

However, for the so called Frobenius matrix Â from equation
(4) fortunately an analytic solution for the transformation matrix
T is known. It is the so called Vandermonde matrix (see [8] for
instance)

TV =

����
�

1 1 . . . 1
λ1 λ2 . . . λn

...
...

. . .
...

λn � 1
1 λn � 1

2 . . . λn � 1
n

	�



� . (12)

To summarize the procedure from a DWG implementation to an-
other different implementation (see also [9], figure 2.15), one first
has to find the eigenvalues of the DWG implementation with equa-
tion (10). Then one can use the Vandermonde matrix (12) to trans-
form the system to the diagonal form. For the second state space
transformation one has to find the eigenvectors of the desired sys-
tem with (10). Application of a state space transformation with
the inverse of the transition matrix in (11) yields the desired sys-
tem description.

4. EXAMPLE SCENARIOS

For the example scenarios, the resulting structure of the Functional
Transformation Method (FTM) is used. The frequency approach
of the FTM causes an orthogonalization of the problem and in con-
sequence a parallel system description (i.e. a diagonal state matrix
A, see [2] for instance), what it is an ideal candidate for the con-
version to the DWG-structure.

4.1. FTM to DWG

The first two example scenarios are more illustrative. As a physical
model for the string deflection y(x, t) the wave equation is used as
given in equation (13), where c is the speed of sound and fe(x, t)
is an arbitrary excitation distribution

∂2

∂x2
y(x, t) � 1

c2

∂2

∂t2
y(x, t) = fe(x, t) . (13)

A detailed description of the solution with the FTM is given in [2]
or [3] and is not performed here. It is just to mention, that the
FTM yields a diagonal system matrix A, whose eigenvalues are
the diagonal elements themselves. Furthermore section 3.2 has
to be considered, where controllability of the original system is
assumed. This is achieved in the FTM system by neglecting the
distribution of the excitation fe(x, t) and exciting all harmonics
identically.

The SSS obtained by the FTM was transformed according to
equation (8) with the transition matrix (9). The coefficients ai

and ci were extracted from the resulting transformed SSS with the

Frobenius matrix Â. By the relation bi = ai
� ci (see section 2.2)

all coefficients for the feedback filter H(z) of the DWG structure
are available.
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Figure 2: Impulse response h1[k] and pole zero plot of the first
example DWG feedback filters H1(z). The 20 complex harmonics
are uniformly distributed, yielding approximately a perfect integer
delay for the feedback filter.

The resulting feedback filter for the first example parameter set
is depicted in figure 2. The length of the string l1 was adjusted to
cause uniformly distributed complex harmonics as it can be seen in
the pole zero plot on the right side. With T denoting the sampling
interval, the length was set to l1 = cT � 2

21
.

Please note, that figure 2 is a plot of the feedback filter H1(z).
The poles of the complete system G1(z) are all located on the unit
circle, as equation (13) does not include damping effects.
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Figure 3: Impulse response h2[k] and pole zero plot of the second
example DWG feedback filters H2(z). The 20 complex harmonics
are non-uniformly distributed, yielding a fractional delay for the
feedback filter.

The second example parameter set yields a feedback filter as shown
in figure 3. The length was set to l2 = cT � 2

21+ 1

3

. This results

in the typical fractional delay filter as it is depicted by the impulse
response h2[k] in figure 3.

As it can be seen in figure 2 and 3, we can differentiate be-
tween two extreme cases what concerns computational efficiency.
The first example is somehow ideal in terms of computational effi-
ciency. The feedback filter of the DWG H1(z) is simply an integer
delay. The second example is only slightly higher in pitch, but it
demands more computational power.

To overcome this problem of highly parameter dependent com-
putational efficiency, DWG implementations approximate the frac-
tional delay filter. It is assumed, that the feedback filter H(z) is
a serial connection of an integer delay line, and a fractional delay
line of fixed length. The integer delay line determines the approx-
imate pitch of the tone, and the fractional delay line is used for the
fine tuning of the pitch.

Exactly the same can be done with the proposed approach.
The feedback filter H(z) is split into one larger part H1(z) with
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l1 = cT � 2
n+1

, and a smaller part H2(z) with length l2 = l � l1.
n is chosen such that H2(z) has a fixed order. In result H1(z) is a
simple integer delay filter and H2(z) is a fixed size fractional delay
filter. An equivalent implementation is achieved by pure DWG
modeling.

4.2. DWG to parallel form

Just for completeness, the inverse direction from a simple DWG
implementation to a parallel form is demonstrated in this section.
To simulate the lossless wave equation the simple structure for a
fractional delay line according to figure 4 is chosen.

PSfrag replacements p

1 � p

z � 1z � (n+1)

Figure 4: Feedback filter H3(z) for the third example. It is a sim-
ple fractional delay filter by linear interpolation, the parameter p

determines the fractional delay.

The feedback filter H3(z) yields only a few non zero coefficients
for the Frobenius matrix Â in equation (4), what can be easily
reproduced. To achieve the parallel form the procedure from sec-
tion 3.3 is applied. However, as the desired SSS has diagonal form,
it is sufficient to search for the eigenvalues of the Frobenius ma-
trix, use this eigenvalues to formulate the Vandermonde matrix TV

(12) and transform the SSS with this Vandermonde matrix.
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Figure 5: Pole zero plot of the systems transfer function G3(z).

The transfer function G3(z) of the resulting system is depicted in
figure 5 as an pole zero plot. The poles are not located on the unit
circle, as would be expected for the lossless wave equation. Their
position inside the unit circle is caused by the lowpass characteris-
tics of the simple fractional delay filter H3(z) from figure 4.

4.3. Enhanced String Model

The last example scenario demonstrates a more practical problem.
The FTM provides analytic solutions also for complex models, for
example string models, that includes dispersion (caused by the
stiffness of the string) and damping terms. The complete model
and its solution can be found in [2]. Here just the result of the
transformation procedure is presented, as it can be seen in figure 6.

As both, the application of the FTM and the transformation
of the implementation proposed in this paper can be done in an
analytic fashion, it is possible to achieve DWG implementations of
dispersive strings with a direct link from the physical parameters
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Figure 6: Impulse response h4[k] and pole zero plot of the fourth
example DWG feedback filters H2(z). The underlying model in-
cludes string stiffness and damping terms.

to the parameters of the feedback filter. One can even implement
physical parameter morphing.

5. CONCLUSIONS

In this paper a new approach for the implementation of sound
synthesis algorithms is presented. By formulating the state space
structure description, it is possible to implement any linear discrete
algorithm with a DWG structure. The proposed method enables on
the one hand new research and simplifies the verification of new
algorithms. On the other hand, it is possible to implement sound
synthesis algorithms in a consistent form, facilitating cooperation
between different techniques.
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