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ABSTRACT

When using a mobile music player en-route, usually only little
attention can be paid to its handling. Nonetheless it is desirable
that all music stored in the device can be accessed quickly, and
that tracks played in a sequence should match up.

In this paper, we present an approach to satisfy these con-
straints: a playlist containing all tracks stored in the music player is
generated such that in average, consecutive pieces are maximally
similar. This is achieved by applying a Traveling Salesman algo-
rithm to the pieces, using timbral similarities as the distances. The
generated playlist is linear and circular, thus the whole collection
can easily be browsed with only one input wheel. When a cho-
sen track finishes playing, the player advances to the consecutive
tracks in the playlist, generally playing tracks similar to the chosen
track. This behavior could be a favorable alternative to the well-
known shuffle function that most current devices – such as the iPod
shuffle, for example – have.

We evaluate the fitness of four different Traveling Salesman
algorithms for this purpose. Evaluated aspects were runtime, the
length of the resulting route, and the genre distribution entropy.

We implemented a Java applet to demonstrate the application
and its usability.

1. INTRODUCTION

Imagine the following situation: A sportive person leaves the
house early for her daily jogging tour. She always does sports
with music, but doesn’t like to listen to the same music over and
over again. Thus, she has her large music collection with her on a
mobile player.

She chooses the music that fits her momentary mood, without
having to delay the workout: While already running, she browses
through the collection with a circular wheel that could look like
the one in figure 1. After playing the track she chose, the player
automatically keeps on playing similar tracks. At the end of her
route, she chooses on the fly some relaxing sounds while trotting
home.

In this paper, we present an approach that could make this
player become a reality: a music collection is organized into a
large circular playlist that satisfies the constraint that on average,
consecutive tracks are maximally similar. The whole playlist –
and thus the whole collection – is easily accessible with only one
circular controller.

Figure 1:Java applet demonstration: “Traveller’s Sound Player”.

2. LITERATURE REVIEW

Quite some work has already been done on playlist generation:
[1] treat the problem of playlist generation as a network flow

problem. Given a song collection, where each piece is labeled with
a number of boolean attributes, one start track and one stop track,
the algorithm finds a path (of user-defined length) through the net-
work satisfying user-defined constraints. The proposed algorithm
is an integer linear program, thus this solution is NP-hard.

In [2] a more efficient approach for handling various types of
metadata is presented: according to the user-defined constraints,
the metadata of each track is transformed into a cost function. The
playlist construction is done by iteratively optimizing an initial
randomly chosen playlist with regard to the cost function.

In [3], it is not assumed that the tracks are already labeled.
The playlist generation algorithm is rather based on a music simi-
larity function ([4]) which can be computed automatically. (In our
experiments, we used a similar function.) Several approaches are
evaluated for producing a playlist of given length for a given start
track.

In general, for browsing music collections, there exist different
approaches, for example [5], where users can find music by setting
different descriptors (e.g. tempo or spectral centroid).
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3. APPROACH

Musical distance data can be converted into a low-dimensional
space (e.g. [6]). This low-dimensional representation can be used
for playlist generation and browsing music collections. In the ap-
proach we present in this paper, we generate one circular playlist
consisting of all tracks from the collection, where the goal ist to
maximize the average similarity between consecutive tracks in the
playlist. The resulting playlist can be interpreted as projection of
the collection onto one dimension.

As most personal music collections are not labeled with de-
tailed metadata about the musical content of the pieces, and cor-
rect metadata is not easily available, we chose to use a well-known
audio based approach as a similarity measure:

For each track, on short-time audio segments Mel Frequency
Cepstral Coefficients (MFCCS) are computed. The whole track
is then represented as a Gaussian Mixture Model (GMM) of the
distribution of MFCCS. The similarity of two tracks is the distance
between their GMMs. Each of these steps is described in detail in
the relevant literature (e.g. [4, 7, 8]). In our implementation, we
used the parameters proposed in [8]. In previous experiments we
have shown that this similarity measure outperforms many other
approaches based on audio signal analysis only ([9]).

The task to generate a playlist is mapped to the Traveling
Salesman Problem (TSP). The TSP is a classical problem in com-
puter science. In its basic form, it is formulated as follows: A
salesman needs to visitn cities, each of them once. The distances
(or costs) to travel between the cities are known. The problem is
to find the optimal (i.e. shortest or cheapest) route to visit all cities
exactly once, and return to the originating city.

In our setup, the cities (i.e. nodes of a graph) correspond to
the tracks in the collection, and the distances (edges) are the sim-
ilarities between the tracks. Finding the optimal route means to
produce a circular playlist that contains all tracks of the collection,
and in which the sum of the similarities along the path is maxi-
mized.

4. ALGORITHMS

In this section, algorithmic aspects of the TSP are discussed. First,
we give some general remarks, then we mention which aspects
should be regarded in the specific case of similarity data, and fi-
nally we give a short description of the algorithms we evaluated.

4.1. General Remarks

The TSP is NP-hard, which implies that there is no known algo-
rithm that calculates the exact result fast for large data sets. (For
example, the state-of-the-art approach for the exact solution based
on cutting planes and linear programming, needs over 90 years of
CPU time1 for 24,978 cities.)

Many heuristics have been proposed that approximate the cor-
rect result. Some of them are evaluated in this paper. We did not
use an exact algorithm, as the results would hardly be different,
but computation times would be much greater.

185 years to prove that the tour – found by a heuristic algorithm – is the
shortest (http://www.tsp.gatech.edu/sweden/index.html)

4.2. Domain-Specific Issues

A number of heuristic TSP algorithms require the distance mea-
sure d between the nodes to satisfy the triangle inequality:
d(ac) ≤ d(ab) + d(bc) for all triples a, b and c. The triangle
inequality is not fulfilled by the similarity measure we used in our
experiments, i.e. the problem is said to benon-metric. On our data,
it did not hold in about five percent of the cases when comparing
randomly chosen direct and alternative edges.

According to [10], it can be proven that for non-metric prob-
lems, it is impossible to construct an algorithm of polynomial com-
plexity which find tours whose length is bound by a constant mul-
tiple of the optimal tour length (see also [11]). This fact applies in
our scenario, as here for runtime reasons only algorithms of poly-
nomial complexity are of interest.

4.3. Evaluated Algorithms

In the following sections, the algorithms we evaluated are
described briefly. For a more detailed discussion, the interested
reader is referred to the literature.

4.3.1. Greedy Algorithm

The first algorithm we evaluated is a popular simple greedy algo-
rithm (see algorithm 1, e.g. [12]). The algorithm starts with no
connected nodes. All edges are examined in increasing length. An
edge is added to the initially empty set of edges if the resulting set
of edges can still be combined to a valid tour.

For each numbern ≥ 2 of nodes, a TSP instance can be con-
structed for which this algorithm finds theworst possible route
([13]).

Algorithm 1 Simple Greedy Algorithm
1: sort edges in ascending order
2: while tour is not completedo
3: if next longer edge can be part of a valid tourthen
4: add it to the (still uncomplete) tour
5: end if
6: end while

For m edges this algorithm has the runtimeO(m log m), as
the most expensive step is to sort the edges in ascending order.

4.3.2. Minimum Spanning Tree

This algorithm (e.g. [14]) was evaluated although it makes the as-
sumption that the triangle inequality is fulfilled, which is not the
case on the data we used. First, a minimum spanning tree is found
with a standard algorithm (Kruskal algorithm) inO(m log m),
with m being the number of edges. Afterwards, a depth-first search
is performed on the minimum spanning tree, and a tour is con-
structed by connecting the nodes in the order they are first visited
during the depth-first search. (For convenience, we call this whole
algorithmMinSpanin this paper).

4.3.3. LKH

The LKH algorithm ([11]) is an optimized version of the Lin-
Kernighan algorithm proposed by Lin and Kernighan in 1971. The
LKH algorithm starts with a randomly generated tour and improves
it stepwise by deletingλ edges from the route and recombining
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the remaining tour fragments in a more efficient way. In each step,
sophisticated heuristics are used to chooseλ and the edges to ex-
change.

The runtime of the LKH algorithm is approximatelyO(n2.2),
with n being the number of nodes.

4.3.4. One-dimensional Self-Organizing Map (SOM)

To assess if an algorithm based on clustering yields better results
in terms of constancy of genre membership, also a SOM algorithm
was evaluated.

A SOM algorithm clusters the input data by assigningm input
points ton points calledunits. During the (stochastic) clustering
process, the position of each unit and the assignment of data points
to units is refined iteratively. Usually,n << m, i.e. there are many
more data points than units. SOMs have the property that they
are able to project high-dimensional data into lower-dimensional
spaces while preserving distance relationships to a large extent.
In our experiment, we train a one-dimensional cyclic SOM, i.e.
the units are arranged in a circular fashion. The one dimension
corresponds to the position on the linear playlist.

Ideally, there would be as many units as tracks, so that after
training, each unit would have exactly one assigned track. But as
the runtime to train such a SOM is too long, we decided to use
a recursive approach (algorithm 2). Before using the algorithm,
the dimensionality is reduced by interpreting each column of the
distance matrix as a vector and applying the principal component
analysis (PCA) on them. Only the first 30 components of the PCA-
compressed data were used.

Algorithm 2 Recursive Algorithm based on SOM

1: train a one-dimensional cyclic SOM withk units on the input
points

2: for each input point, get the best matching unit of the trained
SOM
{calculate thek smaller tours (“subtours”) recursively:}

3: for each unitui (i = 1..k) do
4: get the input pointsPi belonging to the current unitui

5: if |Pi| > 1 build a tour throughPi recursively
6: store the point (or tour) inti

7: end for
{combine the subtours, in a greedy manner:}

8: break up each subtour at its longest edge
9: get all edges that could combine twoconsecutivesubtours,

store them inE
10: sortE in ascending order
11: while tour is not completedo
12: if next longere ∈ E can be part of a valid tourthen
13: add it to the (still uncomplete) tour
14: end if
15: end while

5. EVALUATION AND RESULTS

This section describes how the algorithms sketched in the previ-
ous section were evaluated: first, the data they were ran on is pre-
sented. Then, several evaluation approaches are described: For
each evaluation approach, the concept of this approach is outlined,
and the results obtained in our experiments are given with a short
discussion.

5.1. Data Set

For computing the similarity matrix, we used 3298 tracks from
the online music label magnatune2 that were labeled with eleven
genres: Ambient (4.3%), Classical (38.8%), Electronic (13.9%),
Folk (1.5%), Jazz (3.2%), Metal (3.5%), New Age (5.8%), Pop
(0.7%), Punk (1.9%), Rock (11.6%), World (14.8%).

5.2. Subjective Evaluation

For subjective evaluation, a Java applet was programmed that en-
ables the user to quickly browse through the circular playlist (fig-
ure 1). Non-representative small-scale listening tests revealed that
subjects liked the idea of such a sound player. In general, con-
secutive tracks were perceived as sounding similar. Based on the
preceding tracks, users got a feel that they currently are in a certain
musical region.

Also, it turned out that it is difficult to judge the quality of the
generated playlists. For many playlists, users got the impression
that the path is not fully straightened, i.e. it happens that musical
regions are revisited after leaving them.

As each playlist consisted of over 3000 tracks, it was not possi-
ble to evaluate them exhaustively by user studies: the time to listen
to a whole playlist is about one week. Thus, users listened only to
short sub-paths starting at randomly chosen tracks. For evaluation
based on user studies, it is also an issue that the personal impres-
sion of the playlist (which is the most important measure) is easily
covered by other aspects such as if the user likes the presented mu-
sic. For these reasons, the objective measurements that follow in
the next sections were done.

5.3. Runtime and Route Length

For each tested algorithm, table 1 shows the absolute length of the
tour, the length relative to the shortest tour found, and the run-
time. For the SOM algorithm, the time to compute the PCA was
not taken into account. All algorithms were implemented in MAT-
LAB except LKH, which was given as a compiled executable3.
The runtime of LKH was split into a preprocessing phase, which
included inter alia the reading of the data from the hard drive, and
the execution phase of the actual algorithm.

Algorithm Tour Length Rel. Length Runtime
(M) (%) (sec.)

Recursive SOM 243.7 153.0 pca + 882
Min. Span. Tree 195.3 122.6 389
Simple Greedy 172.3 108.1 520
LKH 159.3 100.0 152 + 330

Table 1: Comparison of different TSP algorithms on our similarity
data. The lower bound for the tour length given by the LKH algo-
rithm was only 0.26% better than the best tour found by LKH, and
8.14% better than the route of the simple greedy algorithm.

As expected, the most elaborate algorithm LKH had the best
performance in runtime and route length. The route length was
close to a lower bound also calculated by this algorithm. Surpris-
ingly, the route calculated by the simple greedy algorithm was only
about eight percent worse. The spanning tree algorithm performed

2http://www.magnatune.com
3http://www.akira.ruc.dk/∼keld/research/LKH/
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as expected, while the very poor performance of the SOM based
algorithm is not easily explainable. Maybe, at the end of the re-
cursion, many best matching units are only assigned few tracks, so
that the presumably suboptimal greedy combination of subroutes
has a degrading effect.

5.4. Fluctuations Between Genres

To assess between which genres the path changes most frequently,
in figure 2 the genre memberships of pairs of tracks that follow
immediately in the playlist are given for the LKH algorithm. In
our experiments, we use genre memberships as an indicator, as as
we assume that very similar pieces belong to the same genre.
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Figure 2: Genre fluctuations for the best tour found by the LKH
algorithm. Rows are the genres of the first track, and columns
are the genres of the track following immediately in the playlist.
Genres are: Ambient, Classical, Electronic, Folk, Jazz, Metal, New
Age, Pop, Punk , Rock, World, denoted by the first three characters.

The most frequent changes (i.e. pop following electronic, and
pop following ambient) seem to be natural, as these genres are
closely related.

5.5. Shannon entropy

To estimate how “locally consistent” the playlist is, the entropy
of the genre distribution was calculated on short sequences of the
playlists: It was counted how many ofn consecutive tracks be-
longed to each genre. The result was normalized and interpreted
as a probability distribution, on which the Shannon entropy was
calculated.

The Shannon entropy is defined as

H(x) = −
X

x

p(x) log
2
p(x) (1)

with log
2
p(x) = 0 if p(x) = 0.

In figure 3, the entropy values forn = 2..12 are given, av-
eraged over the whole playlist (i.e. each track of the playlist was
chosen once as the starting track for a sequence of lengthn). 12
was chosen as the maximum length because a typical album con-
tains about 12 tracks.

Forn = 2, the entropy value equals the fraction of consecutive
tracks that are not in the same genre. For the simple greedy and the
LKH algorithm, in approximately 80% of all cases the next track
is in the same genre as the current track. This number corresponds
to the classification accuracy obtained when doing a 10-fold cross
validation withk-NN classification fork = 1 (79%).
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Figure 3: Average entropy values for short sequences (length
2..12) of the playlists.

It is surprising that the entropy values of the simple greedy
algorithm are only slightly worse than those of the LKH algorithm
(i.e. they are almost the same). The most likely explanation is
that most of the additional 8% length of the greedy route occur at
genre boundaries, so that they are obscured in the genre entropy
evaluation.

5.6. Long-Term Consistency

Complementary to the short-term development measured by the
entropy, it is also interesting to assess the long-term development
of the generated playlists. To this end, in figure 4 for each track
and each genre, it is shown how many of the 75 tracks following in
the playlist belong to this genre. Only the values from the playlists
generated by the LKH algorithm and by the SOM based algorithm
are shown.

Obviously, for the playlist generated by the SOM-based algo-
rithm, the distribution of classical, rock and electronic pieces is
less fragmented. These genres are three of the four most frequent
genres. For the fourth (i.e. world) no difference is obvious.

The corresponding values for the other two algorithms which
are not shown are comparable: The amount of fragmentation of
the Minimum Spanning Tree algorithm was slightly worse than
the amount of the SOM-based approach, and the route calculated
by the greedy algorithm was even more fragmented than the route
generated by LKH.

5.7. Artist Filter

In about 67%, the track that follows immediately in the playlist is
by the same artist as the current track. It is a question of personal
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Figure 4:Long-term distribution of the genres for the playlist gen-
erated by the SOM based algorithm (above) and the LKH algo-
rithm (below). For each Track, it is counted how many of the fol-
lowing 75 tracks in the playlist have a particular genre. Full White
represents 0, full black 75.

taste if this is a desirable property4. If not, then a possible solution
is to modify the calculated playlist. In our implementation, the
playlist is checked from beginning to the end, if one of the last
n tracks is by the same artist as the current track. If this is the
case, the current track is delayed and inserted at the next possible
position that satisfies this artist repetition constraint.

In our data set, there are on average about 13 artists per genre,
but the variance is very high (for example, there was only one artist
that had the genrefolk). So, when choosing too large values forn,
sections of the playlist containing only pieces from small genres
could be fragmented. With these aspects in mind, we chosen = 6
for our experiments, i.e. tracks by the same artist have to be at
least six tracks apart. During the execution of the artist filtering
algorithm, there were on the average about thirty to forty tracks
delayed at each step (i.e. there was a queue of thirty to forty tracks
that were waiting to fulfill the artist repetition constraint).

Through the artist filtering step withn = 6, the tour lengths
increased (see table 2). The SOM algorithm seemed most ro-
bust against artist filtering: the total tour length increased only by
52.8%, and was nearly as short as the shortest route after artist
filtering. The entropy values increased also (see figure 5). Frag-
mentation images after filtering are not shown here, as they were
only affected to a minor extent, appearing more blurred.

6. SUMMARY AND DISCUSSION

As a comparison of the different playlists by user studies was not
feasible, we used several different measures to evaluate the algo-
rithms. These tests showed:

4e.g. according to [3], this would be regarded as being good

Algorithm Tour Length Rel. Length Factor
(M) (%) (%)

Recursive SOM 372.3 100.6 152.8
Min. Span. Tree 370.0 100.0 189.5
Simple Greedy 448.9 121.3 260.5
LKH 446.9 120.8 280.5

Table 2: Artist-filtered TSP algorithms on the similarity data. Fac-
tor gives the relation of filtered to unfiltered route length (i.e. the
route calculated by the SOM algorithm increased by 52.8%, while
the route of the LKH algorithm increased by 180.5% when filter-
ing artist repetitions).
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Figure 5: Average entropy values for short sequences (length
2..12) of the playlists, after artist repetition filtering. Tracks of
the same artist are at least 6 pieces apart, which might be a rea-
son for the fact that entropy values in the range from 1 to 7 pieces
increase faster than in the range from 7..12 pieces. Same scaling
as in figure 3.

• The LKH algorithm and the simple greedy algorithm have
the advantage of fast runtime and nearly optimal route
length. The small-scale genre entropy values of their routes
are the best before artist filtering. But the large-scale genre
distributions are quite fragmented, and their routes are vul-
nerable against artist filtering.

• The SOM-based algorithm had the longest runtime, the
longest route length and highest entropy values before artist
filtering. But it had the least fragmented long-term genre
distribution, and was least vulnerable against artist filter-
ing. After artist filtering, its route length was nearly as short
as the shortest route, and the short-time genre entropy was
better than those of the routes of the LKH and the greedy
algorihm.

• The MinSpan algorithm had a decent runtime and was in the
middle field regarding route length and entropy values be-
fore artist filtering. After artist filtering, its route length was
the shortest, the short-term entropy was the best. The over-
all genre distribution was inferior to the one of the SOM-
based approach.

224 - DAFx'05 Proceedings - 224



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

The MinSpan algorithm and the SOM-based approach pro-
duce better overall genre distributions than the LKH and the simple
greedy algorithm. The most likely reason for that is that locality
constraints are regarded: in the SOM algorithm the overall route
is built by concatenating several local routes, and in the MinSpan
algorithm locality constraints are regarded as the algorithm con-
structs the route by a depth-first search on a minimum spanning
tree.

As a final recommendation, it follows that either the SOM-
based algorithm or the MinSpan algorithm seem to be favorable.
The MinSpan algorithm has the advantage of faster runtime and
better entropy values (both without and with artist filtering), while
the route calculated by the SOM based algorithm is least affected
by the process of artist filtering.

7. CONCLUSIONS AND FUTURE WORK

We presented a new approach to conveniently access the music
stored in mobile sound players. The whole collection is ordered
in a linear playlist and thus accessible with only one input wheel.
Consecutive tracks are aimed to be consistent and maximally simi-
lar on average, thus ideally each track can be chosen as the starting
point of a locally consistent playlist. Several algorithms are tested
for their ability to produce such playlists.

We implemented a demonstration application for the one-dial
browsing device. Such a device could offer a new way users access
their music collection, as tracks are arranged according to the type
of information the used similarity measure describes. The similar-
ity measure in our implementation was timbre based, and thus the
playlist is arranged by sound similarity. It may be expected that the
overall results of our investigations still hold when using a different
similarity measure. It is still to investigate if the noticeable draw-
backs are also present with other similarity measures: sporadic
intense discontinuities in the playlists, and a non-straightforward
path through the collection.

The example application triggers positive reactions, and pro-
vokes the user to play around with it. In this paper, we targeted
the problem of generating a playlist for such a device. As there
are over 3000 pieces in the collection, with the current device it is
not possible to select a desired piece precisely. It is an open ques-
tion how this situation can be handled. One possibility to improve
navigation would be to make only tracks that are representative for
a region selectable as starting points. This is an issue of future
investigations.
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