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ABSTRACT 

Conjugate Gradient (CG) techniques are suitable for resolu-
tion of time-variant system identification problems: adaptive 
equalization, echo cancellation, active noise cancellation, linear 
prediction, etc. These systems can be seen as optimization prob-
lems and CG techniques can be used to solve them. It has been 
demonstrated that, in the single-channel case, the conjugate gradi-
ent techniques provide a similar solution in terms of convergence 
rate than those provided by the recursive least square (RLS) 
method, involving higher complexity than the least mean square 
(LMS) but lower than RLS without stability issues. The advan-
tages of these techniques are especially valuable in the case of 
high complexity and magnitude problems like multi-channel 
systems. This work develops CG algorithm for the adaptive 
MIMO (multiple-input and multiple-output) systems and tests it 
by solving a multichannel acoustic echo cancellation (MAEC) 
problem. 

1.  INTRODUCTION 

CG techniques belong to an optimization method family which 
resolves a purely quadratic problem 

( )f T T a= + +w w Rw r w   (1) 

where R  is a non-negative defined matrix, r  and w  are vectors 
and a  is a scalar1. The CG method is a very efficient and well 
proven optimization technique to find optimum solution for the 
equation (1). Quadratic problem has a unique solution which is the 
unique solution of the linear equation [1] 

• =Rw r   (2) 
In section 2  the normal equation for a multichannel adaptive 
system is given. In section 3 a CG method for a multichannel 
adaptive system is developed. In section 4 an efficient solution for 
the problem is presented based on subband decomposition and 
application of multirate open-loop delay-less techniques.  

                                                           
1 Matrices are represented by a bold capital letter, vectors are represented 
by a bold lower case letter and scalars by italic lower case letter. The 
super indexes T  and H represent transposition and conjugate transposi-
tion (hermitic) of a vector or a matrix respectively and *  denote conjuga-
tion. 

2. MULTICHANNEL ADAPTIVE FILTERING 

The case of adaptive multichannel filtering, showed in Figure 1, 
is in general structurally more difficult than the single-channel 
case [2], although it might be defined in terms of the so called 
normal equation (2). This equation proves to evaluate the gradient 
in the solution •w , applying the criteria of mean square error 
minimization (3). 

{ } { }2*J E ee E e= =   (3) 

 
Figure 1: Multichannel Adaptive Filtering 

The P  multichannel filter output error is defined by 
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where 1 2

TT T T
P⎡ ⎤=⎣ ⎦x x x xL  is a column vector of L P×  dimen-

sion corresponding to the multichannel system inputs;  
( ) ( ) ( )1 1

T

p x n x n x n L= − − +⎡ ⎤⎣ ⎦x L  is a column vector of L  
dimension, equal to the length of the corresponding filter at the 

input of the p-th channel; 1 2

TT T T
P⎡ ⎤= ⎣ ⎦w w w wL  is a column 

vector of L P×  dimension, corresponding to the multichannel 

adaptive system coefficients and 1 2

T

Lp w w w⎡ ⎤= ⎣ ⎦w L  is a 

L  length vector corresponding to the p-th channel adaptive filter; 
d , y  and e  are scalars that denoted the desired signal, the adap-
tive multichannel filter output signal and the error signal, respec-
tively. Although the time variable is only referred explicitly when 
it helps comprehension, each sample n  corresponds to a time 
instant (sampling period). Combining (4) in (3) 
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{ } { }22 HJ E e E d= = −w x   (5) 

{ } { } { }2 *2 H H HE d E d E= − +w x w xx w  

[ ]2J= ∇ =− −g r Rw  

where R  is the LP LP×  correlation matrix defined by 

{ }HE=R xx   (6) 
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and  r  is the 1LP×  cross-correlation vector. 

{ }*E d=r x   (7) 

Notice that { }H
i jij E=R x x . The length of the gradient vector g  

defined in (5) is 1LP× .  

3. CONJUGATE GRADIENT 

The stochastic conjugate gradient techniques for single-channel 
adaptive filtering have already been presented in [4], where a 
block stochastic gradient estimation method that averages the last 
N  instantaneous estimated gradients, is described. In this work a 

new approach is proposed that appropriately rearranges the 

px vectors in (6) in a L N×  order matrix and expands the d  

scalar in (7) in a 1N×  vector. 
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( ) ( ) ( )( ) ( )1 1 1
T

n d n N d n N d n⎡ ⎤= − + − − +⎣ ⎦d L  

This way the correlation matrix estimation and the cross-
correlation vector slightly change to 

{ }HE N=R XX   (8) 

{ }*E N=r Xd   (9) 

and { }H
i jij E N=R X X . Note that R  matrix and r  vector keep 

their dimensions LP LP×  and 1LP× , respectively. This method 
is also known as sliding data window and allows the following 
exponentially decreasing treatment 

1

H

k k k kλ +−=R R X X   (10) 

*

1k kλ −= +r r Xd   (11) 

3.1. Conjugate directions 

Two vectors iv  and jv  are R -orthogonal, or conjugate with 

respect to R , if 0,  H

i j i j= ∀ ≠v Rv . R  induces an internal 

product , H=Rv w v Rw  and norm H=Rv v Rv . 
The conjugate direction methods [1] provide the solution for a 
normal equation (2) in terms of a set of L  linearly independent 
direction vectors which are R -orthogonal or conjugate with 
respect to R . 

1 1 1

L

k kk k L L k
α α α α•

=
∑= + + + + =w v v v vL L  (12) 

According to the conjugate direction theorem, the { }kw  succes-
sion generated by 

1k k k kα+ = +w w v   (13) 

with 
H
k

Hk
kk

α = −
g v

v Rv
  (14) 

converges to the unique solution •w  in { }min ,L N  steps and, 
according to span subspace theorem, minimizes the expression (1). 
The CG method is a conjugate direction method which is obtained 
by choosing the successive direction vector as a conjugate version 
of the successive gradient obtained as a method progresses. The 
following expressions provide a method which can be extended to 
nonquadratic problems. Starting at any 0w : 

[ ]0 = − −g r Rw  

0 0= −v g  
 
for k = 1, 2, … , L 
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1k k k kα+ = +w w v  

11 kk k k kα++
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1 1k k k kβ+ += − +v g v  
end 
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Figure 2: CG vs NLMS, P = 4 

In [4] an analysis on the window length selection, N , and its 
impact on the convergence performance is provided. For N L= , 
results in terms of convergence are similar to RLS. 
Figure 2 provides a comparison on the performance of the CG and 
the NLMS algorithms. The fast convergence rate and low level 
error of the CG should be noted. The input signals to the system 

H

p p=x h s , were generated by convolution of a complex (real part 

1± ) zero-mean random sequence s  with 4P=  filters, which 
simulate the distortion of the P  channels with a raised cosine 
impulse response 

( ) ( )( )0.5 1 cos 2 2 / , n=1 1000, = 2.9p n n W Wπ⎡ ⎤= + −⎣ ⎦h K , where  

W  controls the channel’s amplitude distortion. A higher W  
increases distortion and raises R  correlation matrix eigen-values 
spread in the multichannel equalizer input. Additionally the chan-
nel is corrupted by a sequence of Gaussian white noise yielding –
30 dB SNR. The length of all filters is L = 64. The adaptation step 
for the NLMS is 0.007µ=  and the size of the sliding window for 
the CG is 2M L= . 

4. MULTIRATE MULTICHANNEL ADAPTIVE 
FILTERING 

In case of working with very long impulse responses on a mul-
tichannel system, e.g., acoustic echo cancellation, the output 
system delay and the computational effort may make adaptive 
filtering unfeasible. To overcome this issue a number of methods 
have been developed based on subband decomposition of the 
system input signals which allow reducing the complexity of the 
general system by a factor that approximately equals the order of 
the number of subbands. 
Figure 3 shows the scheme for delayless open-loop multichannel 
adaptive filtering, which adapts in subbands and filters in fullband. 
The fullband filter coefficients for each channel are obtained 
through the transformation of the weights in subbands following 
expression (15). The subband decomposition is performed by an 
oversampled GDFT (Generalized Discrete Fourier Transform) 
polyphase filterbank. Only M of the 2M subband filters are re-
quired to retain signals information. 

Note that, the fact of reconstructing the error in fullband rather 
than in subbands, avoids the use of synthesis subband filters (al-
though it is necessary in (15)), eliminating the associate delay. The 
fullband filtering is performed partitioning the filters in each 
channel pw  in Q segments of equal length. The first segment is 

processed by direct convolution (which makes the scheme de-
layless) and the rest of the segments are processed by fast convo-
lutions employing FFTs and inverse FFTs. 
In [3] a method for a T  transformation is proposed capable of 
generating the full filter from the M  subbands 

{ }
1

*
M

m mp mp K Km
real

↓ ↑=
⎡ ⎤= ∗⎣ ⎦∑w h c f  (15) 

The adaptive filters mpc  in each subband are of order 

1 1C L R K R K⎡ ⎤ ⎡ ⎤= + − − +⎢ ⎥ ⎢ ⎥ . L is the length of pw , R  is the 

length of mh  and K is the decimate factor. The decomposition 
developed in [3] reconstructs the fullband filter by inserting a 
diagonal matrix composed by M mpc  vectors between the analysis 

and synthesis banks. 
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Figure 3: Subband Adaptive Filtering with Fullband 
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Figure 4: CG vs NLMS Subbands, P = 2 

This configuration has the advantage of being able to adapt with 
different parameters, and moreover, different filtering algorithms 
in each subband. shows the results for the stereophonic acoustic 
echo cancellation application illustrated in Figure 5.  

 
Figure 5: Multichannel Echo Cancellation, P = 2 

Both rooms in the figure have the same dimensions [3 3 3]2. The 
source s  is located in [.75 1 1] position and the microphones in 
[1.25 1.45 1] and [1.25 1.55 1]. Notice that proximity between 
them produces strong correlation between 1x  and 2x signals. The 
speakers, in the receiving room, are located in [2.5 1 1] and [2.5 2 
1] and the microphone, of the simulated channel, in [1.25 1.45 1]. 
The wall reflection coefficients for both rooms are 0.9, 0.9, 0.9, 
0.9, 0.7 y 0.7. The elevation, azimuth and beam semi-aperture of 
the speakers radiation pattern are 45º, 45º and 60º respectively.  
The corresponding speaker’s parameters are 45º, 135º and 80º. 
The length of each of the four filters is 1056 samples and the 
sampling frequency is 8 kHz. 32 subbands have been employed 
from which only half are necessary, with a decimate factor of 24 
samples and a 768 length prototype filter. The GDFT has been 
implemented with polyphase filtering for an efficient implementa-
tion. Results for the other channel can be obtained in the same 
way. The bottom of  illustrates the low error level that returns in 
the form of echo when applying GC versus that obtained with 
NLMS. 

                                                           
2 [x y z] coordinates in meters 

5. CONCLUSIONS 

A novel scheme for multichannel adaptive filtering based on 
complex subband adaptation has been proposed and proved in a 
MAEC case. In this scheme the polyphase filtering techniques and 
partitioning of the fullband response have been applied to reduce 
the computational requirements while keeping the system de-
layless. This architecture provides independent adjustment of the 
algorithm parameters on each subband. Moreover, each subband 
may work with different algorithms. A multichannel stochastic 
CG algorithm has been proposed and its performance has been 
shown to be much better than LMS family algorithms. This ap-
proach requires a high computational effort, although it does not 
require dense matrix operations, but offers a high parallel opera-
tion capacity and good performance which make the technique 
suitable for employment on real time applications.  
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