
Proc. of the 8th Int. Conference on Digital Audio Effects (DAFX-05), Madrid, Spain, September 20-22, 2005

REAL-TIME SIGNAL PROCESSING SYSTEM PROPOSAL AND IMPLEMENTATION

Carlos Gómez Moreno

Audio Department
Sinixtek ADTS, s.l.

carlos@sinixtek.com

ABSTRACT

This paper intends to describe the desirable features of a complete,
powerful and highly customizable real-time audio algorithm im-
plementation system, and to provide the guidelines to its imple-
mentation. The goal is to design a platform by means of which
new sophisticated audio algorithms can be developed, tested and
used with the minimum effort. The idea is to build large complex
processing systems based on elemental building blocks which may
interact in any possible manner. This way, by connecting existing,
proved modules, such as filters, noise gates, or any new specific
module, complex processes can be achieved and tested in a real-
time environment with the minimum possible effort. The building-
block philosophy would also make such a system very suitable for
educational purposes, as it would make possible to ‘hear’ in real-
time a particular complex algorithm with and without one of its
blocks (a filter, for example), thus showing its importance.

1. SPECIFICATIONS

The main desirable features for a flexible and powerful audio
processing system as described above are the following:

1.1. Flexibility

Connections between the different building-blocks must be arbi-
trary and unlimited, no topology pattern or block count limit
should be imposed by the system. The connections must at least
include signal connections and control connections. The latter may
be defined as special connections that allow one building-block to
change the parameters of other in real-time. Optionally, one block
may have multiple signal input, output and control output ports.
It must be possible to change the parameters of any building block
in real-time. This is done with two purposes: he first is to allow
the user to make changes to the audio process and hear the effects
immediately; the second is to allow automatic parameter modifica-
tion. This way one building-block can be designed to change other
block’s parameters sinusoidally, and be reused both in a ‘Flanger’
or ‘Tremolo’ application.

1.2. Dynamic loading – Development community

The user must be capable of loading the unit with newly devel-
oped or third-party algorithms, and the developer must be able to
hot-replace and debug new code. All this must be achieved with-
out re-compiling the system core. The main objective is to pro-
mote an open code interchange community, by means of which

new, complex algorithms can be developed very easily by build-
ing up on basic, tested blocks.

1.3. Portability

The unit must be able to function autonomously. This is due to the
need to test algorithms in particular environments and conditions,
with real-world signals. However, extra functionality may be
provided when connected to an external device, such as a com-
puter.

1.4. Programming simplicity

When the development of a new, specific building-block is
needed, it must be programmed. The developer does not need to
know the intrinsics of low-level programming. The system must
provide him with a plain, standard interface where all architecture-
dependant operations (such as I/O) are handled by the system.
Ideally, the only knowledge required by the programmer is Digital
Signal Processing.

1.5. Soft transitions upon process change

When the user requests a process change, the transitions between
the old and the new process should be smooth and instant. This is
particularly important when the process to be replaced has mem-
ory, because the discontinuity is more evident and unpleasant in
such cases.

1.6. Efficiency

The intelligence and the code size in the unit must kept at a mini-
mum in the real-time (audio processing) thread, leaving the as
much calculations as possible to other low-priority threads. The
system must be speed-optimized for patch execution.

2. IMPLEMENTATION

This section discusses the implementation details of the different
elements that must be present in the designed real-time audio
algorithm system.

2.1. Audio algorithms

An audio algorithm is basically a ‘black-box’ which is capable of
producing outputs, either as a result of an operation on its inputs,
or in an input-independent way (this would be the case of genera-
tors). These operations may depend on parameters the algorithm

301 - DAFx'05 Proceedings - 301

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFX-05), Madrid, Spain, September 20-22, 2005

may have. It is the building-block for complex processes described
in the previous section. Instances of algorithms are called ‘Ef-
fects’. We will discuss now several considerations which will
provide us with guidelines to its implementation.

2.1.1. Considerations as a Black-box

• Algorithms may have any number of signal inputs and
outputs.

• Algorithms may have any number of parameters, these
parameters may be of integer or floating-point type, and
may have different allowed ranges and quantization
steps. These parameters must be allowed to be changed
in real-time.

• Algorithms may have additional characteristics that the
system must be aware of, such as natural extinction re-
quest.

• It must be possible to load and unload algorithms from
the system.

• It must be possible to modify the parameters of an effect
in real-time.

• It must be possible for an effect to modify parameters of
other effects in real-time.

2.1.2. Implementation Considerations

• Algorithms must be implemented in ‘C’ for efficiency
reasons.

• It must be possible to load and unload effects.
• It must be possible to instantiate algorithms as many

times as needed.
• Effects must be able to allocate resources (memory)

upon creation and liberate them upon destruction.
• Algorithms may veto parameter changes (for example,

depending on the values of other parameters).
• Effects may have to recalculate internal variables upon

parameter changes.

2.1.3. Implementation

Taking into account these considerations, a ‘Code + Descriptor’
approach is suggested.

2.1.3.1 Descriptor
The descriptor provides system with the I/O capabilities, parame-
ter number and type, and extra information, of an algorithm. It
exports the ‘Black-box’ interface description, and allows for
parameter modification from the outside.

2.1.3.2 Code
The Algorithm code must be written as a dynamic-load module
and delivered in a binary format compatible with the implementa-
tion platform’s architecture. This is must in order to promote an
algorithm interchange forum.
This module must have the following entries. For simplicity rea-
sons, any of this methods may be missing. In that case, the system
must provide a default implementation, which in most cases will
be useful.

• Initialization – Called when the effect is initialized. It is
used to allocate memory and initialize variables.

• De-Allocation – Called when the effect is terminated. It
is used to free allocated memory.

• Process – Called every block to process/generate audio
data. This is where the algorithm is coded. Input and
output buffers are provided by the system to this func-
tion.

• Parameter change – Called to request a parameter
change. This would be mainly used to veto or limit a
change in a parameter depending on the value of other
parameters or variables. Note that, although parameter
range is respected by the system, the user might want to
limit the range depending on other values (for instance,
to impose a slew-rate control to a sine-wave generator,
the amplitude must be limited taken the frequency into
account).

• Internal variables recalculation – Called upon a suc-
cessful parameter change. This would be used to recal-
culate the internal variables when a parameter changes.

• External parameter change – Called to request a pa-
rameter change in other effect. This is used to produce
automation values, which will be routed and scaled by
the system in order to produce a parameter change in
other effect.

In all these methods, an instance context object must be passed.
Parameter values, block size and sampling frequency information
should be placed by the system n this object. Additionally, the
user should be allowed to add to this object as many variables as
he might need to make his calculations.

To minimize code size, the system should provide the dynamic
modules with the basic mathematic and DSP functions, which
would be linked in algorithm load-time.

2.2. Patches

Patches are defined as a set of effects and their relationships (i.e.
connections). They constitute the process applied to the input
signal, as described in the Specifications section.

2.2.1. Considerations

• Patches may be loaded and unloaded.
• Connection between effects must be arbitrary.
• Connections must include control connections (virtual

connections by means of which effects can automate the
parameters of others).

• If multiple signal connections are made to a single input
of a given effect, the signals are added.

• If multiple signal connections are made to a single out-
put of a given effect, the signals are copied.

• It must be possible to partially unload a patch in order to
let only the signal paths with memory fade naturally.

2.2.2. Implementation

For efficiency reasons, the patch must be arranged as an array of
effect descriptors, which must contain the algorithm id, a buffer id
for each input or output, the set of parameter values, and a set of
option flags.
Because effects are executed in order in which they appear in the
array, sorting must be performed to ensure that all effects are
executed after all their inputs are available and processed by the

302 - DAFx'05 Proceedings - 302

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFX-05), Madrid, Spain, September 20-22, 2005

preceding effect chain. In this scenario, a signal connection be-
tween different effects means that they share a buffer, which is
written by the effect located upstream and read by the downstream
effect. This way, multiple readers share the same input data. When
there are multiple writers, all but the first one in the order of exe-
cution must add their result to the buffer. This may be achieved by
the system inserting a special effect, which would be capable of
adding its input to an output buffer, in series with each of them.
Now, the need to achieve partial patch de-allocation (in order to
keep the memory section of an unloaded patch sounding to pro-
duce a smooth transition), must be taken into account. The infor-
mation that a particular effect has memory is one of the options
(we will call it the ‘Keep’ option) that must be present in the
descriptor, and must be set whenever the effect is an instance of an
algorithm that has memory (a Delay, for example), or when there
is one of such effects earlier in the effect’s signal path. This way,
when time is come to unload the patch, only the effects marked as
‘Keep’ are kept, and all the inputs in this sub-patch that are not
connected to other effects in the sub-patch (i.e., they were con-
nected to effects which have been unloaded) are zeroed-out. This
makes these sub-chains extinguish naturally (due to the fact that
they are fed with zeros), while their outputs are added to those of
the new patch, thus achieving the desired transition softness.
Control connections should treated separately as a list of automa-
tion entries. Such entries should have origin effect id, destination
effect id and destination parameter index (inside the effect). After
the execution of each effect, for each list entry for which the effect
is the automation origin, the destination parameter must be up-
dated. This is done by calling once the ‘External parameter
change’ method. The effect is responsible of generating a value
between 0 and 1 to automate the destination effect, or –1 if it
won’t be generating output this block. Then, the system must
change all affected destination parameters. It is up to the system to
scale the value to each destination parameter’s range and to do the
requested quantization. This is specified in each destination pa-
rameter’s descriptor.

2.3. Proposed user interfaces

2.3.1. Rich user interface

In order to make patch design friendly to the user, a rich user
interface based on graphical black-box interconnection is pro-
posed. This way, the user places effects (represented by a box or
other graphical element) on a canvas, and then interconnects them
(the connections may be represented by lines). The user must have
a way of choosing which kind connection he wants (a signal con-
nection or an automation connection) and then the connection
parameters (to which signal port, in the case of a signal connec-
tion, and which parameter to automate, in the case of an automa-
tion connection). Physical inputs and outputs the unit may have
can be represented in the same way the effects are.
Once the design is complete, the graph must be translated into the
described patch structure, and it is ready for execution. This inter-
face will typically reside in an external device (a computer), so a
way of communicating the external device and the system must be
provided.

2.3.2. Autonomous user interface

As the resources for the rich user interface described may not be
practical to include in an autonomous unit (a big graphical display
would be needed), a minimum user interface is proposed. This
reduced interface would not allow the user to create a new patch
or to make structural modifications to an existing one, but would
allow the user to adjust effect parameters in real-time, and to
load/unload previously stored patches. The proposal consists on a
basic text display and keyboard interface (easy to include in a
portable unit). Keys may be used to change between patches, to
edit them, and to save them. Once in edit mode, the patch name
may be allowed to be changed, and then, for example, parameters
can be traversed and changed in real time.

3. CONCLUSIONS

The proposed system may be a very powerful signal processing
workbench for both professional and didactical purposes. The
possibilities offered by an algorithm exchange community may be
very interesting to promote the development of new advanced
audio algorithms.
An implementation of the described system has already been done
based on a Texas Instruments TMS320C6713 DSP, with very
good results.

303 - DAFx'05 Proceedings - 303

	P_301.pdf
	REAL-TIME SIGNAL PROCESSING SYSTEM PROPOSAL AND IMPLEMENTATION
	1. SPECIFICATIONS
	1.1. Flexibility
	1.2. Dynamic loading – Development community
	1.3. Portability
	1.4. Programming simplicity
	1.5. Soft transitions upon process change
	1.6. Efficiency

	2. IMPLEMENTATION
	2.1. Audio algorithms
	2.1.1. Considerations as a Black-box
	2.1.2. Implementation Considerations
	2.1.3. Implementation
	2.1.3.1 Descriptor
	2.1.3.2 Code

	2.2. Patches
	2.2.1. Considerations
	2.2.2. Implementation

	2.3. Proposed user interfaces
	2.3.1. Rich user interface
	2.3.2. Autonomous user interface

	3. CONCLUSIONS

	Gómez Moreno

