Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

CECILIA AND TCLCSOUND

Jean Piché

Faculté¢ de Musique
Université de Montréal
Montréal, Canada
jean@piche.com

ABSTRACT

This article discusses some developments relating to environments
for Csound programming, composition and performance. It intro-
duces the Csound 5 API and discusses its use in the development of
a TclTk scripting interface, TclCsound. The three components of
TclCsound are presented and discussed. A number of applications,
from simple transport control of Csound to client-server network-
ing are explained in some detail. The new multi-platform version
of CECILIA is presented. Cecilia is the first Csound frontend to
use the functionalities of TclCsound.

1. INTRODUCTION

The Csound music programming system [1] is currently the most
complete of the text-based audio processing systems in terms of
its unit generator collection. Csound hails from a long tradition
in Computer Music. Together with cmusic [2], it was one of the
first modern C-language-based portable sound compilers [3]], when
it was released in 1986. Due to its source-code availability, first
from an MIT ftp server and then from the DREAM site at Bath,
it was adopted by composers and developers world-wide. These
brave people developed Csound into a formidable tool for sound
synthesis, processing and computer music composition. Its latest
version, Csound 5 [4] has close to one thousand opcodes, ranging
from the basic table lookup oscillator to spectral signal demixing
unit generators.

The usability of command line languages for music creation
has always made it difficult to promote their wide-spread use by
composers. In the hope of bridging this approachability gap, a
graphical and highly interactive front end was developed for the
language. Cecilia [3] is built as a tcl/tk program that issues calls to
an independent Csound process through Unix pipes. It proposes a
graphical interface, sliders, buttons and an editor to make orches-
tras and scores. Cecilia also includes a simple algorithmic score
generator known as Cybil. We have developed a new version of
the interface where the functionalities of Cecilia are extended to
all platforms

Many important changes have been introduced in Csound5,
which involved a complete redesign of the software. This resulted
not only in a better software, from an engineering perspective, but
in the support for many new possible ways of using and interacting
with Csound. An important development has been the availability
of a complete C API (the so-called ‘Host API’, which was, in fact,
already partially partially present in earlier versions). The API can
be used to instantiate and control Csound from a host application,
such as TclCsound/Cecilia.

Victor Lazzarini

Music Technology Laboratory
National University of Ireland
Maynooth
Victor.Lazzarini@nuim.ie

2. THE CSOUND 5 API

The Csound 5 Host API allows the embedding of the audio pro-
cessing system under other ‘host’ software. Effectively, Csound is
now a library, 1ibcsound, that can provide audio services, such
as synthesis and processing, for any application. This allows for
complete control over the functioning of the audio engine, includ-
ing transport control, loading of plugins, inter-application software
bus, multi-threading, etc.. A ‘classic’ Csound command-line pro-
gram can now be written based only on a few API calls:

#include <csound.h>
int main(int argc, char =xxargv) {
int result;

/% the csound instance x/
CSOUND x*cs ;

/% initialise the library x/
csoundInitialize(&arge, &argv, 0);

/% create the csound instance */
¢cs = csoundCreate (NULL);

/* compile csound code */
result = csoundCompile(cs, argc, argv);

/% this is the processing loop */
if (result) while(csoundPerformKsmps(cs)==0);

/% destroy the instance */
csoundDestroy (cs);

return 0;

}

The Csound API can be used in many applications; the devel-
opment of frontends is the most obvious of these. A good example
of its application is found on the csoundapi~ Class, which pro-
vides a multi-instantiable interface to Csound 5 for Pure Data. The
Csound API is the basis for TclCsound [3f, a Tcl/Tk extension,
discussed in the next section.

3. TCLCSOUND
The classic interface to Csound gives you access to the program
via a command-line such as

csound —odac hommage. csd

This is a simple yet effective way of making sound. However,
it does not give you neither flexibility nor interaction. With the

DAFX-315

mailto:jean@piche.com
mailto:Victor.Lazzarini@nuim.ie

Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

advent of the API, a lot more is possible. At this stage, TclCsound
was introduced to provide a simple scripting interface to Csound.
Tcl is a simple language that is easy to extend and provide nice
facilities such as easy file access and TCP networking. With its
Tk component, it can also handle a graphic and event interface.
TclCsound provides three ‘points of contact” with Tcl:

1. acsound-aware tcl interpreter (cstclsh)
2. acsound-aware windowing shell (cswish)

3. a csound-commands module for Tcl/Tk (tclcsound dy-
namic lib)

3.1. The Tcl interpreter: cstclsh

With cstclsh, it is possible to have interactive control over a
Csound performance. The command starts an interactive shell,
which holds an instance of Csound. A number of commands can
then be used to control it. For instance, the following command
can compile Csound code and load it in memory ready for
performance:

csCompile —odac hommage.csd —mO

Once this is done, performance can be started in two ways: using
csPlay or csPerform. The command

csPlay

will start the Csound performance in a separate thread and return
to the cstclsh prompt. A number of commands can then be used to
control Csound. For instance,

csPause

will pause performance; and

csRewind

will rewind to the beginning of the note-list. The csNote,
csTable and csEvent commands can be used to add Csound
score events to the performance, on-the-fly. The csPerform
command, as opposed to csPlay, will not launch a separate
thread, but will run Csound in the same thread, returning only
when the performance is finished. A variety of other commands
exist, providing full control of Csound.

3.2. Cswish: the windowing shell

With Cswish, Tk widgets and commands can be used to provide
graphical interface and event handling. As with cstclsh, run-
ning the cswish command also opens an interactive shell. For
instance, the following commands can be used to create a trans-
port control panel for Csound:

frame . fr

button .fr.play —text play —command csPlay
button . fr.pause —text pause —command csPause
button .fr.rew —text rew —command csRewind
pack .fr .fr.play .fr.pause .fr.rew

Similarly, it is possible to bind keys to commands so that the
computer keyboard can be used to play Csound.

Particularly useful are the control channel commands that Tcl-
Csound provides. For instance, named IO channels can be reg-
istered with TclCsound and these can be used with the invalue,
out-value opcodes. In addition, the Csound API also provides a
complete software bus for audio, control and string channels. It

is possible in TclCsound to access control and string bus channels
(the audio bus is not implemented, as Tcl is not able to handle such
data). With these TclCsound commands, Tk widgets can be easily
connected to synthesis parameters.

3.3. A Csound server example

In Tcl, setting up TCP network connections is very simple. With
a few lines of code a Csound server can be built. This can accept
connections from the local machine or from remote clients. Not
only Tcl/Tk clients can send commands to it, but TCP connections
can be made from other software, such as, for instance, Pure Data
(PD). A Tcl script that can be run under the standard tclsh inter-
preter is shown below. It uses the TclCsound module, a dynamic
library that adds the Csound API commands to Tcl.

load tclcsound.so

#(OSX: tclcsound.dylib, Windows: tclcsound.dll)
load tclcsound.so Tclcsound

set forever 0

This arranges for commands to be evaluated
proc ChanEval { chan client } {
if {[catch { set rtn [eval [gets
puts "Error:_S$err"

} else {

puts $client $rtn

flush $client

}

}

$chan]]} err]}{

this arranges for connections to be made
proc NewChan { chan host port } {

puts "Csound_server:_connected _to_$host_on_port
$port_(S$chan)"

fileevent $chan readable [list ChanEval $chan S$host]

}

this sets up a server to listen for

connections

set server [socket —server NewChan 40001]

set sinfo [fconfigure $server —sockname]
puts "Csound_server: _ready, for_connections_on
port_[lindex_$sinfo_2]"

vwait forever

With the server running, it is then possible to set up clients to
control the Csound server. Such clients can be run from standard
Tcl/Tk interpreters, as they do not evaluate the Csound commands
themselves. Here is an example of client connections to a Csound
server, using Tcl:

connect to server
set sock [socket localhost 40001]

compile Csound code
puts $sock "csCompile_—odac_hommage.csd"
flush $sock

start performance
puts $sock "csPlay"
flush $sock

stop performance
puts $sock "csStop"
flush $sock

As mentioned before, it is possible to set up clients using other
software systems, such as PD. Such clients need only to connect

DAFX-316

Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

to the server (using a netsend object) and send messages to it. The
first item of each message is taken to be a command. Further items
can optionally be added to it as arguments to that command.

3.4. TclCsound as a language wrapper

It is possible to use TclCsound at a slightly lower level, as many
of the C API functions have been wrapped as Tcl commands. For
instance it is possible to create a ‘classic’ Csound command-line
frontend completely written in Tcl. The following script demon-
strates this:

#!/usr/local/bin/cstclsh
set result 1
csCompileList $argv

while { S$result != 0 } {
set result csPerformKsmps
}

This script is effectively equivalent to the C program shown in
section 2. If saved to, say, a file called csound.tcl, and made
executable, it is possible to run it as in

csound. tcl aASodac hommage. csd

With TclCsound, it is possible to transform the popular text ed-
itor emacs into a Csound scripting/performing environment. When
in Tcl mode, the editor allows for Tcl expressions to be evalu-
ated by selection and use of a simple escape sequence (ctrl-C ctrl-
X). This facility allows the integrated editing and performance of
Csound and Tcl/Tk code.

3.5. TclCsound as a Csound performance environment

In Tcl it is possible to write score and orchestra files that can be
saved, compiled and run by the same script, under the emacs en-
vironment. The following example shows a Tcl script that builds
a Csound instrument and then proceeds to run a Csound perfor-
mance. It creates 10 slightly detuned parallel oscillators, generat-
ing sounds similar to those found in Risset’s Inharmonique.

load tclcsound.so Tclcsound

set up some intermediary files
set orcfile "tcl.orc"

set scofile "tcl.sco"

set orc [open $orcfile w]

set sco [open $scofile w]

This Tcl procedure builds an instrument
proc Makelns { no code } {

global orc sco

puts $orc "instr_$no"

puts $orc $code

puts $orc "endin"

}

Here is the instrument code
append ins "asum_init_0_\n"
append ins "ifreq_=_p5_\n"
append ins "iamp_=_p4._\n"

for { set i 0 } { $i < 10 } { incr i } {
append ins "a$i__oscili_iamp,
ifreq+ifreq«[expr_$i_*_0.002], 1\n"

[T TR

for { set i 0 } {$i < 10 } { incr i } {

if { %1} {
append ins "_+_a$i"
} else {
append ins "asum,_=_a$i_"

}

append ins "\nkl_linen_]I
append ins "out_asumxkl"

0.01,_p3,.0.1_\n"

L

build the instrument and a dummy score
Makelns 1 $ins
puts $sco "f0_10"

close $orc
close $sco

compile
csCompile $orcfile $scofile —odac —d —mO

set a wavetable
csTable 1 0 16384 10 1 .5 .25 .2 .17 .15 .12 .1

send in a sequence of events and perform it
for {set i 0} { $i < 60 } { incr i } {
csNote 1 [expr $i = 0.1] .5 \
[expr ($i = 10) + 500] [expr 100 + $i = 10]
}

csPerform

it is possible to run it interactively as
well

csNote 1 0 10 1000 200

csPlay

The use of such facilities as provided by emacs can emulate an
environment not unlike the one found under the so-called ‘modern
synthesis systems’, such as SuperCollider (SC). In fact, it is pos-
sible to run Csound in a client-server set-up, which is one of the
features of SC3. A major advantage is that Csound provides about
three or four times the number of unit generators found in that
language (as well as providing a lower-level approach to signal
processing, in fact these are but a few advantages of Csound).

4. THE NEW CECILIA

Over the years, Cecilia [6] has made the utilization of Csound
much more intuitive and productive. Cecilia provides a library
of common sound processing modules that are ready to use for the
By providing an environment where one can quickly build inter-
faces from tk widgets linked to Csound parameters, explorations
of sound processing algorithms becomes much more convivial and
interactive.

4.1. Key Cecilia concepts

Technically, Cecilia consists of time variant functions that are sent
to Csound from real-time sliders on screen, from physical slid-
ers such as MIDI fader boxes or from a screen graphing window.
These objects use global Csound variables to send their data to the
relevant instrument parameters. All data from interface objects is
communicated to Csound with i-time stdin console messages. A
system of a single tagged instrument per controller allows for cod-
ing a large number of simultaneous channels of control data.

DAFX-317

Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

All controllers, whether graphical or physical, are assigned a
unique instrument number and, at performance time, will receive
data exclusively from the Csound process stdin. Every time a ges-
ture is detected on the interface or a physical slider, the following
tel process is called and the current value of the object is passed

@ n

through the stdin with an i-time “i" message.

proc passData {instr val}
global csoundID
puts $csoundID “° i$instr 0.00 0.0001 $val”

}

csoundID being the Unix pipe identifier for the previously
launched Csound instance, “instr" being the instrument number
attached to the controller and “val" being the current value of the
slider.

Cecilia also offers a complete text editor to facilitate the elab-
oration of orchestras and scores. The editor offers services such
as syntax and keyword highlighting and direct on-line documenta-
tion.

4.2. Cecilia and TclCsound

The new version of Cecilia communicates with the Csound engine
via the TclCsound commands only thus eliminating the need for
the Unix pipeline. TclCsound’s csChannelIn Value command
eliminates the need for console-driven events to update values.

The improvement of performance from the use of internal pi-
plines is notable but the main benefit is to make Cecilia completely
platform independent. This means Cecilia can finally run on the
Windows operating systems the same way it runs on UNIX sys-
tems. The interface and the synthesis engine run under a single
process.

4.3. New Functionalities of Cecilia

It is now possible to make multi-layered arrangements of Cecilia
processing modules by simply chaining the output of one module
as the input signal to another, effectively paving the way to ex-
tremely complex signal processing networks. The interface con-
trols for “stacked" modules are presented in a tabbed window for
easy access.

Most Cecilia sound processing modules can now be applied to
live input audio streams instead of just sound files.

It is now possible to record, display and edit any gestural con-
troller data entered via MIDI input. The Cecilia grapher window
now contains a bezier function editor and a data-reduction method

to properly implement a keyframe based automation system. This
feature is borrowed from video editing software like Adobe After
Effects.

4.4. Cecilia for audio-visual composition

The advent of audiovisual composition as one of the most promis-
ing areas of computer assisted creative disciplines is influencing
our design decisions. It is now possible to export Cecilia grapher
functions as keyframe maps directly to Adobe After Effects, Pro-
cessing or other image processing software. This feature is ex-
pected to be an important advance for the establishment of audio-
visual mapping strategies where time varying parameters of the
audio stream can be used to control time variant parameters of im-
age processing software.

5. CONCLUSIONS

CsoundS, TclCsound and Cecilia are an example of the future
development of audio processing software where intuitive and
very responsive interfaces are built around powerful, general
and highly programmable DSP engines. It is thereby shown
that the power of low level signal processing languages is
only accessible to non-specialist composers and creators inside
responsive interaction contexts, a combination readily provided
by TclCsound and Cecilia.

6. REFERENCES

[1] B. Vercoe, Csound: A Manual of the Audio Processing System.
MIT Media Lab, 1986.

[2] E.R.Moore, Elements of Computer Music. Englewood Cliffs,
N.J.: Prentice Hall, 1990.

[3] S. T. Pope, “Machine tongues XV: Three packages for soft-
ware sound synthesis,” Computer Music J., vol. 17, no. 2, pp.
23-55, 1993.

[4] 1. ffitch, “On the design of Csound 5,” in Proc. 3rd Linux Au-
dio Conf., 2005, pp. 37-42.

[5] V. Lazzarini, “Scripting Csound 5,” in Proc. 4th Linux Audio
Conf., 2005, pp. 50-55.

[6] J. Piché and A. Burton, “Cecilia: A production interface to
Csound,” Computer Music J., vol. 22, no. 2, pp. 52-55, 1998.

DAFX-318

	1 Introduction
	2 The Csound 5 API
	3 TclCsound
	3.1 The Tcl interpreter: cstclsh
	3.2 Cswish: the windowing shell
	3.3 A Csound server example
	3.4 TclCsound as a language wrapper
	3.5 TclCsound as a Csound performance environment

	4 The New Cecilia
	4.1 Key Cecilia concepts
	4.2 Cecilia and TclCsound
	4.3 New Functionalities of Cecilia
	4.4 Cecilia for audio-visual composition

	5 Conclusions
	6 References

