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ABSTRACT

In this paper, we show how the formalism of the Volterra secin
be used to represent the nonlinear Moog ladder filter. Thimgna
circuit is analyzed to produce a set of governing differ@rgqua-
tions. The \olterra kernels of this system are solved from-si
ple algebraic equations. They define an exact decomposifion
the system. An identification procedure leads to structooes-
posed of linear filters, sums and instantaneous producigrls.
Finally, a discrete-time realization of the truncated egriwhich
guarantees no aliasing, is performed.

1. INTRODUCTION

Most of the analog audio devices used in electro-acoustisianu
have been simulated in numerous softwares thanks to digital
plementations. Nevertheless, many musicians still prefiginal
devices rather than their digital versions. One of the maasons
is that analog circuits involve nonlinearities, respotesifor per-
ceptible characteristic distortions. Even for weak naedirities,
the distortion is progressively activated with respecthi signal
amplitude so that playing on the dynamics makes the souwa!’:li
Including such phenomena in audio implementation is diffitzu
tackle since nonlinearities naturally creates aliasing.

In this paper, we show that the Volterra series formalismbean
used to represent weakly nonlinear analog audio devicempas-i
output systems, from which efficient digital implementaticcan
be deduced. \olterra series define exact representatiosschf
systems on given amplitude ranges. If the equations whigkrgo
the circuit are differential, each kernel of the series idubed in
the Laplace domain from simple algebraic equations. Oneeker
isolates a sub-system attached to a monomial nonlinedriyder
n and monitors the exact associated sub-dynamics. In peactic
even a low order truncated version of the series yields stali
distortions while it allows to overcome the problem of alias In

in 8[43 for a four-stages filter, third if&3.3 for the compldtoog
ladder filter with a loop. Analytic expressions of these letsrare
detailed for the orders = 1,2,3. Sectior[b presents a low-cost
numerical simulation in the time domain: ilL8b.1, the kesragle
identified as structures composed of linear filters, sumsiand
stantaneous products of signals in the continuous timeagtgna
state-space representation is given [ % 5.2; a digitalémphta-
tion is derived in €513 such that the pole mapping of the linpeat
is exact and the aliasing due to the nonlinearities is refecThe
validity of the approximated structure is discussed inisadf.
Finally, conclusions are given in sectiph 7.

2. ELECTRONIC CIRCUIT AND NONLINEAR
DIFFERENTIAL EQUATIONS

2.1. The Moog ladder filter circuit

The Moog ladder filter is a circuit composed of a driver ands ca
cade of four filters involving capacitors and differential pairs of
NPN-transistors (see Figurk 1).

2.1.1. Transistors

The NPN-transistors (see Figue 1a) are configured suctthbat
base current$p can be neglected. Indeeti; = Ic /3 with 5 >
100 so thatlg = I + Ip = Ic . Moreover, the PN-junction BE
is governed by

VB—VE

—1} ~Ise VT

V
Io=1Ip =1, [e o)
where the thermal voltage 1§r = k7T'/q ~ 25.85 mV and the sat-
uration current i, ~ 10~ '* A for the temperaturd” = 300K,
and wherek = 1.38 10722 J/K is the Boltzmann constant, and

order to concentrate on the method rather than a “new complexg = 1.6 10~ '? C is the electron charge.

circuit”, we choose to consider a well-known and deeplhdisd
circuit, the Moog ladder filtel J1.1Z] 8] 4].

The paper is structured as follows. In secfibn 2, the andleg ¢
cuit of the Moog ladder filter is recalled and analyzed to piczia
set of governing differential equations. This nonlinedfedential
system is re-casted, for dimensionless variables. Se@tiatro-
duces the \olterra series and some of their fundamentakptiep.
Sectio® establishes the equations satisfied by the \@kernels
of the Moog ladder filter: first in 413 for a one stage filtegaed

2.1.2. Driver
U
is % — ¢ Vr (see Figur&lLb). Moreover,

)
(©)

From [1), the ratio%

L+Ji = I
Li/Ji—1
Cfl/Jl +1

—I.tanh ﬂ

h-n = 2V
T
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Figure 1: Circuits: (a) NPN transistor, (b) driver, (c) one-stage
filter, and (d) four-stages Moog ladder filter.

2.1.3. One-stage filters for k=1,2,3,4

U,
T Iopr _ —vE ;
From [3), the ratlosm are y- = e Vr (see Figurddlc).
Moreover,
Inyr = Ix+ix (4)
Je+1 = Jg — ik (5)

The sum and the difference & (4) afdl (5) yield

LIiyi+Jeyr = In+Je (=L+J=1.) 6)
Ik+1 — Jk+1 = Ik - Jk + 2ig, (7)

Now, the differential pair of transistors yields

Iiy1/Jrer1 — 1 Uk
Iyv1 — Jyyr = lc—F——— = —I.tanh — (8
kit kit Int1/Jk+1 + 1 an 2Vr ®)
and the capacitor law yields
. dUg
1k = C kT (9)

2.1.4. Four-stages filter and loop

Rewriting the terms of7) fok = 1, 2, 3, 4 thanks to[(B),[[B) and
@), leads to the voltage equations

— I.tanh & = —J.tanh Uk
2Vr

4
dt -

L yoc0

2 (10)

In practice, the Moog ladder filter includes the circuit igie[1d,
a voltage input which controlg., some voltage adders, and a loop
with a controlled feedback gainl[1[.I[5, p46]. This feedbagites

Uo = Um —4r U4 (11)

whereUs;, is the input and- € [0, 1] controls the feedback gain.

2.2. Dimensionless model
A dimensionless version of the problem is given by

1 duk o
w—c E + tanh Uk =

with uy =

k=1,234, (12)
(13)

tanh ug_1,
Uin — 4r U4q,

Wherewc = Ic/(4CVT), U = Uk/(2VT) andum = Um/(2VT).

In this paper, paramete«s andr are supposed quasi-constant
so that the global system is quasi-stationary. Nevertbeldw
method presented below could be adapted to non-statiomaby p
lems, using non-stationary \Volterra serie<[6, 7].

3. INTRODUCTION TO VOLTERRA SERIES

3.1. Definitions and notations

A system is described by a Volterra series of kerdéls },en~
for inputs |u(t)] < p if the outputy(¢) is given by the multi-
convolutions

“+oo
y(t) =Y / ) hn(7y, ) u(t—7) u(t—7,) dr, dr,, (14)

n=1
wherep is the convergence radius of the characteristic function
—+oo
on(@) =Y [hnllia", (15)
n=1

and||hnlly = [o [hn(7y, ., 7,)|d7,.d7, is theL'-norm ofh,.

u(t) y(t)

{hn}

Figure 2:System represented by Volterra kernels.

For a causal system,, are zero forr, < 0. Their mono-
lateral [8, (29.1.2)] Laplace transforms are denoted wihital
lettersH,(s1, ., s»n). For stable systems, the kernédls, are ana-
lytic for s, Re(sk) > 0.

Notation: These systems are usually represented with their ker-
nels, either in the time domaift.,, } as displayed in Figurdd 2 and
B, either in the Laplace domaiff,, } as displayed in Figufd 4.
Remark 1: Volterra series embed systems described by: (a) linear
filters (h, = 0 for n > 2); (b) instantaneous nonlinear func-
tionsy = h(u) with A(0) = 0 which admits a series expansion
h(u) = ijl anu™; (c) their various combinations (sum, prod-
uct, cascade, as detailed if.8l3.2).

Remark 2: For the case (b), the (convolution) kernels are given by
hn(t1, ..y tn) = and(t1,.,tn) in the time domain{ denotes the
Dirac distribution), and by the constant functials (s1, .., sn) =

a, in the Laplace domain.
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{fn} {fn} Dlel (R el
u(t) ﬁ'? o) u) ﬁ'? ut)
{on} {gn} {Tn}
@ (b) -
- (T} anh(uk—1)
© Figure 4:Canceling system faF.
Figure 3:Sum (a), product (b), and cascade (c) of two systems.
3.2. Interconnection laws The first term in[[2D) represents the cascédie} — Q1 in Fig-

ureld. It is derived from[{d8) in which only the term wiph= n is
not zero. The second term represents the casgadé — {75 }.
Note that the indey = 1 is associated t&, (s, , .., sn)T1 while
the indexeg > 2 only involve F}, with &k < n — 1. The second

LetN* denote the strictly positive integers. The kerrfgtg, },en+
of the systems in Figurdd 3Bl 3b, ddd 3c are given respactivel
by [9, p. 34,35]

Ho(sy,.,5,) = Fnl(sy,,s,)+GCGn(s,,.,5,), (16) member stands fof—7), }. Equation[[2D) rewrites, for € N*,
n—1
Hn('sn '7'Sn) = ZFP(51'>7SP)G”W(SPF17 ’7'Sn)7 (17)
~ Fu(sy,s,)=[Ti+Qi(s,+ . +s)]" . |Tn
oo 5) = 30 S Falorn ) Foyloys 1y ) n
P=1 (i1,.,ip) €I} =T Y Fiy(sy,080,) Fy (s, i s):| (21)
'GP(81+ +8117 7811+ +ip71+1+ + Sn) (18) p=2 (i1 rip ) EIR,
wherel?, = {(i,,..,ip) € (N*)? s.t.is+ . + i, = n}. Note that
I7 is the singleton {(1,,1)} and thatl?, = 0 whenp > n. This yields recursive algebraic equations: for eaghhe second
The radii of corvergence are such tpat> min(py, o) for member of [2) is a finite sum composed of kerngls which
the cases (a,b) ang, > min (ps, ;' (py)) for the case (c). have been yet computed singe< n. The kernels forn = 1,2, 3
are given by,
4. VOLTERRA KERNELS OF THE MOOG LADDER
FILTER )
-1 S
4.1. Kemels of a single stage” Fi(s,) = [Ti+ Qu(s)]” = {1 + w—lc] (22)
Let { Fy. }nen+ be the unknown kernels of a single stage filter with Fy(sy,8,) = 0, (23)

input ux—1 and outputu,. They describe the dimensionless sys- g ) = _ , Y
tem [I2) which corresponds to the circuit in Figlle 1c, foieg Folsrs0,80) = T [1 f (Sl)Fl(SQ)Fl(SS)] Falschsshs,) (24)
k. Let {T,}.en be the coefficients of the series expansion of
tanh. They are given by, =0forp € N, Ty = 1,75 = —1/3 Thus, including the nonlinear effect in the applicationuiees to
and, more generally, b¥,—1 = (=1)?"'2(2** — 1) Ba,/(2p)! consider the kernels at least until= 3.
for p > 1 whereB,, denotes the:*" Bernoulli numbers (se€][8,
(4.5.64)]). According to the remark 2 in[§B.1, the coeffitgen
T, also define the constant kerngl$;,} of the systemy(t) =
tanh (u(t)), in the Laplace domain.

Now, we describe{d2) through a block diagram involving the
\olterra kernels{ F, } and{T}, } which define the null-system de-
tailed in Figurd®, where

4.2. Kernels of a complete four-stages filtefF*

Let {F*},cn+ denote the kernels of the cascadekofystems
{F, }nen+. The kernelg{ F'!} are derived from[{18) in two steps:

Qi(s,) = 5 (19) first, the cascade dfF,,} and{F,} yields {F2}; second, that of
We {F2} with {F?} yields{F;; }.
defines to the linear operate}- £ in the Laplace domain. The As Fy(s1, s2) = 0, this leads to, fon = 1,2, 3,

kernels of this null-system can be derived from the intenemtion
laws [I8) and[{T8). Writing that the kernels of the null systare

zero yields, fom € N*, Fi(s,) = [Fu(s)]’, (25)
Fo(syy.58,)Q1(s,+ . +5,)+ F3(s,,s,) = 0, (26)
n 2
Z ZFH (517 7Si1) ) (Sil+ o 75n)Tp _ Tn(20) F3 (81,52753) = F3(51,52753)F1(51+52+53)
p=1(iy, ,ip)€lf, +Fi(s,)F1(8,)F1(835)F5(s,, 85, 85), (27)
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and for the second step,

Fi(s,) = [Fi(s))]” = [Fi(s))]", (28)
F;(sl,sz) =0, (29)
F;(81782783) = F32(517327 3)F12( 1+82+5)
+F(5,)FL(s,)FL(55)F3 (54, 5,,55)

3

[Fi(s,)]" [Fa(s,)] " [Fa(s4)]"

k=0

'F3(317327 %)[Fl( 1+52+33)}37k~ (30)

4.3. Kernels of the Moog ladder filter £ with a loop

Let{Lx }.en+ be the kernels of the four-stages filter with the loop,
fed by the inputu;, and with outputu4. They describe the dimen-
sionless systen_(JIZA.3) which corresponds to the circuRign
ure[dd. This system is such that the block diagram in Fiflire 5
defines the null system. In this block diagram, the kernelthef

Ugq

Uin U4 Uo —U4q

—4r

{Ln} —F)

Figure 5:Canceling system fof.

sub-system inside the gray box @meL,(s1, .., sn) + d1,» Where
01, denotes the Kronecker symbal (,=1 if n=1 andd;,,=0
otherwise). Writing from[{1I8) that the cascade of this Systeith
{EN nen+ 18 {Ln }nen- yields

Z Z[&Lil— 4rL;, (s,, ,sil)] [(51,ip— 4TL"'P(811+ bt 7sn)}
P=1 (iq,..,ip) €L
Fy(scbods, s o8, bt 8) = Lalsy,s,), (31)
so that, forn = 1,2, 3,
Li(s,) = [1—47‘L1(81)}F14(81), (32)
Ly(s,,8,) = 0O, (33)
L3(s,,8,,85) = —41”L3(51,52,53)Ff1(51+52—|—53)

+[1—4r Li(s, ] [1 — 4r L1 (s,)]
[1—4r L1(83)]F;(81782783), (34)

Finally, the kernels are given by

Ll(sl) = R(Sl) F14(81)7 (35)

L2(81782) = 0 (36)
L3(51782783) = R(S1)R(82)R( )F;(81,82783)

R(stssts,), (37)

with R(s) = [ +arFi(s)] 7 (38)

5. SIMULATION

5.1.
ucts

The \olterra kernels of order 1 given iig22L.128) ahdl (35)-co
respond to standard linear filters. Those of order 3 give4h), (

Identifying structures composed of filters, sums and pd-

MoumireCanada, September 18-20, 2006

@0) and[[3F) are sums of terms with general expression
Ai(s,)Bi(s,)C1(s3)D

From [I8), each term defines an elementary system of ordex-3 pr
sented in FigurEl6, wheré,, By, C; andD; are linear filters. For

1(81+85+85)-

— A
U B —=()—> D — >
L= C1

Figure 6:Elementary system of order 3.

instance, in[[24)F; can be decomposed into two elementary sys-
tems as in FigurEl3a: one correspondsiio= B; = C; = 1 and

D, = T, F: and is the cascade of an instantaneous cube power
and the filterT;, F1 whereT, = —1/3; the second corresponds to
A1 = B1 = C1 = Fy andD, = —T, F; and is the cascade of a
filter F1, an instantaneous cube power and the filtdt, F;.

Thus, by identification,[[2P=24)[TH830) arldiB33-37) lead t
the structures given in FigurEb[Z, 8 did 9 for the third orteics
tures of 7!, F* and L, respectively. Note that third order approx-
imations of [IPEIB) would involve instantaneous loops wehsr
these structures have no loops and yield realizable systems
posed of causal linear filters, sums and products in the tioae d

main. The structureC; makes the resonant filtdR(s) appear
[ I U1 [ ] Yz,
0.9 &
s V1 T3F1 W\_/

Figure 7:Third-order structureFs of the systenf.

s [ Jus T | wa [ V7
FI\ Fl\ EilmmEil
é s é = é M= é M= 53) +
u Nrubyraly
T. F
Fi £ \wl RN RN v e Rk o

Figure 8:Third-order structureF; of the systenf™.

only through an encapsulation of the four-stages sysfmThis
corroborates the remark given [d [5, p.51] even for the tbider
nonlinear case: the loop does not modify the low-pass ptiaser
of the filter.

Indeed, controlling the resonance (Q-factor) through ¢leelback-
gain modifies the filterR but does not affect the structuse;
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Uin R o ‘ uim y133
F3 +
R ruz

Ls Wa

Figure 9:Third-order structurels of the systent..

since the cut-off pulsatiow. is controlled throughl. but notr.

Now, the filterR is resonant but has not a low-pass behavior. Bode

1 2

diagrams for € {O, 353 1} are displayed in Figufe10.

|R(2imf)| (dB) arg(R(2inf)) (rd)

40 T
pod RS Iptp
20 z
10 SN
0 0
~10 g B
20 -z
20 200 2000 20000 220 200 2000 20000
f (inHz) f (inHz)

Figure 10:Bode diagrams oft for r = 0 (=), r = 3 (o), 7 = 2
(x)andr =1 ().

5.2. State-space representation

In this section, linear filters involved in the structufeare re-
shaped into state-space representations

d zgt) — Az(t)+ Bu() (39)
y(t) = Cz(t)+ Du(t) (40)

which define stationary linear systems withinputswu, Q outputs
y and the statec of dimensionN. The vectorsu, y andx have
dimensionsP x 1,Q x 1, N x 1, respectively. The matrice4, B,
C and D have dimensionsV x N, N x P, Q x N andQ x P,
respectively.

5.2.1. Cascade of four filtetg?

The cascade of four linear filtetd; with one inputur = wo
and four outputgyr = [ua, us, u2, u1]* (see Figur€l8) admits the
representatiof {38-}0) with the state = yr and

-1 1 0 0

Ar = we 8 _(1) 10 (41)
0o 0 o0 -1

Br = w0 0 0 1], (42)

Cr = Iy (43)

Dr = [0 0 0 0], (44)

wherel, denotes thd x 4 identity matrix.

5.2.2. FilterR

The filter R defined in[[3B) with one input z and one outpulyr
admits the representatidn{B9t40) with the state

xg = [z,dz/dt,d*x/dt? Az /dt*]" and

0 1 0 0
An = S T R N
—wi(14+4r) —4wd —b6w? —dw.
Br = [0 0 0 1], (46)
Cr = [ -4rw! 0 0 0], (47)
Dr = 1. (48)

5.2.3. Linear processing

The linear part of the Moog ladder filter corresponds to theeup
stage of Figurgl9, that is, the cascade of the fiReand the linear
four-stage filterF;. It admits a state-space representation, with
UL = Uin, YL = (U4, U3, U2, U1, Uo)’,

T = [U4,u37uz7ul,:c7d:c/dt,d2:c/dt27d3:c/dt3]t, and

de(t) - Ar |BFCR
dt 044| Ar

mn 04,4
0.4 | Cr

Br.Dgr
Br

04,1

]u(tH { D

5.2.4. Processing of order 3

} wot) + [ } uL (1), (49)

u(o=| s o0

This part is composed of the intermediate and the lower stage
FiguredH:p. The intermediate stage is nonlinear but melessy
It computes

t

v = [(us)’= (ua)®, (u2)’= (us)®, (u1)’= (u2)? (u0)’~ (u1)?]".

(51)
The lower stage is a cascade of four linear filt&iswith adders,
a gainT; = —1/3 and a linear filterR. It admits a state-space

representation withu n, =v, ynz = ws, and
NI = [w,dw/dt, d2w/dt2,d3w/dt3,w4,w3,w2,wl}t where
w is involved in the state-space representatiofpand

da:NL(t)_ AR|BR.[T3,0,070} 04,4
dt [ Os4 | Ap Ze(t) + wely unz(?)
(52)

(53)

yNL(t):[ C’R|.DR.[’I'3707 0, 0” CUNL(t)

5.3. Digital simulation without aliasing and results

The state-space representation®f is given by equationd{39-
E3). The digital implementation of its linear parts is vetgrsiard.
Methods such as bilinear or backward difference transfants
even redesigned versions 6f have been deeply studied id [2].
Another way to preserve important features such agxiaet pole
mapping with(r, w.) consists in deriving the exact free-regime dy-
namics from the solution of{89), namely(t) = fot exp (A(t —
7)).B.u(r)dr + exp (At).x(0) so that, denotings,, = (nT’)

for the sampling period’,

(n+1)T
exp (A(tni1—7)).B.u(r)dr.

(54)

Lnt1 = €Xp (AT).a:,ﬁ—/

nT
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Finite dimensional approximationsaft) = >, unh(t—nT)
with h(t) = sin(nt)/(7t) will yield digital filters. As a low order
example, the approximatiom(t) = (1 — )17 7 (t) leads to

Ln+1 — €XP (AT):En + Bl.un+1 + Bo.un, (55)

WhereBl = TEl(T) — EQ(T), By = EQ(T) with El(t) =
T [ exp (A(T — 7)) Bdr and Ex(t) = [; Er()dr. The
outputy,, is computed from[{40). The approximation duehtp

means that the exact system is fed with a modified input with

spectrum THu](f) [sing(T'f)]? rather than TFRu)(f), where TF
denotes the Fourier transform ajsthc(7'f)]*> = TF[h1](f).

nonlinear differential systems (including loops) into afinite set

of algebraic equations from which the Volterra kernels age d
duced. Each kernel isolates a sub-system attached to a neinom
nonlinearity and monitors the exact associated sub-dysgnin
practice, keeping the very first kernels suffices to captiueedis-
tortion in a significant amplitude range, which characesithe
warmth of analog devices.

Structures which admits a realization in the time domain can
be deduced from the Volterra kernels. In this paper, for éach
nel, elementary and low-cost sub-systems have been igehtifi
but other systematic identification procedures are alsdadbe,
see e.g.[110]. Moreover, a truncated version of the serlewsl

Now, the aliasing due to the cube powers[il (51) can be re- to reject aliasing for digital implementations. In praetiasing

jected by encapsulating the digital system with an oversiagp

lower oversampling factors can be sufficient, especialtynfatu-

process at the input and an under-sampling process at the outrally low-pass systems.

put. Here, the oversampling factords This factor improves the
approximation due td; since[sing&))? decreases frora dB at
¢ =0toonly—0.8dB at¢ = 1/6 rather than-7.8dB até = 1/2.

This formalism also proves to be useful for solving weakly
nonlinear partial differential equations, see elg.l [1%]tfee non-
linear propagation in a brass.

Results are presented in Figl 11 for a sum of 2 square waves

(437Hz, 443Hz) with a linear attack((.5s) and a linear decay
(0.3s). Parameters ate. = 2 f. with f. = 1500Hz, » = 0.15
and7T = 1/44100s.

—
N
T —_—
E 8000 |
N— I
6000 [
Py NS
4000 [ e
() +—> —
S 2000 T + 2
o ¥ e —SiEEE :
E 0 = -l i e ] " I " i T T
— 05 1 15 0 05 l 15 0 05 1 15 0 05 1
time (in s)
[<5]
©
=]
=
a
IS
|

1 15 0 05 1

0?5 :‘L 1?5 (‘) 0?5 :‘L 1?5 (‘) 0?5
time (in s)
Figure 11:Spectrograms and signals of,, — u4 + ws = Y-

6. DISCUSSION

The validity of the third order structure is conditioned hgatof the
series expansion ahnh(u). Typical valid ranges for orders 1, 3
and 5 ardu| < 0.5, |u| <0.75, |u| < 1. Compared to Figl7, @ N+
1)-order structureFzn41 involves N +1 elementary filterg;, and
also instantaneous operators (powers, products, sumsgadvir,
structuresFyx: 1 andLonp are built fromFsn11. Now, a way to
improve the validity for a fixed ord&¥N+1 consists in modifying
coefficientsTai 41 (1 < k < N) so that they minimize a distance
betweertanh(u) and its@ N+1)-order polynomial approximation
P>yt (u), globally on au-range rather than near= 0. This will
introduce some ripples o241 (u) but which do not affect the
global behavior if sufficiently small (in particulaPz x4 (u) must
preserve the sign abnh(u) over the considered-range).

7. CONCLUSION

In this paper, the Volterra series have been used to modehklyve
nonlinear analog audio device. This formalism helps togf@m
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