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ABSTRACT

A nonparametric allpass filter design method is presented for mat-
ching a desired group delay as a function of frequency. The tech-
nique is useful in physical modeling synthesis of musical instru-
ments and emulation of audio effects devices exhibiting dispersive
wave propagation. While current group delay filter design meth-
ods suffer from numerical difficulties except at low filter orders,
the technique presented here is numerically robust, producing an
allpass filter in cascaded biquad form, and with the filter poles fol-
lowing a smooth loop within the unit circle.

The technique was inspired by the observation that a pole-zero
pair arranged in allpass form contributes exactly 2π radians to the
integral of group delay around the unit circle, regardless of the
(stable) pole location. To match a given group delay characteristic,
the method divides the frequency axis into sections containing 2π
total area under the desired group-delay curve, and assigns a pole-
zero allpass pair to each. In this way, the method incorporates
an order selection technique, and by adding a pure delay to the
desired group delay, allows the trading of increased filter order
for improved fit to the frequency-dependent group delay. Design
examples are given for modeling the group delay of a dispersive
string (such as a piano string), and a dispersive spring, such as in a
spring reverberator.

1. INTRODUCTION

In many media, waves propagate dispersively, with different fre-
quencies traveling at different speeds. For instance, as described
in Fletcher and Rossing [1], high frequencies slightly outrun low
frequencies on “stiff” strings, making the higher overtones some-
what sharp. A pulse propagating on such a string is eventually
“smeared out” along the string, as illustrated in Figure 1, with its
high frequencies leading the way, and its low frequencies lagging.

To simulate such a system, waveguide synthesis models [2] are
often used for their accuracy and efficiency. A waveguide model
of a dispersive string segment is shown in Figure 2; propagation
losses and dispersion are lumped into filtering at the waveguide
ends. For musical strings such as for the piano, the attenuation fil-
ter A(z) can be low-order and minimum-phase, yet perceptually
exact, because there is very little loss in the string itself. The dis-
persion filter, in contrast, needs to be a high-order allpass whose
job it is to delay different frequencies by different amounts accord-
ing to the frequency-dependent propagation speed.

There are several approaches to designing allpass filters to
achieve a prescribed delay vs. frequency. We now give a brief
overview of some prior literature on this problem.

*Jonathan Abel is also a consulting professor at CCRMA.

Figure 1: Dispersive string propagation.

Hilbert-transform methods, such as [3, 4], make use of the fact
that the log-magnitude and phase of a minimum-phase spectrum
form a Hilbert transform pair [5]. A group-delay filter can then be
designed by integrating the group delay to form a desired phase
response. An all-pole filter is fit to a minimum-phase frequency
response having log magnitude equal to the Hilbert transform of
half the desired phase response. The allpass filter is then formed
by inverting the poles to generate corresponding maximum-phase
zeros.

These nonparametric Hilbert-transform methods have a few
drawbacks. They are not optimal, and they use the FFT in a man-
ner that suffers significant time aliasing when the poles and zeros
get too close to the unit circle in the complex plane. Perhaps a
more serious difficulty is that the filter designed by these meth-
ods is in direct form, as opposed to factored form (which is often
preferred in applications). It is often costly and numerically diffi-
cult to factor a high-order allpass filter form for implementation as
cascade second-order sections. In addition, because the round-off
error in direct-form filter coefficients can have a very large effect
on the locations of poles and zeros, these methods can break down
at extremely high model orders. Moreover, the internal all-pole
filter-design methods used (such as LPC in [3]) can itself suffer
numerical difficulties at the needed very high orders. Finally, there
is no built-in model-order selection in these methods.

In [6], high quality stiff-string sounds were demonstrated us-
ing high-order allpass filters to simulate dispersion in a digital
waveguide model. In [7], this work was extended by applying a
least-squares allpass-design method [8] and a spectral Bark-war-
ping technique [9] to the problem of calibrating an allpass filter of
arbitrary order to recorded piano strings. They were able to cor-
rectly tune the first several tens of partials for any natural piano
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Figure 2: Dispersive waveguide section.

string with a total allpass order of 20 or less. Additionally, mini-
mization of the L∞ norm [10] has been used to calibrate a series
of allpass-filter sections [11], and a dynamically tunable method,
based on Thiran allpass filters, has recently been proposed [12].

Optimal allpass design methods are limited by numerical pre-
cision and computational cost. In particular, Bensa [11] reports
difficulty in matching a piano-string dispersive delay using a model
order greater than five. In a least-squares method for allpass design
[8], the maximum order was 15 in five design examples, and nu-
merical difficulties were noted when designing a particular delay
equalizer at orders greater than 10. A detailed analysis of numeri-
cal issues is given in [10], along with techniques for roughly dou-
bling the order that can be reliably designed. In particular, the
numerical improvements enabled an order increase from 10 to 20
for a delay equalizer for a 7th-order lowpass filter. In [13], a par-
ticular order 80 lowpass delay equalizer was designed using linear
programming methods; the order of another example in that paper
was extended from 25 to 150 using the numerical improvements
of [10], but this was classified as a “special case”, and is the high-
est order we have seen reported to date by such methods. In all of
these methods, the allpass order is set a priori, rather than being
automatically determined by the design method in some way.

The technique described in this paper, first presented at [14], is
essentially nonparametric, with the allpass filter computed in fac-
tored biquad form directly from the desired group delay function.
The method is based on an invariant feature of allpass group de-
lays: A (complex) pole-zero pair arranged as an allpass filter will
generate a group delay that peaks at the pole-zero frequency, and
that has a constant area of 2π, irrespective of the pole location
within the unit circle.

The group delay of a cascade of filter sections is the sum of
the section group delays. So, to match a given group-delay char-
acteristic, the frequency axis may be divided into bands such that
the area under the desired group delay curve in every band is 2π
radians. A pole-zero allpass section may then be assigned to each
band, and the pole radius adjusted so that a specified portion of
its group-delay area occurs within the band. An allpass filter ap-
proximating the desired group delay characteristic is formed by
cascading a number of such allpass sections, covering the desired
total frequency band.

Details of the method are given in § 3, with various design
tradeoffs discussed in § 4. Applications to physical modeling syn-
thesis of a stiff string and to emulation of a spring reverberator are
considered as design examples. Finally, § 6 contains our summary
and conclusions.

We begin by reviewing properties of the group delay of a pole-
zero pair arranged as an allpass filter.

2. FIRST-ORDER ALLPASS PROPERTIES

Consider a pole p in the z-plane at normalized radian frequency1 θ
and radius ρ, with a complementary zero at ζ = 1/p. That is, the
zero is at the same frequency θ, but inverse radius 1/ρ. Then the
pole p = ρ exp(jθ) and zero ζ = (1/ρ) exp(jθ) form an allpass
pair

G(z) =
−ρe−jθ + z−1

1− ρejθz−1
, (1)

as shown in Figure 3. The group delay of any linear time-invariant
filter with transfer function G(z) is defined as the negative deriva-
tive of the phase response ∠G[exp(jω)] with respect to frequency
[15], i.e.,

τ(ω)
∆
= − d

dω
={log G(z)}

˛̨
z=ejω , (2)

where ω ∈ [−π, π), and is given in this case by

τ(ω) =
1− ρ2

1 + ρ2 − 2ρ cos(ω − θ)
. (3)

As illustrated in Figure 3, the group delay τ(ω) is symmetric in
frequency about the pole-frequency θ, with a peak delay of

max
ω
{τ(ω)} =

1 + ρ

1− ρ
, (4)

which is achieved at the pole frequency ω = θ, and a minimum
delay of

min
ω
{τ(ω)} =

1− ρ

1 + ρ
, (5)

which is attained half way around the unit circle at ω = θ + π.
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Figure 3: Allpass filter pole, zero. Group delay.

Now, what happens to the group delay τ(ω) as the pole ra-
dius ρ is varied? Referring to Figure 4, as the pole moves towards
the unit circle, the peak delay increases, while the bandwidth over
which the delay is large decreases, concentrating around the pole
frequency θ.

We might expect the group-delay peak to increase as the pole
approaches the unit circle, but why does it also become narrow?
What’s going on is that there is only so much group delay to “go
around”—more precisely, the integral of the group delay around
the unit circle is always 2π. Since the group delay is the nega-
tive derivative of the phase response with respect to frequency, its

1We will assume the sampling rate is 1 so that the normalized radian
frequency θ ranges between −π and π.
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Figure 4: First-order allpass group delay, various ρ.

integral around the unit circle is simply minus the phase accumu-
lated during one traversal of the unit circle, which is 2π per pole,
regardless of where the pole is inside the unit circle:Z 2π

0

τ(ω)dω = ϕ(0)− ϕ(2π) = 2π (6)

Note that only the pole contributes to this integral because the zero
lies outside the unit circle. These facts can be readily seen by con-
sidering the graphical method for evaluating the phase response of
a digital filter [15].

3. DISPERSION FILTER DESIGN

Recall that the goal is to design an allpass filter D(z) to match
a desired frequency-dependent delay, δ(ω). The approach taken
here constructs the allpass filter from (complex) first-order sec-
tions, taking advantage of the fact that each section has a 2π in-
tegrated delay, and a delay peak which may be arbitrarily located
and scaled. The filter is formed by dividing the desired group delay
into frequency bands, each having area 2π, as shown in Figure 5,
and then modeling each delay band with its own allpass section.

The design procedure is as follows:

1. Add a constant delay to the desired frequency-dependent
delay δ(ω) so that it integrates to a desired multiple of 2π,
call it N , where N is the desired allpass order.

2. Starting at DC, divide δ(ω) into 2π-area frequency bands,
as illustrated in Figure 5.

3. Fit a first-order (complex) allpass section Gn(z) to each
band as described below.

4. Cascade the first-order sections to form the allpass filter,

D(z) =

NY
n=1

Gn(z). (7)

What remains is to find the pole location for each band. The
idea is to have the pole-zero pair delay τ(ω) approximate the group

0 !
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#

Figure 5: Segmenting δ(ω) into 2π-area bands.

delay δ(ω) in that band, and be small outside the band. The pole
frequency is taken to be the band midpoint,

θ = (ω+ + ω−)/2, (8)

where the frequencies ω± denote the left and right band edges.
The pole radius is chosen so that the group delay at either band
edge is a fraction β of the peak group delay, as illustrated in Fig-
ure 3. This controls the width of the group delay peak in each
band, and determines a tradeoff between smoothness of fit to the
desired group delay and the maximum “slew rate” of the allpass
group delay (i.e., its ability to follow small-bandwidth features in
the desired group delay). Setting

τ(ω±) = β ·max
ω

τ(ω), (9)

and using (3) and (4), we find

ρ(β) = η − [η2 − 1]
1
2 , (10)

where

η =
1− β cos∆

1− β
, ∆ = (ω+ − ω−)/2. (11)

Note that in the second step of the design procedure above,
the initial band edge was set to zero. As the group delay δ(ω) is
even in frequency for real filters, this choice leads to first-order all-
pass sections appearing as complex conjugate pairs which may be
combined to form biquads having real coefficients. Allpass filters
with real coefficients also result by choosing the first band to be
centered on DC. This can be done by setting the first band edge
frequency to that at which the integral of δ(ω) from DC is π. In
this case, there will be two first-order allpass sections with real
poles (one at DC and one at the Nyquist limit), and the rest will
appear as complex conjugate pairs.

The list of band edges encodes all relevant delay information,
with the band filters separately computed from their band-edge fre-
quencies and a user-supplied β. As a result the design method is
very efficient, requiring little more than an evaluation of (10) and
(8) per designed biquad. It is also numerically robust, with nu-
meric requirements nearly independent of model order.

A fair number of bands is often needed to capture the behavior
of the desired delay, and in this case, the bands will be everywhere
sufficiently narrow that ρ(β) may be approximated by

ρ(β) ≈ 1−
»

β

1− β

– 1
2

∆, ∆ � 1. (12)
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The overlap parameter β is generally supplied by the user and in-
dependent of frequency, so that the root [β/(1−β)]

1
2 may be pre-

computed. Under these conditions, the filter design is less costly
than its implementation, and real-time manipulation of the frequen-
cy-dependent delay is inexpensive. Furthermore, it is well known
that the coefficients of stable biquad sections can be interpolated
from one to another without obtaining unstable intermediate filters.
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Figure 6: Spring element group delay model.

As an example design, Figure 6 shows a desired delay char-
acteristic δ(ω), the frequency-dependent portion of the measured
time delay for a single traversal of a spring reverberator element.
Frequencies in the neighborhood of 500 Hz arrive first, with delay
increasing away from 500 Hz.
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Figure 7: Spring element model poles and zeros.

Also shown in Figure 6 is the group delay of a 20-biquad all-
pass filter designed to match the spring element delay; it’s essen-
tially a smoothed version of the desired delay. The pole frequen-
cies of the designed allpass are shown on the frequency axis, along

with their associated group delays. In Figure 7, the allpass pole
and zero locations are shown in the z-plane, the poles tracing a
smooth loop inside the unit circle. Where the delay is large, the
poles and zeros are more closely spaced, and are closer to the unit
circle. This is consistent with the notion that the greater the delay,
the smaller the bandwidth required to achieve a 2π delay integral.
That the poles are closer to the unit circle in the presence of nar-
rowly spaced bands can be seen from (12), where the pole distance
to the unit circle is roughly proportional to bandwidth.

4. DISPERSION FILTER DESIGN TRADEOFFS

There are several parameters which may be adjusted to provide an
improved fit to the desired group delay characteristic.
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Figure 8: Example designs, β = {0.5, 0.85}.

The parameter β determines the extent to which successive
band group delays overlap. Values of β close to one produce
smooth group delays, whereas small values of β produce rippled
group delays, but allow the designed filter to track narrow-band-
width delay features such as sharp transitions from one delay to an-
other. This is seen in Figure 8, showing the frequency-dependent
delay of a length of piano string modeled using β = 0.5 and
β = 0.85. Note how the higher β gives a smoother fit, but a
greater “tracking error” near the Nyquist limit.

Since the band allpass sections are separately computed, there
is no barrier to making β a function of frequency. For instance, β
could be adjusted in proportion to a local measure of the smooth-
ness of δ(ω).

Adding a pure delay δ0 to the desired group delay δ(ω) allows
additional, more closely spaced allpass sections to be used, and
provides a more accurate fit. Figure 9 shows a dispersive delay
modeled using five biquads (top) and ten biquads (bottom). The
additional biquads provided when the pure delay is added result in
a better fit across the band.

If computational resources are limited, it may be desired to
model the group delay only in a band of interest. For instance,
when designing audio dispersion filters for vibrating-string mod-
els, it is typically most cost-effective to obtain an allpass filter that
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Figure 9: Example designs, δ0 = {0, 10} samples.
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Figure 10: Example designs, {6,24} kHz bandwidth.

correctly tunes only the lowest-frequency partial overtones, where
the number of partials correctly tuned is significantly less than the
total number of partials present, as in [7]. In Figure 10, we see that
80 biquads are needed to model the delay out to 24 kHz, whereas
only 20 biquads are needed to model the delay out to 6 kHz. Such
a filter would be efficient for implementing the string dispersion
needed for a low note on a piano.

5. PIANO-STRING DISPERSION FILTER

Figure 11 shows the impulse response based on measurements
from note F1 of a piano-string (top) and that of the cascade of a
minimum phase attenuation filter and an allpass dispersion filter
(bottom) designed by the method of this paper using 64 biquad
sections (see Figure 2 for string-model context). As can be seen,

the measured and model impulse responses appear virtually iden-
tical. Frequency-domain plots are omitted, as there is no visible
error, except for a slight divergence (on the order of a tenth of a
millisecond) at the Nyquist limit (12 kHz).
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Figure 11: Order 128 impulse-response fit for a piano string, note
F1.

6. SUMMARY AND FUTURE WORK

In this paper, we described a new method for allpass dispersion
filter design having the following features:

• Simple and fast
• Model order automatically determined
• Filters computed in factored biquad form
• Applicable to variable allpass designs in real time
• Effective at extremely high orders

(numerically robust)

Example designs were shown for stiff string and spring-reverb
modeling. Other applications to consider include stiff strings in
other instruments (e.g., cello), springs, and dispersive acoustic tubes.
More generally, the method can be useful for high-order group de-
lay equalization.

For future work, we think it could be effective to use this
method to initialize one of several optimal methods for group-
delay allpass design, to see if their convergence and numerical
performance can be improved. Another idea is to model the pole
locus as points along a parametrized curve, such as a series of
spline curves, and to minimize group-delay error with respect to
certain parameters of such a “pole locus curve”; while such a con-
strained locus of poles cannot be expected to be optimal in any
global sense, the resulting optimized design may yield a useful
improvement over the noniterative starting-point described in this
paper. For this and other variations, it can help to carry out opti-
mizations in smaller band slices corresponding to cascaded allpass
sections. Finally, we think time-varying group-delay filter appli-
cations appear promising.

DAFX-17



Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

7. REFERENCES

[1] N. H. Fletcher and T. D. Rossing, The Physics of Musical
Instruments, 2nd Edition. New York: Springer Verlag, 1998.

[2] J. O. Smith, III, Physical Audio Signal Processing: for Vir-
tual Musical Instruments and Digital Audio Effects. [On-
line] http://ccrma.stanford.edu/∼jos/pasp/, Mar. 2006.

[3] B. Yegnanarayana, “Design of recursive group-delay filters
by autoregressive modeling,” IEEE Trans. Acoust., Speech,
and Signal Proc., vol. 30, no. 4, pp. 632–637, Aug. 1982.

[4] G. R. Reddy and M. N. S. Swamy, “Digital all-pass filter de-
sign through discrete hilbert transform,” in Proc. IEEE Int.
Conf. Acoust., Speech, and Sig. Proc. (ICASSP’90), Albu-
querque, USA, 1998.

[5] A. V. Oppenheim and R. W. Schafer, Digital Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

[6] A. Paladin and D. Rocchesso, “A dispersive resonator in
real-time on MARS workstation,” in Proc. Int. Comp. Music
Conf. (ICMC’92), San Francisco, USA, 1992, pp. 146–149.

[7] D. Rocchesso and F. Scalcon, “Accurate dispersion simu-
lation for piano strings,” in Proc. Nordic Acoust. Meeting
(NAM’96), Helsinki, Finland, June 12-14 1996, pp. 407–414.

[8] M. Lang and T. I. Laakso, “Simple and robust method for the
design of allpass filters using least-squares phase error cri-
terion,” IEEE Trans. Circuits and Systems—I: Fundamental
Theory and Applications, vol. 41, no. 1, pp. 40–48, 1994.

[9] J. O. Smith III and J. Abel, “Bark and ERB bilinear trans-
form,” IEEE Trans. Speech and Audio Proc., vol. 7, no. 6,
pp. 697–708, Nov. 1999.

[10] M. Lang, “Allpass filter design and applications,” IEEE
Trans. Sig. Proc., vol. 46, no. 9, pp. 2505–2514, 1998.

[11] J. Bensa, “Stiff piano string modeling: Computational com-
parison between finite differences and digital waveguide,”
in Proc. 148th Meeting Acoust. Soc. Am., San Diego, USA,
Nov. 2004, nov. 15–19.
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