
Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

CONSISTENCY OF TIMBRE PATTERNS IN EXPRESSIVE MUSIC PERFORMANCE

Mathieu Barthet, Richard Kronland-Martinet, Sølvi Ystad

CNRS - Laboratoire de Mécanique et d’Acoustique
31, chemin Joseph Aiguier

13402 Marseille Cedex 20, France
{barthet|kronland|ystad}@lma.cnrs-mrs.fr

ABSTRACT
Musical interpretation is an intricate process due to the interac-
tion of the musician’s gesture and the physical possibilities of the
instrument. From a perceptual point of view, these elements in-
duce variations in rhythm, acoustical energy and timbre. This
study aims at showing the importance of timbre variations as an
important attribute of musical interpretation. For this purpose, a
general protocol aiming at emphasizing specific timbre patterns
from the analysis of recorded musical sequences is proposed. An
example of the results obtained by analyzing clarinet sequences is
presented, showing stable timbre variations and their correlations
with both rhythm and energy deviations.

1. INTRODUCTION

This article is part of a larger project aiming at analyzing and
modelling expressive music performance. To follow the classifi-
cation made by Widmer and Goebl in [1], we use an "Analysis-
by-measurement" approach the first step of which is to define the
performer’s expressive patterns during the interpretation. Vari-
ous approaches to identify performance rules have been proposed.
Amongst these, the "Analysis-by-synthesis" approach developed
at the KTH [2] [3] which relies on musical theory knowledge has
led to the establishment of context-based performance rules. They
mainly take into account the tempo and the intensity of musical
notes or phrases, either to emphasize their similarity (grouping
rules), or to stress their differences (differentiation rules). Another
approach has been proposed by Tobudic and al. [4], leading to
a quantative model of expressive performance based on artificial
intelligence to reproduce the tempo and dynamic curves obtained
from performances played by musicians. All these studies have
mainly focused on rhythm and intensity variations.

In the present study, an investigation on the consistency of
timbre expressive variations in music performance is proposed.
A comparison between timbre, rhythmic and intensity expressive
variations is also made, since the correlations between these pa-
rameters are probably strong. For this purpose, a professional
clarinettist was asked to play a short piece of music (the begin-
ning of a Bach’s Cello Suite) twenty times. The choice of the
instrument was mainly related to the fact that it is self-sustained
and that the performer easily controls the sound event after note
onset. In addition, earlier studies by Wanderley [5], report that the
movements of a clarinettist are highly consistent for various mu-
sic performances of the same piece. Since these movements seem
to be closely linked to the interpretation, we also expect the ex-
pressive parameters to be highly consistent. In a previous study
[6], the investigation of the performance parameters of a physi-
cally modelled clarinet indicates that timbre is involved in musical

expressivity and seems to be governed by performance rules. In
this study, we aim at checking if timbre also follows systematic
variations on natural clarinet sounds.

We shall first describe a general methodology developed to
analyze and compare recorded musical performances in order to
point out consistency of timbre, rhythmic and intensity patterns in
expressive music performance. An application of this methodol-
ogy to twenty recorded musical sequences of the same clarinettist
is then given. Eventually, we show that timbre, as rhythm and in-
tensity, follows systematic variations, and that correlations exist
between these parameters of the expressivity.

2. METHODOLOGY

In this section, we describe a general methodology to analyze
and compare musical performances from recorded monophonic
sequences.

Figure 1: Methodology.

The hypothesis we want to verify is that when a performer
plays several times a piece with the same musical intention, pat-
terns of rhythm, intensity, and timbre over the course of the piece,
show a high consistency. For that purpose, we derive from the
recorded sequences some performance descriptors characterizing
the musical expressivity of a performer at a note-level. We then
calculate the mean of the performance descriptors to determine if
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their variations are systematic. Figure 1 sums up the different steps
of the methodology.

2.1. Sound corpus

If the expressive variations introduced by the musician resist an
averaging over a large amount of performances played with the
same musical intention, they can be considered as systematic. We
thus need a large number of recordings of the same musical piece
performed as similarly as possible to identify the consistency of
musical expressivity patterns.

To avoid influence from room acoustics, the recordings
of these performances have to take place in a non-reverberant
acoustical environment.

In the following, we will note N , the number of notes of the
musical melody, and n will refer to the nth note played. We will
note P the number of recorded performances, and p will refer to
the pth one.

2.2. Note segmentation

Note segmentation is an intricate task and is slowed down by dif-
ficulties such as the detection of two successive notes having the
same pitch, or silences between musical phrases. In [7], the author
describes a way to determine the timing of the note onsets from
musical audio signals. Here the task can be facilitated by the a pri-
ori knowledge of the score giving an estimation of the fundamental
frequencies. The note segmentation process is composed of two
parts, the pitch tracking, consisting in estimating the fundamental
frequencies of the recorded sequences, and the segmentation.

2.2.1. Pitch tracking

A lot of studies have been carried out on this subject. A review can
be found, for instance, in [8].

In our case, we use the software LEA from the Genesis
company to generate filtered sequences from the original
recordings which only contain the fundamental frequencies of the
notes played during the performances. Since these new sequences
only contain a single frequency-varying sinusoidal component, it
is pertinent to calculate their analytic signals Zp(t). Finally, we
obtain the instantaneous fundamental frequencies F0(t) due to
the following relation:

F0p(t) =
1

2.π

dφp(t)

dt
(1)

where φp(t) is the phase of Zp(t).

2.2.2. Segmentation

As we have a large number of recordings, we built an automatic
note segmentation method. It is also important that the process re-
mains identical for each sequence in order to segment each note in
the same way before the averaging of the performance descriptors.

Our method is based on the analysis of the fundamental fre-
quency variations F0(t). As a matter of fact, it presents instabili-
ties at the transitions between notes. A detection of these instabil-
ities gives the timing of the transitions. Hence, we obtain the note
timings T p

n for each note n and for each performance p.

2.3. Performance descriptors

Rhythm descriptors are obtained from the rhythm indications
of the score and from data obtained after the note segmentation
part. Intensity and timbre performance descriptors are high-level
descriptors derived from a time/frequency representation of the
recorded sequences.

2.3.1. Rhythm descriptors

We obtain the note durations Dp
n of each performance p from the

note timings T p
n . The rhythm deviation descriptor ∆Dp

n is defined
as the difference between the note durations given by the score
Dscore

n (called nominal durations) and the durations of the notes
played during the performances Dp

n (called effective durations):

∆Dp
n = Dp

n −Dscore
n (2)

It is a discrete time function calculated for each note.

2.3.2. Intensity and timbre descriptors

We derive these descriptors from a time/frequency analysis of the
recorded sequences. They are also discrete functions of the time,
but depending on the time bins defined by the analysis. In the fol-
lowing, dp(t) will refer to the descriptors calculated over the entire
course of the performance p, and dp

n(t) will refer to the values of
dp(t) restricted to the duration of the note n.

2.4. Retiming of the performance descriptors

To verify our hypothesis, we have to calculate the average of the
performance descriptors dp(t) over all recorded sequences. As the
performances are played by a human musician, the durations Dp

n

of the notes are slightly different. In order to synchronize all these
performance descriptors, a retiming process is thus necessary. This
retiming consists in temporal contractions or dilations. We will
denote by Γ these transformations. In our case, we do not need to
realize an audio time-stretching keeping the frequency content of
the signal as it is described for instance in [9], since the descriptors
we derive from the signals are not going to be heard.

The dilation coefficient αp
n will be chosen so as to adjust the

duration Dp
n of the descriptors dp

n(t) to the mean duration Dn of
the notes over all the recorded performances. Thus, we will alter
the performance descriptors as little as possible. If αp

n > 1, Γ is a
dilation, and if αp

n < 1, Γ is a contraction.
The mean note duration Dn is given by:

Dn =
1

P

PX
p=1

Dp
n (3)

The dilation coefficient αp
n is then given by:

αp
n =

Dn

Dp
n

(4)

Finally, the retiming transformations Γ applied on the note
performance descriptors dp

n(t) can be written as:

Γ : dp
n(t) 7−→ Γ[dp

n(t)] = dp
n(αp

n(t)) (5)
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2.5. Systematic and random variations of the descriptors

Once the synchronization of the note performance descriptors is
realized, we calculate their mean to point out systematic behav-
ior, and their standard deviation to characterize random fluctua-
tions. The mean note descriptors dn(t) over all the recorded per-
formances are given by:

dn(t) =
1

P

PX
p=1

dp
n(αp

n(t)) (6)

Random fluctuations of the descriptors are characterized by
their standard deviation σdn

(t).
Hence, if the behavior of the performance descriptors dp

n(t)
is systematic over all the performances, they will be strongly cor-
related with their mean value, and the standard deviation will be
rather low. Furthermore, the mean will be a smoothed version of
the descriptors, loosing the random fluctuations. On the contrary,
if the behavior of the descriptors is not systematic, then their mean
will differ from the descriptors, and the standard deviation will be
high.

We also evaluate the consistency of the performance descrip-
tors by calculating the correlation coefficients r2(Γ[d]) of the re-
timed observation p of the descriptor d and the P − 1 others.
The mean of these correlation coefficients r2(Γ[d]) measures the
strength of the correlations.

3. AN APPLICATION TO THE CLARINET

3.1. Sound corpus

We asked the professional clarinettist C. Crousier to play the same
excerpt of an Allemande of Bach (see Figure 2) twenty times with
the same musical intention. This excerpt is destined to be played
rather slowly and expressively (its score indication is "Lourd et
expressif"). A 48 bpm reference pulsation was given to the musi-
cian by a metronome before the recordings. It was then stopped
during the performance to give the player the freedom to acceler-
ate or slow down. The reference pulsation allowed us to calculate
the notes’ nominal durations given by the score Dscore

n and thus
evaluate the performer’s rhythmic deviations.

Figure 2: Excerpt of Bach’s Suite II B.W.V. 1007 (Allemande).

The recordings of the clarinet were made in an anechoic cham-
ber with a 44100 Hz sample frequency. We used SD System clar-
inet microphones fixed on the body and the bell of the instrument,
avoiding recording problems due to the movements of the instru-
mentalist while playing. Both microphones have a flat frequency
response (+/- 2,5 dB) in the frequency range where the timbre de-
scriptors are calculated [100 - 8000 Hz].

3.2. Performance descriptors extraction

We applied the Short Time Fourier Transform (STFT) on each
recorded musical sequences. Hanning windows of 1024 samples

and 75 % of overlap have been used for this purpose. Timbre de-
scriptors were calculated considering Nharm = 15 harmonics.

3.2.1. Rhythm descriptor

We normalized the rhythm descriptors ∆Dp
n given by the equation

(2) according to the notes’ nominal durations. Its mean expressed
as a deviation percentage is hence given by:

∆Dn(%) = 100.
∆Dn

Dscore
n

(7)

3.3. Intensity variations

We characterize intensity variations by the Root Mean Square en-
velopes of the recorded sequences.

3.4. Timbre variations

Three timbre descriptors adapted to clarinet sounds have been cho-
sen to describe the timbre variation during musical performance:
the spectral centroid, which can be regarded as the mean frequency
of the spectrum, the spectral irregularity correlated to the differ-
ences between odd and even harmonics, and the odd and the even
descriptors, correlated to the energy of odd and even harmonics in
the spectrum. We will present a particular case showing that these
timbre descriptors contain complementary information.

3.4.1. The Spectral Centroid

The definition we use for the spectral centroid SCB is the one
given by Beauchamp in [10]. It differs from the classical definition
by the presence of a term b0 that forces the centroid to decrease
when the energy in the signal is low, avoiding an increase of the
spectral centroid at the end of the notes. It has been shown that
the spectral centroid is correlated to the brightness of a sound and
correlates with the main control parameters of the clarinettist, i.e.
the mouth pressure and the reed aperture [11] [12]. It is defined
by:

SCBp
n(t) =

PNsup

k=1 k.Ak(t)

b0 +
PNsup

k=1 Ak(t)
(8)

where the Ak(t) are the modulus of the STFT considered up
to the frequency bin Nsup. The term b0 is given by:

b0 = max[Ak(t)], k = 1, .., Nsup (9)

3.4.2. The Spectral Irregularity

Krimphoff has pointed out the importance of the spectral irregu-
larity [13]. We here derived a new definition from the one Jensen
gave in [14], including a term b1 in the denominator for the same
reason as for the spectral centroid. The spectral irregularity IRRB
can then be defined by:

IRRBp
n(t) =

PNharm−1
h=1 (Ah+1(t)−Ah(t))2

b1 +
PNharm

h=1 Ah(t)2
(10)

where:

b1 = (max[Ah(t)])2, h = 1, .., Nharm (11)
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3.4.3. The Odd and Even descriptors

The lack of even harmonics compared to odd ones is characteris-
tic of the clarinet timbre (see for instance [15]), but their energy
increases as the breath pressure increases (see [12]). A measure
of odd and even harmonics energy compared to the overall energy
is given by the Odd and Even descriptors defined below. We will
show a particular case where they explain subtle timbre variations
of the clarinet.

Oddp
n(t) =

PNodd−1
h=0 A2h+1(t)PNharm

h=1 Ah(t)
(12)

Evenp
n(t) =

PNeven
h=1 A2h(t)PNharm
h=1 Ah(t)

(13)

where Nodd is the number of odd harmonics, and Neven the
number of even harmonics.

4. CONSISTENCY OF THE PERFORMANCE
DESCRIPTORS

4.1. Strong correlations between the performances

The mean correlation coefficients of the retimed performance de-
scriptors are given in table 1. The high values of r2(Γ[d]) point
out a strong consistency of the rhythm descriptor ∆D, the inten-
sity descriptor RMS, and the timbre descriptors SCB, IRRB,
Odd and Even, over the various performances.

d ∆D RMS SCB IRRB Odd Even
r2(Γ[d]) 0.76 0.89 0.84 0.71 0.74 0.74

Table 1: Mean correlations of the performance descriptors

4.2. Rhythmic patterns

Figure 3 both shows the fundamental frequencies and durations of
the notes to be played by the performer as indicated on the score
and the mean of the measured fundamental frequencies and du-
rations of the notes for the 20 performances. It points out that
the total duration of the performances is on average longer than
the nominal one (about 1s difference). In order to play expres-
sively, the performer effects rhythmic deviations compared to the
rhythm indicated on the score. These rhythmic deviations lead to
local accelerandi or descelerandi. In general, certain notes tend
to be shortened by the performer (case where ∆Dn < 0, see for
example notes 10 and 20), whereas certain notes tend to be length-
ened (case where ∆Dn > 0, see for example notes 5, 11 and 12).
From 7s to the end, almost all the notes are played longer, up to
twice their nominal durations for some of them. This reveals a
slowing down of the tempo by the performer which is very com-
mon in endings of musical phrases. These results are in agreement
with the "Duration Contrast" and "Final Retard" rules defined by
Friberg and colleagues, which model the two rhythmic principles
indicated above [2].

4.3. Intensity patterns

As can be seen on figure 5, the phrase begins forte and then there is
a progressive decrescendo until the end of the phrase. The energy
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Figure 3: Fundamental frequency and duration of the notes as in-
dicated by the score (dotted) and as played on average by the per-
former (solid). The measured fundamental frequency (solid) has
been shifted down by 50 Hz to point out the rhythmic differences
between the nominal and the effective note durations.
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Figure 4: Mean rhythmic deviations (bold), +/- the standard devi-
ation (dotted). The timing of the notes are indicated by circles.

peak at time bin 1600 may be due to the fact that the note played
has a very low frequency (147 Hz) and is more radiated by the
clarinet.

4.4. Timbre patterns

Figure 6 represents the mean spectral centroid and its standard de-
viation. It is strongly correlated to the mean intensity variations
in a monotonous and increasing way (r = 0.80). Further, within
the duration of notes, strong changes of spectral centroid can be
observed for all the performances. This can easily be seen for the
fifth note (around time bin 200), for which the difference between
the lowest and the highest value of the mean spectral centroid (at
the note onset and close to the note offset), is about 500 Hz. A
neat change in the note’s timbre is audible (sounds are given at
http://w3lma.cnrs-mrs.fr/~kronland/DAFx06). It is worth noticing
that after the attack of this note the values of the odd descriptor
decrease and the values of the even descriptor increase (figure 8)
so that the global energy of even harmonics grows faster than the
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Figure 5: Mean RMS envelope (bold), +/- the standard deviation
(dotted). The note transitions are indicated by circles.
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Figure 6: Mean Spectral Centroid (bold), +/- the standard devia-
tion (dotted). The notes transitions are indicated by circles.

global energy of odd harmonics. This does not mean that the phe-
nomenon is equally distributed over the whole spectrum. If it was
so, the spectral irregularity would decrease (the energy of even har-
monics getting closer to the odd one) but this is not the case (see
figure 7). The spectral irregularity remains quite stable within the
duration of the fifth note after its attack. This is probably due to
the fact that even harmonics grow faster than odd ones in a nar-
row frequency area. Indeed, we showed in the case of synthetic
clarinet sounds that an increase of the breath pressure induces an
energy increase of high-order harmonics and more particularly for
even harmonics around the reed resonance frequency [12]. This is
due to the non-linear coupling between the excitor (the reed) and
the resonator (the bore) and explains the increase of the brightness
of the sound.

4.5. Timbre and Intensity correlation

Figure 5 and 6 show that there is a strong correlation between the
spectral centroid and the envelope. Nevertheless, the spectral cen-
troid of a note depends on its fundamental frequency and this bi-
ases the observation. Hence, we have normalized the spectral cen-
troid according to the mean instantaneous fundamental frequency
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Figure 7: Mean Spectral Irregularity (bold), +/- standard devia-
tion (dotted). The note transitions are indicated by circles.
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Figure 8: Mean Odd and Even descriptors (bold), +/- the standard
deviation (dotted). The note transitions are indicated by circles.

as follows:

SCB′(t) =
SCB(t)

F0(t)
(14)

Figure 9 represents the normalized spectral centroid SCB′ as
a function of the normalized mean RMS envelope for two cate-
gories of notes, the short and piano ones, and the long and forte
ones. It is worth noticing that these two categories of notes seem
to follow different kinds of trajectories. Indeed, the spectral cen-
troids of the short and piano notes increases very quickly compared
to the envelope, whereas the spectral centroids of the long and forte
notes seems to increase less rapidly than the envelope. This should
be verified on a longer excerpt including a greater number of long
and forte notes to cover a wider range of pitches, since the two
trajectories below the diagonal correspond to the same pitch. The
correlations we made are only qualitative but proves that there is a
link between the variations of intensity, timbre and rhythm during
the playing.
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Figure 9: Spectral centroid as a function of the RMS envelope.

5. CONCLUSION AND FURTHER WORKS

Analysis and comparisons of recorded clarinet performances of
an excerpt of a Bach Suite played several times by the same per-
former with the same musical intention, pointed out systematic
and random variations of certain timbre descriptors. The present
study confirmed former results obtained from performances played
on a digital clarinet [6]. Strong correlations have been observed
between the spectral centroid and the RMS envelope during the
performances. In spite of these correlations, the spectral irregu-
larity seems to be less correlated to the intensity, indicating that
timbre changes are not only a consequence of intensity variations.
More precise investigations on this topic are however needed to
clarify the relations between timbre and intensity. Qualitative re-
sults show that timbre and intensity patterns also seem to be related
to rhythmic deviations over the course of the musical piece. Mul-
tidimensional analysis are to be conducted to better understand the
links between timbre, rhythm and intensity variations.

This study represents a first step to show the importance of
timbre variations in expressive music performances. We plan in the
future to use signal processing techniques to alter the interpretation
and to evaluate the importance of variations in rhythm, intensity
and timbre by psychoacoustic tests.
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