
Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

REAL-TIME DETECTION OF FINGER PICKING MUSICAL STRUCTURES

Dale E. Parson

Agere Systems, Allentown, Pennsylvania, USA
dparson@agere.com

ABSTRACT

MIDIME is a software architecture that houses improvisational
agents that react to MIDI messages from a finger-picked guitar.
They operate in a pipeline whose first stage converts MIDI mes-
sages to a map of the state of instrument strings over time, and
whose second stage selects rhythmic, modal, chordal, and melodic
interpretations from the superposition of interpretations latent in
the first stage. These interpretations are nondeterministic, not be-
cause of any arbitrary injection of randomness by an algorithm,
but because guitar playing is nondeterministic. Variations in tim-
ing, tuning, picking intensity, string damping, and accidental or in-
tensional grace notes can affect the selections of this second stage.
The selections open to the second stage, as well as the third stage
that matches second stage selections to a stored library of compo-
sition fragments, reflect the superposition of possible perceptions
and interpretations of a piece of music. This paper concentrates on
these working analytical stages of MIDIME. It also outlines plans
for using the genetic algorithm to develop improvisational agents
in the final pipeline stage.

1. MIDIME SOFTWARE PIPELINE

MIDIME is a software architecture that distills the structure of
finger-picked string music at several levels of abstraction. It ac-
cepts MIDI input from a guitar, analyzes playing to determine
low level (finger patterns, meter, accents, tempo, root, scale and
chords) and high level (composition fragments) musical intent,
and generates accompaniment MIDI streams for one or more syn-
thesizers. This paper is about the architecture and algorithms of
MIDIME’s fully working analysis stages.

Figure 1 illustrates the MIDIME pipeline. MIDI input through
Stage 3 and MIDI output are in full working form. Stage 4 is in
a working prototype state. Each stage in Figure 1 is a software
thread that analyzes data from the preceding stages and writes its
interpretations to its output data table. A data table is a memory
resident data structure which its writer updates and which down-
stream writers read. Each data table is a first-in first-out circular
queue of rows owned by its writer. A writer controls its data table
by locking the single data row that it is working on until it makes a
change that it must expose to downstream readers; the writer then
releases the lock, locks the following row, and copies the com-
pleted row into the new row, where it repeats the cycle. This
is a conventional queuing architecture, with the novelty that reader
threads entail the overhead of blocking on a lock only when polling
determines that they need access to the row under construction.

The contents of a data table depend on its pipeline stage. A
row in a Stage 1 data table contains guitar string state for a given
time period. A Stage 2 row contains musical structure data for a
given time period. A Stage 3 row contains indices showing where
the current performance matches the state of a composition map

Incoming MIDI messages from guitar.

Stage 4 agents generate MIDI accompaniment streams.

Outgoing MIDI to software or hardware synthesizer.

Stage 2 extracts rhythm, scales, chords, drones & melody.

Stage 3 matches Stage 2 output to a practice derived
score map of scale-chord-drone-melody-time tuples.

Stage 1 maps MIDI stream to state of guitar strings.

Figure 1: MIDIME pipeline architecture.

derived from practice performances. A Stage 4 row contains out-
going MIDI messages. Each writer is alternately a reader that
waits for new data from upstream writers, and a writer that emits
another row to downstream readers.

Overall, the pipeline of Figure 1 acts as a reactive system
that responds to incoming messages within application time con-
straints. Each writer has the job of waiting for data tailored to
its application requirements within the pipeline, transforming the
data to meet the requirements of the next downstream writer, and
releasing that data. Analysis steps are sometimes complex, but
they are always restricted to a tractable single level of abstraction.

2. GUITAR STRINGS OVER TIME

Stage 1 converts a stream of finger-picked MIDI messages to a
two dimensional matrix of guitar string state over time, where the
most recent row is the current state of the strings, and each column
is a string. Writer constructor parameters establish the number of
strings, MIDI channel-to-string mappings, and minimum noteon
velocity and duration. Stage 1 discards any note with velocity or
duration below its minimum threshold as a transient.

The main jobs of the Stage 1 writer are to map MIDI channels-
to-string positions, map pitch bend messages to discrete semitones
while discarding extraneous pitch bends, record string / note state
in a Stage 1 row, and release that row to downstream readers. The
guitar synth uses one MIDI channel per string.

Table 1 shows a short trace of the state of a pluck on the E note
at the second fret of the fourth string, followed by a slide to the F
at the third fret. The left column shows incoming MIDI messages
and the right column shows Stage 1 data rows as they appear in the
MIDIME debug graphical user interface. A MIDI trace includes
buffer row number, message type, channel, velocity for noteon and

DAFX-25

mailto:dparson@agere.com

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

magnitude for bend, and arrival time in milliseconds since the start
of the process. A Stage 1 trace shows row number, changing string
number, with subsequent lines showing the state of all six strings:
musical note and octave on the string (e.g., E4), “∼” showing cu-
mulative bend, “ˆ” showing string velocity, “o” showing volume
setting, “<”showing note start time in milliseconds, “>” showing
duration for notes just terminated, and a hex line for MIDI con-
trol signals such as foot pedal messages. The zeroed volume and
control lines are elided from most of the Stage 1 trace in Table 1.

0: bend,c=4,b=0x2068 0: string 4, stage1 row 0:
2549 --- --- E4 --- --- ---
1: noteon,c=4,p=E4,v=122 ∼0 ∼0 ∼8192 ∼0 ∼0 ∼0
2550 ˆ0 ˆ0 ˆ122 ˆ0 ˆ0 ˆ0
2: bend,c=4,b=0x2074 o0 o0 o0 o0 o0 o0
2569 <0 <0 <2550 <0 <0 <0
3: bend,c=4,b=0x2088 0> 0> 0> 0> 0> 0>
2598 0x0 0x0 0x0 0x0 0x0 0x0
4: bend,c=4,b=0x2098 1: string 4, stage1 row 1:
2619 --- --- E4 --- --- ---
5: bend,c=4,b=0x20a2 ∼0 ∼0 ∼8258 ∼0 ∼0 ∼0
2729 ˆ0 ˆ0 ˆ122 ˆ0 ˆ0 ˆ0
6: bend,c=4,b=0x2092 <0 <0 <2550 <0 <0 <0
2789 0> 0> 329> 0> 0> 0>
7: bend,c=4,b=0x2070 2: string 4, stage1 row 2:
2820 --- --- F4 --- --- ---
8: bend,c=4,b=0x2042 ∼0 ∼0 ∼8206 ∼0 ∼0 ∼0
2849 ˆ0 ˆ0 ˆ122 ˆ0 ˆ0 ˆ0
9: bend,c=4,b=0x22b8 <0 <0 <2879 <0 <0 <0
2879 0> 0> 0> 0> 0> 0>

Table 1: MIDI & Stage 1 trace of a semitone slide on string.

The most substantial job of the Stage 1 writer is filtering the
many pitch bend messages emitted by the guitar synth. The Roland
GR-33 guitar synth does not send a new noteon message when
sliding into a new semitone. Instead, it emits a series of pitch bend
messages centered at 8192 (0x2000), with the GR-33 configured
to bend down from 8192 to 0 over an octave range, and to bend
up from 8192 to 16383 (0x3fff) over an octave range. This con-
figuration gives a semitone bend value of 8192/12 or about 683
(0x2ab). Table 1 shows the slide over the fret that exceeds the
0x2ab threshold in the last MIDI line with a bend of 0x22b8 at
time 2879 ms., about 1/3 of a second after the noteon message
showing the string pluck. Stage 1 integrates this MIDI stream into
three rows that show the E4 pluck, the end of E4 when crossing the
fret at 2550+329 = 2879 ms., and the F4 note starting at 2879 ms.
Each “∼” bend within a string’s Stage 1 row is residual bend left
over after computing the fret crossings. As in the Table 1 example,
Stage 1 always interprets slurs on a sounding string (i.e., hammer-
ing onto a string, pulling off, sliding and stretching with a fretting
finger) as new string state with zero time elapsed from the previous
string state, e.g., E4 start time 2550 + duration 329 = F4 start time
2879 in this example. Fresh plucks with a picking finger always
show non-zero time elapsed between note states on a string, i.e.,
last note time + duration < next note time. Distinguishing plucks
from slurs is critical for Stage 2 analysis, since plucks distinguish
meter and tempo in finger picking patterns.

Table 1 shows a 3-to-1 reduction in the number of MIDI-to-
Stage 1 events delivered to downstream readers. The overall trace
for this test run of various left hand slurs shows about a 5-to-1
reduction, which is fairly typical for guitar playing and for GR-
33 sensitivity and stability. Transitory pitch bends accumulate in
the Stage 1 “∼” entries, but only semitone-crossing pitch bends

advance a Stage 1 row. There is no reduction in Stage 1 data size;
entries are largely redundant with previous rows, in the interest
of making the entire state of all strings at a point in time easily
accessible to downstream analysis. The typical 5-to-1 reduction in
events does greatly reduce the processing demands on downstream
analysis, however. The Stage 2 writer activates for as few as one
fifth of the incoming MIDI messages, and when it does, the Stage
1 data rows that appear in Figure 2 are structured to ease analysis
of finger picking patterns and string-oriented note analysis.

3. MUSICAL STRUCTURES OVER TIME

3.1. Finger Patterns, Meter and Tempo

When a Stage 2 writer receives a new Stage 1 row, its first step
is to analyze rhythm. It starts with rhythm because subsequent
analyses of scale, chord, drones and melody depend on performer-
established time frames. Scales and drones are long term entities.
Chords are usually short term entities that may cycle through long
term patterns. Establishing long and short term temporal bound-
aries requires establishing a temporal reference.

Unlike many computer music systems, MIDIME does not im-
pose an external, metronome-like temporal grid on incoming or
outgoing notes. Finger picking is intrinsically a repetitive, rhyth-
mic activity that establishes its own temporal boundaries and cy-
cles. The picking hand plucks the strings in series of repeating
rhythmic patterns while the other hand frets, slides, hammers, pulls
and stretches the strings in order to select and alter pitch. The
timing and force of finger plucks in a pattern show considerable
surface variation, but behind this variation is an intent to create
a cyclic pattern. The problem for Stage 2 is to find patterns in
data representing musical intent, in rhythm or tone, while deal-
ing with seemingly random fluctuations in surface features. There
may be more than one possible rhythmic or tonal interpretation of
incoming performance data; that is OK, because it gives Stage 4
improvisers the opportunity to go into unexpected directions that
are empirically related to the human performance. The approach
of Stage 2 is to locate regularities that are abstractions of the in-
coming notes. This temporary gridding is counteracted by Stage
4 writers who map the Stage 2 abstracted data back onto the real
time and note space being played.

The example rhythm analysis of this section uses the finger
picking pattern of Figure 2. The thumb (T) picks the first of 8
eighth notes in a 4/4 measure, followed by eighth notes on the
index finger (I) on an intermediate string and the middle finger
(M) on the first string. This pattern repeats, then the thumb strikes
again on the seventh eighth note, and on the eighth there is a rest
while the thumb prepares to strike again. This repetition of the
thumb is not normally found in bluegrass, which often uses the
three fingers in basic triplets. Thumb repetition slows the tempo
and places accents on the first, fourth, and seventh eighth notes.
Sometimes the index or middle finger dampens its string instead
of plucking.

B K 44 - - - - - - "- : - - - - - -
T
>

I M T
>

I M T
>

Figure 2: 4/4 Finger pattern with accents at 1, 2.5, and 4.

DAFX-26

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

The algorithm to extract meter and tempo from Stage 1 data
works in the following steps.

1. Collect pointers to Stage 1 string plucks into a 24 element
array; collect records of the millisecond intervals since the previ-
ous respective plucks into a corresponding array of integers. An
array size of 24 allows multiple repetitions of all possible three-
finger patterns. There may be remainder plucks at the beginning
or end of the array when the picking pattern does not divide 24
plucks evenly, or when picking goes through a pattern or tempo
transition. Slurs do not contribute because only plucks represent
right hand picking patterns. When the array fills, the oldest pluck
is discarded at the start of event processing.

2. Build a temporary array of pointers to the elements of the
above interval array, and sort this temporary array by the interval
time in ascending order, giving access to the shortest interval first.

3. Traverse this sorted array and build a third array of bins.
The smallest interval goes into the first bin, along with all succeed-
ing intervals that are not more than 20% longer than the least in-
terval in the bin. This 20% threshold was originally 16% in antici-
pation that a given unit of time could be subdivided into either 2 or
3 or (2× 3) for conventional note subdivisions such as quarter-to-
eighth note or quarter-to-triplet subdivisions; 1/(2× 3) = 1/6 =
16.7%. This attempt was too tight for typical playing; relaxing it
to 20% made matching more consistent. As soon as a pluck inter-
val exceeds 20%, it becomes the least value in a new bin; longer
intervals go into that bin until exceeding its 20% threshold, creat-
ing a new bin, and the process continues until all 24 intervals are
placed into bins.

4. Each bin is averaged by dividing its sum by the number
of intervals in the bin. This number gives average picking time
for that bin, with the bin representing some part of a pattern. The
arithmetic division for averaging, like all division in MIDIME, is
scaled integer division rather than slower floating point division.

5. Take the entire interval time in the 24 element array of
plucks as a conceptual “measure” — this time is entirely empirical
and is not tied to any rigid framework — and begin subdividing it
into grid boundaries. First divide this total time into half, giving
three snap points, one at the start (0 time), one at the end (total
time), and one halfway between. For each bin from step 4, build
a new bin that moves the value in the step 4 bin to its closest snap
point, if and only if this snapping step does not move the bin av-
erage more than 20%. If any snap would exceed 20% in either
direction, try a new snap by dividing the total time by the next
step in the series (2, 3, 4, 6, 8, 12, ...). This series again repre-
sents splitting time repeatedly into halves and triplets. Eventually
a subdivision of total time is found that allows snapping each av-
erage bin interval by less than 20%. In the worst case the total
time would be divided down to 1 millisecond snap units, giving
no snapping, but any regularity in the performer’s finger picking
patterns avoids this degenerate state. Create a snapped interval for
each bin when the process converges.

6. It is now possible to divide each snapped interval value
by the snap unit to come up a small integer for each bin, and small
integer ratios across bins that display repetition representing finger
picking patterns. This step is implicit. The snapped bins of step 5
are sufficient for fast, machine level block memory comparisons.

7. Look for repeating patterns in the values of the bins of step
5. Find the shortest repeating pattern of snapped interval values
that covers the largest number of elements in the 24 element inter-
val array. For example, repeating pattern Z-X-Y-X-Y Z-X-Y-X-Y
would not subdivide further because these two five-element pat-

terns organize ten total intervals, while an X-Y X-Y pattern would
organize only the four elements at the end of the array. A pattern
such as X-Y-X-Y-X-Y, in contrast, would factor into three adjacent
X-Y patterns covering six contiguous intervals.

The algorithm proceeds by starting with a pattern length of one
half the 24 elements, using the C library function memcmp to com-
pare adjacent subsequences of snapped intervals. After comparing
all adjacent pairs of sequences at a given length, the algorithm
reduces the proposed pattern length by 1, and again compares ad-
jacent subsequences of snapped intervals. It proceeds down to a
proposed pattern length of 1, always storing the smallest success-
ful pattern length that matches the greatest number of intervals. If
it finds no matches, then it treats the entire array of intervals as
one, non-repeating pattern. This condition usually indicates that
the picking pattern or tempo is changing.

Table 2 makes these steps concrete with an example using
real data. Raw time shows measured time intervals since previ-
ous plucks in milliseconds. The smallest value in each 20% bin is
highlighted in the raw time row (i.e., 125, 156, 189 and 333). Bin
average time averages raw values in each bin, yielding average bin
intervals 143, 175, 195 and 341. Splitting the total time of 5.125
seconds for this sample yields an interval snap of 160, a rounding
of (5125/32) = (5125/25), or 5 halvings of the total concrete
“measure.” This is the coarsest splitting of the total time that snaps
each average bin time within 20% of its value. Pattern matching
then determines that a repeating pattern seven intervals in length
covers the last 14 intervals in this example; the pattern is 1-1-1-1-
1-1-2 snap units; the final 7 are highlighted. These are the eighth
notes of Figure 2 with the unplucked rest residing halfway through
the final 2 interval; the first eighth note of Figure 2 is the last pluck
of the detected pattern. Rhythm analysis also normalizes pluck
MIDI velocities as scaled multiples of the average pluck velocity
for each slot in a detected pattern, giving a velocity pattern of 1-
1-3-1-0-4-3 for this table’s data. The string numbers are not used
in analysis, but for this data they are 2-1-3-2-1-3-3. Finally, the
fingers used to pluck this data are I-M-T-I-M-T-T. Note the two-
eighth-note relative timing of the adjacent thumbs, and the scaled
velocities of 3 and 4 for the thumb. Stage 4 processing can use the
final seven slots of this table to determine tempo and accents and
to schedule output improvisation timing and velocity.

A player will occasionally dampen a string in this pattern so
that no pluck will be detected, sometimes intentionally, and will
sometimes hit an extra string by accident. These variations add in-
tervals that match combined intervals or subintervals of the pattern.
Rhythm analysis determines if there are any trailing sequences of
intervals after the final pattern sequence whose total snapped times
add up to the pattern time. If it finds them, it marks them as “tail
patterns” that include missing or extra plucks. There are none in
Table 2, although there are 6 plucks that add 8 snap units high-
lighted near the top of the right column, preceding the first oc-
currence of the pattern. The index finger dampened its string for
the out-of-place 2. Rhythm analysis treats trailing sequences that
sum to pattern time as additional cases of the pattern for purposes
of scheduling output. Downstream improvisation has access to
snapped and raw times in planning its output note scheduling.

Irregularities in playing and transitions in pattern and tempo
cause periods of loss of pattern detection. There are two ways
for Stage 4 accompaniment agents to deal with periods of desyn-
chronization. The first is to treat such periods as rubato, i.e., in-
strinsically desynchronized periods of playing. In this approach a
Stage 4 agent takes the entire 24 interval pluck time as the mea-

DAFX-27

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

raw time in bin average snapped snaps
milliseconds time time

186 175 160 1
358 341 320 2
153 143 160 1
333 341 320 2
201 195 160 1
148 143 160 1
194 195 160 1
348 341 320 2
144 143 160 1
337 341 320 2
203 195 160 1
146 143 160 1
178 175 160 1
179 175 160 1
193 195 160 1
125 143 160 1
339 341 320 2
191 195 160 1
156 175 160 1
177 175 160 1
173 175 160 1
189 195 160 1
141 143 160 1
333 341 320 2

Table 2: Temporal intervals for a seven-pluck finger pattern.

sure, subdividing it for note generation according to the agent’s
own algorithm. The guitar player’s and the agent’s note timing
weave in and out of overlap in temporal consonance / dissonance
transitions. The second, more conservative approach is to program
a Stage 4 agent to save a copy of the interval ratios and tempo
of the most recent repeating Stage 2 pattern. This agent gener-
ates notes that adhere to this pattern and tempo. An example is a
bass playing agent emitting a rhythmically stable bass line initial-
ized from repetitive Stage 2 output. The guitar player can follow
this emitted bass line, or the guitar player can force transition to a
new meter or tempo by playing consistently for rhythmic pattern
detection. The guitar player and the Stage 4 agent can pass con-
trol of rhythm back and forth as part of improvisation. Prototype
MIDIME agents have used both approaches successfully.

Despite having O(n3) time complexity on the interval array,
rhythm analysis and in fact all processing through Stage 3 has a
total latency in reacting to a MIDI message that is under the 1 mil-
lisecond resolution of the operating system’s time function. The
combination of machine-level bit and logical operations and the
use of scaled integer arithmetic instead of floating point, along
with a fast processor and small bounds on the size of data being
matched, help to keep pattern matching fast. Stage 1 events have
about a 2-to-1 ratio to the number of Stage 2 events because most
Stage 2 events are driven by plucks; Stage 1 slurs and note off
events contribute tangentially to Stage 2 output.

3.2. Scales, Drones, Chords and Melody

Both scale and chord matching collect recent notes into 12-bit bit
vectors. A vector comprises the bottom 12 bits of a 16-bit C++ in-
teger, with bit position 20 representing note C, 21 note C#, ..., 211

note B. A bit vector discards octave and repeated note information.
Scale matching uses an array of 12 data structures to track pluck
times and to sum the number of pluck appearances of each note C
.. B in the last four measures, counting a given note only once per

measure, where a measure is the finger pattern time just discussed.
Thus a note C .. B can be counted 0 to 4 times in four measures.

After updating pluck counts and retiring any plucks older than
four measures, scale analysis starts by using only the notes with
the highest number of plucks. For example, if some notes ap-
peared 4 times, only those notes would contribute their bits into a
12-bit scale vector. Scale analysis uses pattern matching described
next to match this 12-bit vector to a scale, recording the scale if it
matches. It then tries again with all notes with counts of 4 or 3,
then again with 4 or 3 or 2, and finally with 4 or 3 or 2 or 1. The
intent in starting with 4 is to discard transient, chromatic notes that
appear infrequently during initial matching. If this approach dis-
cards too many notes to find an effective match, the later attempts
with more notes may succeed. All four attempts are always made,
but a later scale match replaces an earlier match of fewer notes
only if the later match is a better match.

Scale analysis looks for a match in two loops. The first, biased
loop iterates through optional 16-bit scale configuration parame-
ters supplied by the user. If the user knows scales in advance, he
or she can configure Stage 2 of the pipeline to try these scales. A
16-bit scale parameter consists of a 12-bit note pattern as before,
plus a 4-bit number 0 .. 11 representing the root of the scale, C ..
B, in the top 4 bits of the 16-bit vector. The biased loop works by
bitwise ORing these configuration parameter bits into the played,
empirical bits extracted from the performance as described by the
last paragraph, and attempting to match that vector. This is a top
down approach.

Scale configuration parameters are optional, and even when
they are available, scale matching also uses an empirical loop to
try to match the empirical bits. This matching loops through an op-
tional set of tonic configuration parameters, which are some subset
of the values 0 .. 11 representing a tonic of C .. B. If these optional
parameters are missing, MIDIME simply tries all possible tonics
0 through 11 in combination with the empirical bits, by shifting
the tonic bits into the top 4 bit positions of a 16-bit vector. Scale
analysis maps a given 16-bit vector to a possible scale by using the
16-bit vector as an integer index into a 53248-entry table of scales
(12 tonics + a key for unknown tonic = 13 keys×212 combinations
of 12 notes = 53248). Here is a possible match for the note pattern
0x0a5 in the key of D, i.e., notes C-D-F-G
const uint16_t MidimeModeTable[53248] = {//lots of entries

0x2a5, // 0x20a5 --> D minor_pentatonic, distance 1

The comment after “//” shows that 0x20a5, C-D-F-G rooted
in D, maps to the value 0x2a5, notes C-D-F-G-A, with a distance
of 1. This is the D minor pentatonic scale. The distance shows
that the actual data misses the table’s entry by 1 bit. The total
difference in number of bits is the Hamming distance. It measures
how good the match is, and this table stores mappings only with
distances of 2 or less. Invalid mappings appear as 0 in the table,
i.e., no notes on.

This table is generated by another program and compiled into
C++ MIDIME. Consulting the table takes small constant time to
determine a matching scale. Hamming distance is determined by
exclusive-ORing the biased or empirical note vector played with
the scale vector proposed by the table, giving an integer with 1 in
each bit position where the real notes differ from the table’s notes.
There would be 1 bit for the missing A note in this example. Scale
analysis uses this Hamming difference vector as an index into a
compiled Hamming weight table that returns the number of bits set
to 1 for that entry. The Hamming weight tells how far the match is

DAFX-28

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

from perfect, and scale analysis stores the best match it has seen so
far. At the end of its two loops, scale analysis uses the best match
from biased and empirical analysis, using empirical to break a tie.
Scale analysis also stores the tonic associated with the best match.

In the absence of optional scale configuration parameters, scale
matching tends to be conservative, for example preferring ma-
jor or minor pentatonic scales to more complex scales by using
only notes with high pluck counts in the last four measures. Bi-
ased matching, in contrast, tends to prefer configuration parameter
scales when they fit with real note data. This result works well for
improvisation. In the absence of an anticipated scale, downstream
improvisers will have conservative reactions in the absence of con-
crete data; in cases where the user supplies anticipated scales, the
improvisers will use them as long as they fit with the real notes.

Drone matching looks to see an open string plucked repeat-
edly, without pitch change, over at least 4 finger pattern measures.
If a string’s pitch changes in these measures, it is dropped from
the 12-bit drone vector, and if its pitch drops below previously
recorded values, that new pitch becomes the baseline open string
pitch.

Chord analysis considers only plucked notes currently sound-
ing on the strings. It maintains a note for each sounding string,
discarding low velocity notes as possible mistakes, combining the
others into a 12-bit vector, then consulting a chord mapping ta-
ble and computing Hamming distance similar to scale matching.
Chord matching uses only empirical note data. It does not inter-
act with long-term scale matching in order to allow for playing
“outside” a scale’s harmonic structure, a practice common in jazz.
When these data are sparse, chord matching makes conservative
selections such as simple triads.

Finally, melody matching use the most recent pluck that is
greater than the average velocity within its measure, as determined
by meter velocity calculations. This matching aligns well with the
practice of using the thumb for melody when finger picking.

4. COMPOSITION MATCHING AND ACCOMPANIMENT

Construction of Stage 3 of the pipeline is recently completed. It
uses traces of Stage 2 scale-chord-drone-melody state that a user
builds by saving and merging performances of composition frag-
ments. Stage 3 looks for saved scale-chord-drone sequences that
match current Stage 2 data within a parameterized Hamming dis-
tance limit, similar to Stage 2 Hamming-based matching, by com-
paring performance to stored fragments. Stage 3 identifies known
composition fragments in real time to allow Stage 4 improvisers to
make long term, complex improvisation plans.

Stage 4 players are in a prototype state. Agents have chro-
mosomes consisting of long and short term genes of four types:
rhythm, melody, harmony and timbre. A gene is a unit of typed
code that contributes to a long or short term plan for that gene
type. A gene’s plan is a reaction to something played, or to a Stage
3 map of where playing appears to be heading, or to another Stage
4 player’s performance.

5. RELATED WORK AND CONCLUSION

Roads gives an outline of the tasks required for rhythm analysis,
along with a substantial list of references in his chapter on pitch
and rhythm recognition [1]. Hamanaka, et. al., have designed a
system that uses hidden Markov models to eliminate surface devi-
ations while analyzing note onset times [2], and that uses the gen-

erative theory of tonal music to infer hierarchical metrical structure
from MIDI performance data [3]. Their techniques comprise sta-
tistical analyses of surface variations in meter in a fixed-tempo,
fixed-duration set of performances.

Papers on determining edit distance with insertions and dele-
tions in musical score retrieval, a non-real-time generalization of
the bit vector Hamming distances used for MIDIME scales and
chords, can be found in [4, 5]. Toussaint shows application of
Hamming distance to rhythm analysis [6].

MIDIME differs from meter analysis systems cited above in
extracting cyclic rhythmic information that is intrinsic in repeated
patterns used by finger picking guitarists. By using the most recent
24 real-time string plucks for temporal background, and by look-
ing for patterns only in the performance data as opposed to match-
ing string plucks to a library of known finger patterns, MIDIME
can adapt to changes in tempo, meter and duration and to new fin-
ger patterns in real time.

Thom’s system uses an off-line learning algorithm to create
a probabilistic model applied to rewrite four-measure melodies at
performance time [7]. Biles uses the genetic algorithm in creating
accompaniment melodies [8]. Both frameworks require scripted
chord sequences and a tempos. The goals of MIDIME are different
from these systems, both in MIDIME’s analysis of all aspects of
empirical musical data in preference to scripts, and in creating har-
monic, rhythmic and timbral behavior, in addition to the melodic
orientation of these systems. The primary goal of MIDIME is
exploration of new music within a framework of multi-level im-
provisation, rather than limited improvisation within fixed musical
structures found in other performance analysis and improvisational
systems.

6. REFERENCES

[1] C. Roads, The Computer Music Tutorial. MIT Press, 1996.
[2] M. Hamanaka, M. Goto, H. Asoh, and N. Otsu, “A learning-

based quantization: Unsupervised estimation of the model pa-
rameters,” in Proc. Int. Comp. Music Conf. (ICMC’03), Sin-
gapore, 2003, pp. 369–372.

[3] M. Hamanaka, K. Hirata, and S. Tojo, “Automatic generation
of metrical structure based on GTTM,” in Proc. Int. Comp.
Music Conf. (ICMC’05), Barcelona, Spain, 2005, pp. 53–56.

[4] K. Lemstrom and S. Perttu, “SEMEX – an efficient mu-
sic retrieval prototype,” in Proc. Int. Symp. Music Informa-
tion Retrieval (ISMIR’00), Plymouth, Massachusetts, USA,
2000, [Online] http://ismir2000.ismir.net/papers/lemstrom
paper.pdf.

[5] A. Pienimaki and K. Lemstrom, “Clustering symbolic music
using paradigmatic and surface level analyses,” in Proc. Int.
Conf. Music Information Retrieval (ISMIR’04), Barcelona,
Spain, 2004, pp. 175–178.

[6] G. Toussaint, “A comparison of rhythmic similarity mea-
sures,” in Proc. Int. Conf. Music Information Retrieval (IS-
MIR’04), Barcelona, Spain, 2004, pp. 134–137.

[7] B. Thom, “BoB: An improvisational music companion,” in
Proc. Fourth Int. Conf. Autonomous Agents, Barcelona, Spain,
2000, pp. 309–316.

[8] J. A. Biles, “GenJam,” [Online] http://www.it.rit.edu/∼jab/ in-
cluding numerous publications on GenJam and evolutionary
music.

DAFX-29

http://ismir2000.ismir.net/papers/lemstrom_paper.pdf
http://ismir2000.ismir.net/papers/lemstrom_paper.pdf
http://www.it.rit.edu/~jab/

	1 MIDIME Software Pipeline
	2 Guitar Strings Over Time
	3 Musical Structures Over Time
	3.1 Finger Patterns, Meter and Tempo
	3.2 Scales, Drones, Chords and Melody

	4 Composition Matching And Accompaniment
	5 Related Work And Conclusion
	6 References

