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ABSTRACT

A straight-forward design of graphic equalizers with minimum-
phase behavior based on recently developed higher-order band-
shelving filters is presented. Due to the high filter order, the gain
in one band is almost completely independent from the gain in
the other bands. Although no special care will be taken to design
filters with complementary edges except for a suitable definition
of the cut-off frequencies, the resulting amplitude deviation in the
transitional region between the bands will be sufficiently low for
many applications.

1. INTRODUCTION

Equalizers are common audio effect devices. With their config-
urable magnitude response, they allow the signal’s spectrum to be
shaped, to emphasize or deemphasize certain frequency bands or
to compensate non-ideal reinforcement equipment or room acous-
tics. Equalizers allow the specification of desired gains for speci-
fied bands. These bands can either be adjustable by the user in so
called parametric equalizers, or can be fixed for graphic equalizers,
which we will focus on in this paper.

When the gains of the different bands of a graphic equalizer
are controlled with sliders, the positions of the sliders’ knobs can
be understood as samples of the equalizers magnitude response
at different frequencies. Hence, the sliders yield a graphic repre-
sentation of the magnitude response, which is why this form of
equalizer is called “graphic”.

The bands are usually distributed logarithmic across the fre-
quency, to match human perception. Common designs include oc-
tave and 1/3-octave distribution.

When an equalizer (or any kind of effect device) is used in a
live performance, the processing delay is of concern. While the
maximum allowable total delay may be a matter of discussion, it
is safe to require each individual device to have the lowest possi-
ble processing delay, to allow cascading of several devices. This
mandates using minimum-phase recursive filters instead of linear-
phase FIR filters.

Since a general IIR filter design is computationally intensive,
the equalizer is usually implemented as a cascade of sub-filters,
each of which realizes the desired gain for one band and ideally
has unity gain in the other bands.

In the following, we will first go through the general steps of
designing an equalizer out of such sub-filters. While doing so,
we will also discuss the properties these sub-filters should ideally
have. We will then present a rather straight-forward design for
such filters, to finally employ them in two design examples to dis-
cuss their specific features.

2. EQUALIZER DESIGN USING SHELVING FILTERS

When designing an equalizer using per-band sub-filters, the main
task is to specify the involved frequencies to arrive at a specifica-
tion for the sub-filters. Let us denote the normalized lower and
upper cut-off frequencies of the ¢-th band with Q ; and Qy;, re-
spectively. Furthermore, we define the bandwidth as the difference

QB = Qu,i — Qi ey

)

and the center frequency as the geometric mean

QC,i =V QU,i : QL,i (2)

of the cut-off frequencies. The frequency bands shall be adjacent,
that is Qu,; = Qr,s+1. The logarithmic distribution can equiva-
lently be specified using the cut-off frequencies 2, ;41 = R- Q5
or center frequencies (¢ ;+1 = R - {c,;, from which immediately
follows that also 25,541 = R - (s,;. Note that for an octave equal-
izer R = 2 and for a 1/3-octave equalizer R = ¥/2 ~ 1.26. We
shall base our design on the band center frequencies, so that it is
convenient to express the other parameters as

Qc,i, 3

Qu,i = VR Qc,i €}

and

1
QB,i = <\/> - ﬁ) QC,-L- (5)

Ideally, the sub-filter for the ¢-th band has magnitude of the
desired gain g; inside the band and unity gain outside that band,
that is the ideal band-shelving filter which satisfies

i g QL <Q<Qus
‘Hideal,i(ejg)‘ _ g 1 Ly > < {ly, (6)
1 else.

In practice, the sub-filters will of course have transitional regions
around the band edges. In order to have a flat magnitude response
in cases where the same gain is used in adjacent bands, we there-
fore demand the filters to have (at least nearly) complementary
band-edges. In particular, we require

| () = V3 ™

so that at the cut-off frequency, when g; = gi+1 = g, we have
|Hi(&00) - Higa (770)] = g. ®)

The filter edges should also be sufficiently steep, so that the inter-
band influence is negligible even if two adjacent bands are con-
figured to vastly different gains. To accomplish this, we will use
higher-order filters.

= |
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3. SHELVING FILTER DESIGN

The design of the individual shelving filters of which the equalizer
is to be composed is based on a continuous-time minimum-phase
low-shelving prototype derived from a Butterworth low-pass de-
sign [} 2] as given by

M

R ] 1 2m-—1
ts(s) = [[ ——oan— an= (i_ oM )”’
Q)

where M is the filter order. Note that for M = 1 and M = 2,
this design reduces to the well known first- and second-order low-
shelving filters, respectively [3]]. The magnitude response of the
low-shelving prototype is

. WQNI +92

By choosing | His(jws)| = /g, we find that for the normalized
prototype of (9, the cut-off frequency wp = 2%/g.

Assuming even filter order M, we can rewrite (9) in terms of
real-valued second-order sections as

m=1

His(s) = Iil—/f s% + 2 cos(am) N/gs + N/g°
A o] s2 4+ 2cos(am)s +1
11\4_/[21+2V 1+ cms + V2 L
_m:1 s2 4+ 2¢cms+1 s2 4+ 2cms+1
an

with ¢, = cos(as,) and V = /g — 1.
From this, we obtain a digital filter by applying the bilinear
transform [4]] and frequency-scaling with

1 1—2z71
STR T e 12
yielding
HLS (Z) =
M/2

142V K(K+cm+2Kz*1+(K7cm)z*2)
H + 1+2Kem+K2+(2K2—-2)2z— 1+ (1-2Kcp+K2)2—2

m=1

K2 (1+2z*1+z*2)

2
+V 1+2Kcm+K2+(2K2—2)z—1+(1—2Kcm+K2)z—2)' (13)

The frequency-scaling constant K is chosen to map the desired
digital cut-off frequency (2g to the analog cut-off frequency wg =

2/g, that is
K= “11/5 tan <%) . (14)

Given the low-shelving filter, a band-shelving filter as required
for the equalizer of order 2M can be derived by a low-pass to
band-pass frequency transformation according to

cos Qv — 2 )
b

L SOPNM T 2
1 — cosQuz

Hgps(z) = His ( (15)
which shifts the filter such that the maximum (or minimum for
g < 1) of the transfer function is reached at {2y, while the band-
width (g and the minimum-phase behavior are retained [5]. In

practice, the substitution may be performed by replacing the unit-
delays of the low-shelving filter with the all-pass

cosQy — 21

_ . 16
1—cosQ-2z—1 (16)

A(z) =21

One possible realization of the m-th frequency-shifted second-
order section of the band-shelving filter Hgs(z) which aims at
minimizing the number of different coefficients is shown in Fig-

ure[T] where
1 1
= 17
a’O,nL 1+ 2KCm T K2 ( )
More details about this design and realization aspects can be found

in [1L12).
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Figure 1: Realization of the m-th fourth-order (frequency-shifted
second-order) section of Hps(z).

The magnitude response

‘H (em) ‘2 ~ (cos Oy — cos Q)M + (K sin Q)M g2
B8 ~ (cos Qm — cos)2M + (K sin Q)2M '
(18)
of the filter defined by (T3) is depicted in Figure [2] for various
maximum-gain frequencies.

| Hes (e’?)]
20 dB
10 dB
0dB
0 0.27 0.47 0.6 0.87 T Q

Figure 2: Magnitude responses of band-shelving filters with or-
der2M = 12, gain g = 10, bandwidth Qg = 0.17 and maximum-
gain frequencies Qy = [0.17,0.27, ..., 0.97].

Comparing these to the required properties stated in section[2]
we find that these filters deliver a good approximation of (&), get-
ting even better with higher M of course, as the edges get steeper.
To fulfill (7), we have to choose the maximum-gain frequency such

that o o o
tan? (%) = tan (%) - tan ( ;1) . (19)
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7 fc_’»;/HZ fL,z‘/HZ fU,i/HZ fM,i/HZ COSs (277%

1 30 21 42 30 0.999992
2 60 42 85 60 0.999969
3 120 85 170 120 0.999877
4 240 170 339 240 0.999507
5 480 339 679 480 0.998026
6 960 679 1358 960 0.992110
7 1920 1358 2715 1923 0.968500
8 3840 2715 5431 3861 0.874993
9 7680 5431 10861 7862 0.515600
10 15360 10861 21722 17955 —0.702955

[H(f)

12 dB A
8 dB 1
4dB A

0dB
—4 dB A
—8 dB
—12 dB

Table 1: Center frequencies fc i, lower cut-off frequencies fi i, up-
per cut-off frequencies fy,;, maximum-gain frequencies fy ; and
resulting frequency-shifting coefficients cos(Qu,;) of the octave
equalizer.

i K Jli] K |li | K

T [ 0.001168 || 5 | 0.018694 || 9 | 0.312322
2 | 0.003300 || 6 | 0.052838 || 10 | 1.023332
3| 0.004673 || 7 | 0.074962

4| 0.013201 || 8 | 0.213467

Table 2: Bandwidth coefficients K; of the octave equalizer with
gains alternating between 12 dB and —12 dB.

This is different from known approaches with bi-quad peak filters,
where usually Oy = Qc. Considering the flatness of the mag-
nitude response in the respective band, it seems however valid to
have slightly different {2 and 2c.

4. DESIGN EXAMPLES

4.1. Octave equalizer

Let us consider a 10-band octave equalizer with center frequencies
fc,s = [30 Hz,60 Hz, ..., 15360 Hz]

at a sampling frequency fs = 48 kHz. The resulting lower and
upper cut-off frequencies f.; and fu,; from (@) and (@), as well as
the frequencies of maximum gain fu,; from (I9) and the resulting
coefficients cos(€m,; ) of the frequency-shifting all-pass are listed
in Table[T]

We use a band-shelving filter of eighth-order (i.e., M = 4)
for each band. For the resulting two fourth-order sections for each
band, co = cos(37/8) and ¢ = cos(57/8), respectively.

As a first test case, the equalizer is configured to gains alter-
nating between 12 dB and —12 dB, so that g; = 3.98107 and
hence V; = 0.412538 for odd 7 and g; = 0.251189 and hence
V; = —0.292054 for even 4. Application of (I4) yields the K; of
Table 2] The resulting magnitude response in Figure 3] shows that
the inter-band influence is sufficiently small, so that the difference
between actual and desired gain in each band is hardly perceptible.

To study the imperfections due to non-complementary filter
edges, we now set equal gain of 12 dB in all bands, yielding the
same g; = 3.98107 and hence V; = 0.412538 for all bands. By
application of (T4), we find the K; of Table[3]

The resulting amplitude response of the equalizer and the in-
dividual band-shelving filters is depicted in Figure[d] the deviation
from 12 dB in Figure |5} The gain is almost exactly 12 dB at the

Figure 3: Magnitude response of the octave equalizer with eighth-
order (M=4) band-shelving filters with gain alternating be-
tween 12 dB and —12 dB (solid line) and of the individual filters
(dotted).

i K i K i ] K

11 0.001168 | 5 | 0.018694 || 9 | 0.312322
2 | 0.002336 || 6 | 0.037407 | 10 | 0.724464
3| 0.004673 || 7 | 0.074962

4| 0009346 || 8 | 0.151123

Table 3: Bandwidth coefficients K; of the octave equalizer with
equal gain (12 dB) in all bands.

center frequencies and at the cut-off frequencies, so it is not neces-
sary to consider the gains configured in other bands when choosing
the g; for one filter, contrary to other sophisticated equalizer design
methods [6]. The influence of one filter in other bands is limited
to a small transitional region around the cut-off frequencies, where
the magnitude response exhibits slight ripple no higher than that of
traditional constant-Q equalizers [7].

Only in the transitional region between ninth and tenth band,
the deviation from 12 dB exceeds 1 dB. This is an artifact of the
bilinear transform, which results in filters with an upper edge close
to the Nyquist frequency to have relatively flat lower edges. Thus,
the lower edge of the tenth band and the upper edge of the ninth
band have significantly different slopes, resulting in the larger rip-
ple. For applications where this is not acceptable, the situation
could be remedied to some extent by choosing a lower upper edge
frequency for the tenth band, which for the current design lies out-
side the audible spectrum anyway. For example, by arbitrarily set-
ting fu,10 = 18.5 kHz, the ripple of Figure[f]can be obtained.

4.2. 1/3-Octave equalizer

Next we examine a 30-band 1/3-octave equalizer with center fre-
quencies

fe.i = [25 Hz,31 Hz, ..., 20319 Hz),

again at a sampling frequency of 48 kHz. As for the octave equal-
izer, we use eighth-order (M =4) band-shelving filters.

The magnitude response for the same gain of 12 dB in all
bands is depicted in Figure [/} the deviation from 12 dB in Fig-
ure[8] Again, the ripple stays below 1 dB up to 10 kHz and grows
toward the highest bands. By applying the same trick as for the
octave equalizer, reducing the upper edge of the highest band from
22807 Hz to 20.5 kHz, the ripple can be reduced to that shown in

Figure[9]
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Figure 4: Magnitude response of the octave equalizer with eighth-
order (M =4) band-shelving filters with equal gain (12 dB) in all
bands (solid line) and of the individual filters (dotted).

|H(f)| —12dB
3dB A
2dB A
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0dB
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—2dB-

JV\/\M/\/\/\/\/U\/U\/\/\J
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Figure 5: Deviation of the magnitude response of Figure {| from
the ideal constant 12 dB.
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Figure 6: Deviation of the magnitude response from 12 dB for the
modified octave equalizer with fy 10 = 18.5 kHz.
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Figure 7: Magnitude response of the 1/3-octave equalizer with
eighth-order (M =4) band-shelving filters with equal gain (12 dB)
in all bands (solid line) and of the individual filters (dotted).

|H(f)| - 12 dB
3 dB
2 dB A

100 Hz 1 kHz

Figure 8: Deviation of the magnitude response of Figure [7] from
the ideal constant 12 dB.

|H(f)| —12dB
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1dB
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Figure 9: Deviation of the magnitude response from 12 dB for the
modified 1/3-octave equalizer with fy 3o = 20.5 kHz.

5. CONCLUSIONS

We have presented a straight-forward design of graphic equaliz-
ers with minimum-phase behavior based on higher-order band-
shelving filters. Thanks to the high filter order, the inter-band influ-
ence is very small, that is the gain in one band is almost completely
independent from the gain in the other bands. Although no special
care has been taken to design filters with complementary edges
except for a suitable definition of the cut-off frequencies, the re-
sulting amplitude deviation in the transitional region between the
bands is very low. Despite a slight increase at high frequencies, the
amplitude ripple should be sufficiently low for most applications.
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