
Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

PREPARED PIANO SOUND SYNTHESIS

Stefan Bilbao

Music
University of Edinburgh

United Kingdom
sbilbao@staffmail.ed.ac.uk

John ffitch

Department of Computer Science
University of Bath
United Kingdom

jpff@codemist.co.uk

ABSTRACT
A sound synthesis algorithm which simulates and extends the be-
haviour of the acoustic prepared piano is presented. The algorithm
is based on a finite difference approximation to multiple stiff string
vibration, including an excitation method (a hammer) as well as
several connected preparation elements, modeled as lumped non-
linearities. Numerical issues and implementation details are dis-
cussed, and sound examples are presented.

1. INTRODUCTION

The use of physical modeling principles in sound synthesis leads,
eventually, to certain thorny questions. By their very nature, such
methods allow very high-fidelity modeling of instrument timbres—
and yet, by increasingly close attention to detail in the physics of
a musical instrument, one can obtain a result which is, for musical
purposes, useless: in the limiting case, an exact reproduction of the
sound of an existing musical instrument. Though such sound syn-
thesis methods are undeniably extremely important for purposes
of checking the validity of a given musical instrument model, and
for commercial sound synthesis applications, the focus here is on
the creation of sounds which retain some of the natural texture of
those produced by acoustic instruments, but which are, in some
sense, new. In this regard, the use of physical models, though ad-
mirably suited to the task, is something of a balancing act.

One approach is to begin from a well-defined musical instru-
ment, and to perform variations on its structure. This is essentially
what was done early on, in the mechanical setting, in the case of
prepared piano (probably best known through the work of John
Cage [1], but still in extensive use up to the present day). Ob-
jects such as screws, rubber erasers, and washers (among others)
are placed in proximity to the strings of a piano, yielding timbres
sometimes quite foreign to the familiar piano tone—strongly per-
cussive and bell-like tones may be generated in this way. Such
an approach can be easily translated to physical modeling sound
synthesis approaches, and leaves open the door to various types
of preparation which are unrealizable in an actual piano (at least,
not realizable without causing permanent damage to the instru-
ment). In this study, string vibration will be simulated using finite
difference schemes [2, 3, 4, 5], and various connecting or excit-
ing elements, such as a standard hammer [2], and abstractions of
preparing objects, are dealt with as lumped objects (though this is
not strictly necessary). This approach is reminiscent of the mass-
spring network type models used in the past [6], but the use of a
fully distributed model of the string is far less unwieldy. Digital
waveguides [7], [8] could also potentially be employed, but their
efficiency advantage is substantially reduced under stiff string con-
ditions, and when a string is broken up by various elements in con-

tact with it (i.e., with a scattering junction required at each such
connecting points, as well as the accompanying fractional delay
machinery [9]). Another more important reason for making use
of a direct simulation approach such as finite differences is that
any results can easily be extended to deal with systems far more
complex than simply strings.

In Section 2, a model of the stiff string, suitable for piano
sound synthesis is presented, followed in Section 3 by definitions
of the hammer interaction and various preparing elements. In Sec-
tion 4, a finite difference scheme for multiple strings is given, in-
cluding a discussion of boundary termination and numerical stabil-
ity. Implementation details, particularly with regard to the csound
music programming language [10] follows in Section 5. Numeri-
cal results appear in Section 6.

2. A STIFF STRING MODEL

A useful general purpose model of string vibration may be written
as [3]:

ü = c2u′′ − κ2u′′′′ − σu̇ + bu̇′′ (1)

Here, u(x, t) represents transverse string displacement in a single
polarization, as a function of time t ≥ 0 and x ∈ [0, 1]. Dots and
primes indicate differentiation with respect to time and space, re-
spectively. The first term on the right-hand side is the usual wave
equation term, and the parameter c is related to the fundamental
frequency f0 of the string by f0 = c/2. (Note that in (1), for sim-
plicity, the spatial variable has been non-dimensionalized, so that c
does not have dimensions of velocity.) The second term represents
a contribution due to string stiffness, leading to inharmonicity of
partials, parameterized by the constant κ; in the limit as κ becomes
large, Eq. (1) represents the behaviour of a vibrating bar. The final
two terms model loss: the first, parameterized by σ ≥ 0, describes
the global decay rate of the string, and the second, parameterized
by b ≥ 0, approximates frequency-dependent loss characteristic of
string vibration.

There are various boundary conditions which can be used to
terminate the string equation (1) at either end point x = 0 or x =
1; two are required at any terminating point. In the case of strings,
perhaps most useful are fixed end conditions of the clamped, i.e.,

u = u′ = 0 (2)

or simply supported type, i.e.,

u = u′′ = 0 (3)

Under low-stiffness conditions, the audible difference between the
two types of conditions is negligible. If the equation (1) is intended

DAFX-77

http://www.music.ed.ac.uk/Contacts/DrStefanBilbao.htm
mailto:sbilbao@staffmail.ed.ac.uk
http://www.bath.ac.uk/~masjpf/
mailto:jpff@codemist.co.uk

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

to represent the behaviour of a bar, then free boundary conditions
may be implemented as well.

Eq. (1), though arguably suitable for piano sound synthe-
sis [11], is by no means the most general musically useful string
model; various nonlinear models, of varying degrees of complex-
ity, allow rendering of more interesting effects such as pitch glides
among others [12], [13], [14]. Any such model could easily be
substituted here, with very little effect on the resulting develop-
ment in this article (particularly with regard to the construction of
finite difference schemes, which handle nonlinear distributed sys-
tems quite easily).

2.1. Multiple Strings and Excitation

The character of a single piano note is determined by the vibration
of several strings, usually very similar in fundamental frequency,
and identical in other respects. In the implementation described
here, Ns such strings are coupled, each described by an equation
of the form

ü(q) = c2
(q)u

′′
(q) − κ2u′′′′(q) − σu̇(q) + bu̇′′(q) + δ(x0)φ(q) (4)

where here q is an index which runs from q = 1 to q = Ns;
notice that of the defining parameters, only c(q) has any depen-
dence on q. Also, a set of excitations φ(q), acting at x = x0 on
each string (through the Dirac delta function δ(x0)) has been in-
troduced. The excitations represent the behaviour of a coupling
element, such as a piano hammer, or one of various types of string
preparation, which will be discussed shortly. This description of
excitation or coupling is a lumped one—it is by no means neces-
sary to make this assumption, but for many musically meaningful
cases, the spatial extent of the excitation is smaller than the shortest
audible wavelength in the string, for physically reasonable mate-
rial sound speeds. See Section 4 for more discussion of this point.

3. EXCITATION AND PREPARATION

In this section, the hammer interaction, as well as various inter-
actions with preparing elements are described; in each case, the
element interacts with the entire set of strings. Though single el-
ements are described here, it is simple to generalize to the case of
connections to many of these objects simultaneously.

3.1. Hammers

A simple, but effective model of a hammer strike upon multiple
strings from below [2] is easily described in terms of the dis-
placement uH(t) of the hammer, and that of an individual string
q at the strike location x0, u(q)(x0, t), or rather the difference
w(q)(t) = uH(t)− u(q)(x0, t):

φ(q)(w(q)) =

µγ2wα

(q), w(q) > 0
0, w(q) ≤ 0

In other words, a nonlinear force is exerted when the hammer and
string are in contact, with the nonlinearity controlled by the ex-
ponent α (a value between 1 and 3 is generally chosen). The pa-
rameter µ ≥ 0 represents the relative mass density of the hammer
relative to the string, and γ is a parameter which scales the stiff-
ness of the hammer. The hammer position itself is governed by

Newton’s laws, i.e.,

üH = − 1

µ

NsX
q=1

φ(q) (5)

The hammer itself must be initialized, typically with an initial po-
sition uH(0) and an initial velocity u̇H(0).

3.2. Traps

One type of string preparation is to vertically “trap” it, at a given
point x0, using nonlinear springs. In this case, the functions φ(q)

are given by

φ(q)(u(q)(x0, t)) = −γ2(u(q)(x0, t))
α (6)

where here, γ controls the spring stiffness and α is the nonlinearity
exponent.

3.3. Rubber Stoppers

In order to model a rubber stopper (such as an eraser) wedged
underneath a set of strings, the following model is a useful first
approximation. If uE(t) is the position of the top of the rubber
element, then in terms of w(q)(t) = uE(t)− u(q)(x0, t), one has,
similarly to the case of the hammer,

φ(q)(w(q)) =

µγ2w(q), w(q) > 0
0, w(q) ≤ 0

In contrast to the hammer, however, the rubber stopper is anchored,
and its dynamics may be written as

üE = −σE u̇E − γ2

uE +

1

µγ2

NsX
q=1

φ(q)

!
(7)

where σE is a damping constant (typically quite large), and γ, in
this case, can be viewed as the fundamental frequency of the rub-
ber element. µ, in (4), is again the mass density ratio of the rubber
element to the string.

An even simpler model of such a stopper involves the use of a
simple damping term, i.e.,

φ(q)(u(q)(x0, t)) = −σE u̇(q)(x0, t) (8)

which may be used in conjunction with the trap discussed above.

3.4. Rattling Elements

A rattling element may be modeled, in the simplest case, as a two
point-mass “dumbbell,” of length ε, on which a force acts only
when one of the two masses is in contact with the string. In this
case, the coupling may be framed in terms of the displacement
w(q)(t) = uR(t)− u(q)(x0, t), where uR is the vertical midpoint
position of the rattling element. The force relationship is given by

φ(q)(w(q)) =

8<: µγ2
`
w(q) − ε/2

´
, w(q) > ε/2

0, −ε/2 ≤ w(q) ≤ ε/2
µγ2

`
w(q) + ε/2

´
, w(q) < −ε/2

The contact interaction here is piecewise linear, but could easily
be made more strongly nonlinear through the introduction of an

DAFX-78

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

exponent, as in the case of the hammer. The rattle position is again
governed by Newton’s laws, i.e.,

üR = − 1

µ

NsX
q=1

φ(q) − g (9)

where here, gravitational acceleration g has been introduced, as it
will have particular importance in determining the collision dy-
namics of the rattle. Again, γ represents the fundamental fre-
quency of the rattling elements, and µ in (4) the relative linear
mass density of the rattle to the string.

4. A FINITE DIFFERENCE MODEL

For one-dimensional systems such as strings, finite difference sche-
mes are a good choice of numerical method; though not as efficient
as digital waveguides [7], they are simple to program, much more
general, and allow a complete transparency of the entire state of
the simulated system, which is especially useful if one is inter-
ested in, say, dynamically changing the position of an excitation
or preparing element. As mentioned earlier, they extend easily to
the case of fully nonlinear strings.

Considering the qth string, Eq. (4) may be discretized, at an
interior point (to be defined presently) as

un+1
(q),i =

2X
l=−2

α(q),|l|u
n
(q),i+l +

1X
l=−1

β(q),|l|u
n−1
(q),i+l (10)

+
k2

h(q)

δi0µγ2φn
(q)

where here, un
(q),i is a grid function representing an approximation

to u(q)(x, t) at x = ih(q), and t = nk, and φn
(q) approximates

φ(q)(t) at t = nk, and at grid location i = i0 corresponding to
x0 = ih(q) (hence the use of the Kronecker delta). h(q) is the
spacing between adjacent grid points, and k is the time step (1/k
is the sample rate, generally set a priori). The scheme coefficients
α(q),l and β(q),l are given by

α(q),0 =

2−
2c2(q)k2

h2
(q)

− 6κ2k2

h4
(q)

− 2bk
h2
(q)

1 + σk/2

α(q),1 =

c2(q)k2

h2
(q)

+ 4κ2k2

h4
(q)

+ bk
h2
(q)

1 + σk/2

α(q),2 = − κ2k2

h4
(q)(1 + σk/2)

β(q),0 =

σk/2− 1 + 2bk
h2
(q)

1 + σk/2

β(q),1 =

− bk
h2
(q)

1 + σk/2

A necessary stability condition, which follows from von Neu-
mann (Fourier) analysis of scheme (10) under zero input condi-
tions [15], is

h(q) ≥ h(q),min

with

h(q),min =

vuutc2
(q)k

2 + 2bk +
q

(c2
(q)k

2 + 2bk)2 + 16κ2k2

2

In other words, for a given sample rate and set of material
parameters, a minimum spacing between adjacent points must be
respected. This spacing relates to the highest audible wavelength
in the string. A slight additional complication comes from the fact
that the scheme for each string will possess its own separate sta-
bility condition, giving rise, potentially, to different grid spacings
on each string, which is inconvenient from a programming stand-
point; it is useful to make use of a global spacing h over all strings,
bounded by

h ≥ max
q

h(q),min (11)

Use of such a global spacing is advisable only when the funda-
mental frequencies of the strings are relatively close; otherwise,
one may be far from the ideal bound in at least some of the strings,
and numerical dispersion [15] will play a significant role, leading
to a numerical inharmonicity in partials.

Eq. (10) is implemented as a two-step recursion; it may be ini-
tialized at zero. It is also clear that any given grid function un

(q),i,
which is defined over a set of grid points indexed by i = 0, . . . , N ,
where N = 1/h, will require access to values outside the prob-
lem domain at points near the boundary, according to (10). For
fixed termination, as is the case presented here, one may always
set un

(q),0 = un
(q),N = 0; in other words, the terminal grid points

are permanently set to zero, and need not be computed, satisfying
the first of conditions (2) or (3). To satisfy the second of condi-
tions (2) at, say, the left end of the string, one may set un

−1 = 0.
To satisfy the second of conditions (3), one may set un

−1 = −un
1 .

Many other methods of setting the boundary conditions are feasi-
ble, and details may be found elsewhere; these particular settings
are simple, and provably numerically stable.

4.1. Updating for the Connecting Elements

The various connecting elements described in Section 3 are also,
for the most part, described by differential equations, and require
numerical integration. Though in the case of nonlinear elements,
there are obviously many ways of performing this integration, sim-
ple methods are presented here. In the case of the hammer, (5) may
be updated as

un+1
H = 2un

H − un−1
H − k2

µ

NsX
q=1

φn
(q)

The rattling element, defined by (9) may be dealt with similarly as

un+1
R = 2un

R − un−1
R − k2

µ

NsX
q=1

φn
(q) − k2g

For the rubber stopper, one may use

un+1
E = 2un

E − un−1
E − σEk(un

E − un−1
E)

−γ2k2

un

E +

NsX
q=1

φn
(q)

!

DAFX-79

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

The trapping element requires no additional state, and to approxi-
mate (6), one may simply use

φ(q)(u
n
(q),i0) = −γ2(un

(q),i0)
α

If loss is introduced, one may use, as an approximation to (8),

φ(q)(u
n
(q),i0) = −σE

k
(un

(q),i0 − un−1
(q),i0

)

5. IMPLEMENTATION DETAILS

5.1. Operation Count

The bulk of the calculation in this prepared piano simulator is car-
ried out in performing the update of the string state; hammers and
various connections are of negligible computational cost. For a
single string, of fundamental frequency f0, and under low inhar-
monicity conditions, at sample rate fs the number of multiplies
per second is approximately 2f2

s /f0; the computational cost obvi-
ously scales inversely with the fundamental frequency.

5.2. csound Implementation

This algorithm was prototyped in the Matlab programming lan-
guage, but the aim is to make the sound available to composers.
Ideally such an implementation should be playable in real time, or
at least close to real time, and from the point of view of practical-
ity there needs to be some attempt to minimise the memory use.
For composers, the flexibility of the operation is also significant;
csound [10] would appear to be a good choice of programming
environment.

The internal operations naturally rely on three arrays to rep-
resent the values un−1

(q),i, un
(q),i and un+1

(q),i, for each string. At each
time step these are cycled by pointer assignment, taking care to
correct for the boundary conditions. Similar arrangements are
taken to maintain the state of the preparations.

In Csound, as in all MusicV descended systems, the opera-
tions are split between an initialisation method and then a perform
method that creates a short section of audio. Much of the speed of
csound comes from this batching of operations, with its attendant
good cache behaviour and the less frequent adjustment of parame-
ters. In the case of the prepared piano there are twelve fundamen-
tal parameters covering basics like fundamental frequency and the
number of strings, as well as stiffness, loss parameters and the
characteristics of the hammer, most of which cannot reasonably
be adjusted after the initialisation (although there is a future action
to investigate this more closely). The harder problem is how to
specify the various preparations. Our implementation uses two f-
tables, one to define the characteristics of rubber preparations and
one to do likewise for the rattles. Either of these can of course be
omitted.

The other design question is how to handle multiple hammer
strokes. Our implementation does this by having one stroke for
each call, but it is possible to skip the initialisation phase, and so
keep the previous state of the system. There is also an issue on
control of the amplitude of the output. As in many physical mod-
els the parameters determine the inputs rather than the resulting
amplitude. The code performs some scaling based on experience.

<CsoundSynthesizer>
<CsInstruments>
nchnls = 1;
instr 1
;; fund NS detune stiffness decay loss (bndry)
;; (hammer) scan prep
aa prepiano 60, 3, 10, p4, 3, 0.002, 2, 2, 1,
5000, -0.01, p5, p6, 0, 1, 2
out aa
endin
</CsInstruments>
<CsScore>
f1 0 8 2 1 0.6 10 100 0.001 ;; 1 rattle
f2 0 8 2 1 0.7 50 500 1000 ;; and 1 rubber
i1 0.0 0.5 1 0.09 20
i1 0.5 . -1 0.09 40 ;; 2nd strike keeping state
i1 1.0 . -1 0.09 60
i1 1.5 . -1 0.09 80
i1 2.0 1.8 -1 0.09 100 ;; last strike until silence
</CsScore>
</CsoundSynthesizer>

Figure 1: Simple csound example.

5.3. Performance

The csound opcode has been tested in situ in two simple cases,
with one rattle and one rubber stopper, and with no preparations.
Clearly the processor speed is important when we are concerned
with how close to real time the code runs. The tests were run on
two widely differing systems both running Csound5.01; a 1.4GHz
Centrino laptop with Linux with floating-point samples, and an
AMD Athlon64 3400+ (2.4GHz) with Linux, and double-precision
samples. The actual test program is shown in Figure 1, where a
very low frequency string (f0 = 60 Hz) has been chosen, as a
“worst case.”

Machine Time % real Time % real
Laptop 8.143 47% 8.239 46%
Workstation 0.591 643% 0.595 639%

The preliminary timings suggest that the cost of the prepa-
rations is small. The workstation is clearly showing usable per-
formance while on the laptop the speed is too slow for real time,
but not too bad for some uses. These results are preliminary, and
there may be opportunities for further optimisation, such as mov-
ing some calculations from the sample-rate loop to the control rate.

6. NUMERICAL RESULTS

In this section, several illustrative plots of numerical output from
the string model, under various types of preparation, are presented;
all were created at the audio sample rate of 44.1 kHz. The effect of
brightening with strike velocity for a nonlinear hammer of the type
presented here has been discussed elsewhere [2]. Considering the
case of a rattling element, in Figure 2 are shown output waveforms
generated, as well as spectrograms, in the case of a struck string
at fundamental frequency 600 Hz, both with and without a rattling
element present. Though it is difficult to show the precise time-
dependent effects of the rattling element, at the crudest level, one
sees a considerable disruption of the output waveform, as well as
a substantial presence of high frequencies in the case of the rattle.

DAFX-80

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

0 1 2 3
!1

!0.5

0

0.5

1

Time

Am
pl

itu
de

Time

Fr
eq

ue
nc

y

0 1 2
0

0.5

1

1.5

2

x 104

0 1 2 3
!1

!0.5

0

0.5

1

Time

Am
pl

itu
de

Time

Fr
eq

ue
nc

y

0 1 2
0

0.5

1

1.5

2

x 104

Figure 2: Top: output waveform and spectrogram, for a struck
piano tone at 600 Hz. Bottom: output waveform and spectrogram
for a struck piano tone at 600 Hz, including the effects of a rattling
element placed 0.3 of the way along the string from the left end.

Consider the case of a trapping element, in the case of a string
of fundamental frequency 200 Hz; a spectrogram of the output
waveform is given in Figure 3. The string is struck successively
with blows of initial velocity 5, 10, 50 and 100 m/s. Notice in
particular the increase in high frequency energy with strike veloc-
ity (due to the effect of both the nonlinear hammer interaction,
and the trapping element), as well as the rather complex effects of
modulation visible in the upper harmonics of the tone under high
amplitude striking velocity.

Time

Fr
eq

ue
nc

y

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

x 104

Figure 3: Top: output spectrogram, for a struck piano tone at 200
Hz, with a trap placed 0.3 of the way along the string from the left
end, under strikes of increasing amplitude.

Under the same conditions as the example above, but with the
addition of a rubber stopper (in this case at the same location as the
trapping element), the output sounds become, predictably, shorter
and more percussive (see Figure 4) with the additional feature that,
under high amplitude conditions, a new, higher fundamental fre-
quency emerges. The effect of a prepared piano sounding at a pitch
different from that of the note struck is, of course, a well-known
effect.

It is rather difficult to give the full flavor of the sound examples
produced by presenting plots of waveforms and spectrograms; the

Time

Fr
eq

ue
nc

y

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

x 104

Figure 4: Top: output spectrogram, for a struck piano tone at 200
Hz, with a trap accompanied by a rubber stopper placed 0.3 of the
way along the string from the left end, under strikes of increasing
amplitude.

reader is directed to a series of sound examples, created in Matlab,
which are available on the internet [16].

7. CONCLUSION

In this short article, a brute force numerical simulation of a pre-
pared piano has been presented. As noted in Section 5, though
more computationally demanding than techniques such as digital
waveguides, these methods are already capable of real time perfor-
mance.

One significant problem with the algorithm as presented here
has to do with numerical stability concerns, with regard to the
nonlinear interactions with the hammer and various preparing ele-
ments. The condition (11), which is derived using Fourier princi-
ples applied to the string scheme under linear conditions is merely
necessary. One may develop energy-conserving or dissipating al-
gorithms to deal with the various nonlinearities (indeed, in all cases,
the model, including preparing elements, may be shown to be
strictly dissipative) [17], but such algorithms may lead to implicit
schemes, necessarily requiring the use of iterative methods, with-
out a guarantee of convergence. Another approach would be to
make use of so-called symplectic methods [18], but this approach
is not strictly applicable to problems involving dissipation. The
question is open as to how to construct robust (i.e. provably nu-
merically stable) numerical methods for complex nonlinear sys-
tems such as that presented here.

It is worth noting that although the algorithm can be used to
simulate the behaviour of a piano-like instrument, the model equa-
tion, as defined by (1) is quite general, and can be used, without
modification to simulate the behaviour of various other percussion
instruments, including bar-based instruments such as xylophones
or marimbas, again under prepared conditions. One element which
is missing here is a physical model of a soundboard, which can be
easily modeled through the use of a finite difference plate model,
connected to the string models mentioned here. Preparation of
such a soundboard itself is, of course, a desirable option.

8. ACKNOWLEDGEMENTS

This work was supported in part by the Engineering and Physical
Sciences Research Council UK, under grant number C007328/1.

DAFX-81

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

9. REFERENCES

[1] J. Cage and D. Charles, For The Birds: John Cage in Con-
versation with Daniel Charles. Marion Boyers, 1981.

[2] A. Chaigne and A. Askenfelt, “Numerical simulations of
struck strings. I. A physical model for a struck string using
finite difference methods,” J. Acoust. Soc. Am., vol. 95, no. 2,
pp. 1112–8, Feb. 1994.

[3] J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith
III, “The simulation of piano string vibration: From physical
models to finite difference schemes and digital waveguides,”
J. Acoust. Soc. Am., vol. 114, no. 2, pp. 1095–1107, 2003.

[4] P. Ruiz, “A technique for simulating the vibrations of strings
with a digital computer,” Master’s thesis, University of Illi-
nois, 1969.

[5] L. Hiller and P. Ruiz, “Synthesizing musical sounds by solv-
ing the wave equation for vibrating objects,” J. Audio Eng.
Soc., vol. 19, pp. 462–72, 542–51, 1971.

[6] C. Cadoz, A. Luciani, and J.-L. Florens, “CORDIS-ANIMA:
a modeling and simulation system for sound and image syn-
thesis – The General formalism,” Computer Music J., vol. 17,
no. 1, pp. 19–29, 1993.

[7] J. O. Smith III, Physical Audio Signal Processing. Stanford,
CA: draft version, 2004, [Online] http://ccrma.stanford.edu/
jos/∼pasp04/.

[8] T. Tolonen, V. Välimäki, and M. Karjalainen, “Modeling of
tension modulation nonlinearity in plucked strings,” IEEE
Trans. Speech and Audio Proc., vol. 8, pp. 300–310, May
2000.

[9] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine,
“Splitting the unit delay: Tools for fractional delay filter de-

sign,” IEEE Sig. Proc. Magazine, vol. 13, no. 1, pp. 30–60,
Jan. 1996.

[10] R. Boulanger, The Csound Book: Perspectives in Software
Synthesis, Sound Design, Signal Processing and Program-
ming. Cambridge, Massachusetts, USA: MIT Press, 2000.

[11] B. Bank and L. Sujbert, “Generation of longitudinal vibra-
tions in piano strings: From physics to sound synthesis,” J.
Acoust. Soc. Am., vol. 117, no. 4, pp. 2268–2278, Apr. 2005.

[12] C. Vallette, “The mechanics of vibrating strings,” in Mechan-
ics of Musical Instruments, A. Hirschberg, J. Kergomard, and
G. Weinreich, Eds. New York: Springer, 1995, pp. 116–183.

[13] S. Bilbao and J. O. Smith III, “Energy conserving finite dif-
ference schemes for nonlinear strings,” Acta Acustica united
with Acustica, vol. 91, pp. 299–311, 2005.

[14] S. Bilbao, “Conservative numerical methods for nonlinear
strings,” J. Acoust. Soc. Am., vol. 118, no. 5, pp. 3316–3327,
2005.

[15] J. Strikwerda, Finite Difference Schemes and Partial Differ-
ential Equations. Pacific Grove, Calif.: Wadsworth and
Brooks/Cole Advanced Books and Software, 1989.

[16] S. Bilbao, Retrieved June 29th, 2006, [Online] Plate sound
synthesis examples at http://www.music.ed.ac.uk/Contacts/
DrStefanBilbao soundExamples.htm.

[17] ——, “Robust physical modeling sound synthesis for non-
linear systems: Direct numerical simulation and the energy
method,” 2006, under review, IEEE Signal Processing Mag-
azine. Invited article.

[18] J. Sanz-Serna, “Symplectic integrators for hamiltonian prob-
lems: An overview,” Acta Numerica, vol. 1, pp. 243–286,
1991.

DAFX-82

http://ccrma.stanford.edu/jos/~pasp04/
http://ccrma.stanford.edu/jos/~pasp04/
http://www.music.ed.ac.uk/Contacts/DrStefanBilbao_soundExamples.htm
http://www.music.ed.ac.uk/Contacts/DrStefanBilbao_soundExamples.htm

	1 Introduction
	2 A Stiff String Model
	2.1 Multiple Strings and Excitation

	3 Excitation and Preparation
	3.1 Hammers
	3.2 Traps
	3.3 Rubber Stoppers
	3.4 Rattling Elements

	4 A Finite Difference Model
	4.1 Updating for the Connecting Elements

	5 Implementation Details
	5.1 Operation Count
	5.2 csound Implementation
	5.3 Performance

	6 Numerical Results
	7 Conclusion
	8 Acknowledgements
	9 References

