
Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

STREAMING FREQUENCY-DOMAIN DAFX IN CSOUND 5

Victor Lazzarini

Music Technology Laboratory
National University of Ireland, Maynooth

victor.lazzarini@nuim.ie

Joe Timoney, Tom Lysaght

National University of Ireland, Maynooth
Department of Computer Science

{Joseph.Timoney|Tom.Lysaght}@cs.nuim.ie

ABSTRACT

This article discusses the implementation of frequency domain
digital audio effects using the Csound 5 music programming
language, with its streaming frequency-domain signal (fsig)
framework. Introduced to Csound 4.13, by Richard Dobson,
it was further extended by Victor Lazzarini in version 5. The
latest release of Csound incorporates a variety of new opcodes
for different types of spectral manipulations. This article
introduces the fsig framework and the analysis and resynthesis
unit generators. It describes in detail the different types of spectral
DAFx made possible by these new opcodes.

1. INTRODUCTION

Csound 5 [1], released in February 2006, is a completely re-coded
version of the popular MUSIC N -derived music programming lan-
guage [2]. Among the many new features, it provides completely
new host and module APIs, for embedding and extending the sys-
tem, several new frontends and scripting language support, as well
as numerous new opcodes, bringing the total number of unit gen-
erators to over 1000. These include a set of opcodes designed to
work with spectral signals, defined by the Csound orchestra lan-
guage type fsig.

This signal type [3] was introduced by Richard Dobson to
Csound 4.13, together with a few basic opcodes. It provides a
framework for spectral processing, which was further extended by
Victor Lazzarini (in Csound 5) to support partial track signals. Pre-
viously, spectral processing in Csound was limited to transforma-
tion and resynthesis of spectral datafiles. With the fsig framework,
a Csound instrument can manipulate any input signal in the fre-
quency domain. The opcodes process streaming spectral signal,
which is generated by an analysis (or a data file reader) opcode.
The frequency-domain signal can be resynthesised using inverse-
DFT overlap-add or additive synthesis.

2. THE FSIG FRAMEWORK

Streaming frequency-domain signals are defined by the Csound
fsig type. Such signals are processed at a rate that is dependent
on the size of the DFT analysis frame and the number of over-
lapping frames (or the hopsize), effectively the rate of generation
of new spectral frames. The ‘perform’-method of a spectral pro-
cessing opcode is called every control period, but it only outputs
a new frame if there is a new frame at its input. The fsig frame-
work provides support for such checks. Consequently, the fsig
rate is independent of the control rate and the processing is more
efficient than the original datafile-based opcodes, which were tied
to the orchestra control rate. Fsigs are self-describing, so, unlike

time-domain audio and control signals, are furnished with the extra
information about their feature, including: DFT length, number of
overlaps (N /hopsize), window size, window type and data format.

2.1. Data Formats

The actual format of the spectral data can vary, currently
three types are being used: PVS_AMP_FREQ, amplitude and
frequency pairs as produced by the phase vocoder and IFD;
PVS_AMP_PHASE, amplitude and phase (polar DFT) data; and
PVS_TRACKS, partial tracks of amplitude, frequency, phase and
track ID [4]. Of these, the first two will have a fixed size, namely
the DFT size plus two extra values (holding the positive spectrum
plus the Nyquist frequency, generated by the DFT of a real signal),
or N/2 + 1 bins. These two formats will be henceforth referred
to as ‘bin-frame’ data.

The PVS_TRACKS signal actually holds frames of variable
size, but ultimately having a maximum number of tracks equiva-
lent to the number of analysis bins. The partial tracks will con-
tain four items each; however not all partial track-processing op-
codes will require all of them (the phase can be sometimes omit-
ted). Crucial to its operation is the track ID information, as it is
used to match tracks at consecutive frames. It is possible to in-
troduce other types of binframe spectral signals, for instance, data
in rectangular (real, imaginary) format. Nevertheless, the musical
generality of the PVS_AMP_FREQ has so far fulfilled the needs
of most bin-frame processing applications.

3. SPECTRAL ANALYSIS

Streaming spectral data can be generated by three opcodes: the
original pvsanal and pvsfread opcodes (written by Richard
Dobson) plus the pvsifd, introduced in Csound 5. These unit
generators produced data in bin-frame format, which can be fur-
ther transformed into partial tracks, by the partials opcode.

3.1. Phase Vocoder

The pvsanal opcode, as well as by the pvanal Csound utility,
which generates PVOCEX files for the pvsfread, perform phase
vocoder analysis. They are loosely modelled on the original CARL
phase vocoder [5]. The pvsanal opcode does this operation in
a streaming fashion, generating a new frame every hopsize input
samples. The following example takes the channel 1 input signal
to Csound and produces a fsig with a framesize of 1024 (513 bins),
updated every 256 samples, using a 1024-sample hanning window.

a s i g inch 1
f s 1 pvsanal a s i g , 1024 , 256 , 1024 , 1

DAFX-275

mailto:victor.lazzarini@nuim.ie
mailto:Joseph.Timoney@cs.nuim.ie
mailto:Tom.Lysaght@cs.nuim.ie

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

4. INSTANTANEOUS FREQUENCY DISTRIBUTION

The pvsifd opcode implements the instantaneous frequency dis-
tribution analysis [6]. It actually generates two fsigs, one contain-
ing a PVS_AMP_FREQ signal, similar to the pvsanal output,
and another containing a PVS_AMP_PHASE signal. This pair of
fsigs can then be used for a full partial track analysis. The fol-
lowing example is equivalent to the previous one, except that the
opcode generate two fsigs as output and uses an analysis window
that is always the same size as the DFT.

a s i g inch 1
fs1 , f s 2 p v s i f d a s i g , 1024 , 256 , 1

4.1. Partial track analysis

The partials opcode takes in two fsigs, with PVS_AMP_FREQ
and PVS_AMP_PHASE and does a partial track analysis, gen-
erating a PVS_TRACKS signal containing a variable number
of partial tracks. Each track will model one partial of the input
signal, with amplitude, frequency, phase and partial ID data. It is
possible to use only a single PVS_AMP_FREQ input, in which
case the phase information will be omitted from the analysis
output. In fact, the majority of the track processing opcodes do
not require phase information. It is possible to feed partial track
analysis with the output of a pvsanal or pvsfread opcode.
The first example outputs a complete (amplitude, frequency and
phase) partial track signal, with an analysis threshold of 0.003
(0.3%) , a minimum number of 1 time point for each track and a
maximum gap of 3 time-points for track continuity. It limits the
output to a maximum of 500 tracks:

a s i g inch 1
fs1 , f s 2 p v s i f d a s i g , 1024 , 256 , 1
f t r k p a r t i a l s f s1 , f s2 , 0 . 0 0 3 , 1 ,3 ,500

However, as previously discussed, it is also possible to feed a
amplitude/frequency-only input to partial track analysis, resulting
in tracks with no phase information. The following example takes
its input from a PVOCEX analysis file, using the file reader op-
code:

k t im l i n e 0 , i d u r , i d u r
f s 1 pvs fread ktim , " i n p u t . pvx "
f t r k p a r t i a l s f s1 , f s1 , 0 . 0 0 3 , 1 ,3 ,500

5. SPECTRAL PROCESSING

In this section, we will look at the different types of transforma-
tions, loosely classified in amplitude, frequency and combination
effects, as discussed in [7].

5.1. Amplitude transformations

The basic type of amplitude effects are filter-like processes, which
will alter the amplitude functions, but leave the frequency (and
phase) unaltered. Richard Dobson provided to Csound 4.13, a
pvsmask opcode, which uses a function table of N/2 length as
an amplitude response curve. The opcode multiplies each bin am-
plitude by a function table value, indexed by the bin number, ef-
fectively filtering the signal. In Csound 5, the trfilter opcode
operates in a similar fashion, but process partial tracks instead of

bin frames, thus the length of the function table is not required to
be fixed to any particular size. Time-varying filter effects can be
implemented using a table writing opcode, as show in the example
below, which implements a comb filter-like effect:

aphs phasor 1 /∗ t a b l e w r i t i n g i n d e x ∗ /
/∗ s i n u s o i d s i g n a l t o be f e d i n t o t h e

t a b l e , kpk s i s number o f spec peaks ∗ /
a f i l o s c i l i 2 , kpks / 2 , 1
/∗ t a b l e w r i t i n g (t a b l e s i z e =44100) ∗ /

tabw abs (a f i l) , aphs , 3 , 1
f f i l t r f i l t e r f t r k , 1 , 3 /∗ f i l t e r i n g ∗ /

In the example above, if the signal kpks is modulated, then
a flanger-type effect will result. Time-varying filtering can also
be implemented by two other Csound 5 opcodes, pvsfilter
and pvsarp. The latter provides a spectral ‘arpeggiation’ effect
by zeroing some bin amplitudes and boosting others. The former
takes two bin-frame fsigs and uses one of them as an amplitude
response, multiplying the two amplitude functions together. This
opcode can be also used in some cross-synthesis effects as well
as filtering. For instance, a very narrow band-pass filter can be
created by using the spectra of a sinusoid and the spectra of an
arbitrary source as inputs:

a s i g inch 1 /∗ i n p u t ∗ /
a s i n o s c i l i 1 , kcf , 1 /∗ s i n u s o i d ∗ /
/∗ i n p u t s p e c t r a l s i g n a l ∗ /
f s 1 pvsanal a s i g , 1024 , 256 , 1024 , 1
/∗ s i n u s s p e c t r a l s i g n a l ∗ /
f s 1 pvsanal a s i n , 1024 , 256 , 1024 , 1
/∗ f i l t e r i n g ∗ /
f f i l p v s f i l t e r a s i g , a s i n , 1

Also in the category of amplitude transformations we have the
mask-based effects, such as noise cancellation that can be per-
formed by the pvstencil opcode. This takes an input signal
and compares it, bin by bin with an amplitude response mask in
a function table, performing amplitude scaling based on this com-
parison. For a denoiser type effect, it is possible to construct such
a mask table from a PVOCEX file (using GEN43) and apply it to
an input signal using this opcode:

a s i g d i s k i n 2 " i n p u t . wav " , 1 ,0 ,1
i f n f t g e n 1 , 0 , i s i z /2 ,−43 , " n o i s e . pvx "
f s i g pvsanal a s i g , i s i z , i s i z / 4 , i s i z , iw
f c l e a n p v s t e n c i l f s i g , k a t t n , k l v l , i f n

In the example above, the amount of amplitude change is con-
trolled by kattn, and the noise threshold can also be adjusted by
the klvl variable.

5.2. Frequency transformations

The basic frequency effects implemented for streaming spectral
signals are frequency scaling and frequency shifting. These are
available for both bin-frame (pvscale and pvshift) and par-
tial track signals (trscale and trshift). Frequency scaling
of binframe signals is described by the following expression:

fout[np] = fin[n]p (1)

where fin and fout are the input and output bin frequencies, respec-
tively, n is the bin index and p is the scaling interval. A simple
harmoniser example is shown below:

DAFX-276

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

a s i g i n
/∗ s p e c t r a l p r o c e s s i n g , i s c l i s t h e
h a r m o n i s e r i n t e r v a l ∗ /
f s i g pvsanal a s i g , i s i z , i s i z / 4 , i s i z , iw
f t p s p v s c a l e f s i g , i s c l , ikeepfo rm , i g a i n
a t p s pvsynth f t p s
/∗ t h e r e i s a N−sample d e l a y be tween i n p u t
and o u t p u t ∗ /
adp de la yr . 1
a d e l de l tapn i f f t s i z e

delayw a s i g
out a t p s + a d e l

In order to compensate for the N-sample delay between the input
of the spectral process and its output, a short delay line is used,
so the original and transposed signal can be time-aligned. The
bin-frame frequency scaler and shifter opcodes have two special
modes of operation that will attempt to preserve formants, for vo-
cal applications. If the ikeepform variable is 1 or 2, one of these
modes will be used. The method of formant preservation used here
is perhaps not as accurate as the one described in [8], but many
times more efficient and yielding good results. A comparison of
the output and input of pvscale using formant preservation with
pitch shifting demonstrates that original formants are fairly well
preserved in the frequency-scaled spectrum (fig. 1).

Frequency shifting adds a value to all frequencies in the in-
put spectra, as defined by the following expression for bin-frame
signals:

fout

h
n +

s

bw

i
= fin[n] + s (2)

where n is the bin index, s the frequency shift amount in Hz and
bw is the bin bandwidth in Hz. This has the effect of destroy-
ing any harmonic relationships that might exist in an input sound.
With partial track processing, it is possible to split the tracks into
one or more frequency regions and apply such transformation to
those regions, altering the timbre of an instrument, but not com-
pletely destroying its pitch impression. This is demonstrated in
the example below:

/∗ s p l i t t r a c k s a t 1500 Hz ∗ /
f t r k d , f t r k u t r s p l i t f t r k , 1500
/∗ s h i f t upper f r e q u e n c i e s by 150 Hz ∗ /
f s h f t t r s h i f t f t r k u , 150
/∗ combine s p l i t t r a c k s ∗ /
f t m i x trmix f t r k d , f s h f t

It is important to note that frequency scaling, as well as shift-
ing, is slightly simpler with partial tracks , if compared to bin-
frame signals. In fact, it only requires the scaling or shifting of the
partial frequencies, with not need for the bin-reallocation implied
in eqns. (1) and (2).

5.3. Cross-synthesis and other effects

A number of cross-synthesis effects are possible, from morphing
by interpolation of bin values (pvscross by Richard Dobson), to
channel vocoder-like amplitude substitution (pvsvoc) and partial
track cross-synthesis (trcross). A special signal combination
effect is also implemented by the pvsdemix opcode, which is
loosely based on the reverse-panning ADRess algorithm. This op-
code takes two signals, the left and right channels of a stereo mix
and separates the instruments in the mix according to their panning
position. The example below demonstrates its use. In it, the kpos

Figure 1: Comparison between original (grey) and transposed
(black) spectra. A good amount of formant preservation is clearly
seen in the picture.

variable controls the pan position for signal extraction (−1 to 1)
and kwidth controls the ‘search width’ around that position. The
demix operation works on the basis of 100 discrete pan positions
on each side of the stereo image.

For partial track signals, there are a number of specialised op-
codes that will manipulate and transform track data. As shown in a
previous example, it is possible to split and mix tracks (trsplit
and trmix), as well as isolate the highest and lowest-frequency
tracks (trhighest and trlowest) and obtain their current fre-
quency and amplitude values. It is also possible to realise some
special effects, such as residual extraction, by combining origi-
nal and track-resynthesis signals, in similar process to the one de-
scribed in [9].

Another effect that involves the transformation of both
frequency and amplitude is that of spectral blurring [10], based on
time-averaging the amplitude and frequency spectral functions.
The effect is implemented by the pvsblur opcode, which takes
in a ‘blur time’ parameter, defining the averaging period.

6. RESYNTHESIS

6.1. Overlap-add

This is generally the most efficient way of resynthesising bin-
frame amplitude-frequency data. It is performed by pvsynth
opcode. This takes the amplitude and frequency pairs, integrates
the frequencies to obtain the current phases, converts to rectangu-
lar data and applies an inverse DFT. The resulting time-domain
signal block is then ovelap-added to the correct time-aligned
position at the output. Partial tracks cannot be fed directly to
the overlap-add resynthesis, but can be converted into bin-frame
data. This conversion is performed by the binit opcode, which
generates a frame of amplitude and frequency bins based on the
track data input.

6.2. Additive synthesis

Additive synthesis can be applied to bin-frame data or partial
tracks, but, generally speaking, it is more suited to the latter.
Richard Dobson contributed an additive resynthesis opcode,
pvsadd, to the original set of fsig opcodes, which is reasonably

DAFX-277

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

fast, but producing a medium to low quality (due to the lack of
interpolation) resynthesis of bin-frame data.

Partial track additive synthesis can, however, be more effi-
cient and offers better quality. There are three additive opcodes in
Csound 5 for track data: using linear (tradsyn) and cubic phase
interpolation (sinsyn and resyn). Of the three, tradsyn is
the most efficient and flexible, as it depends only on amplitude and
frequency track data. The cubic-phase opcodes will have better fi-
delity in signal reconstruction, but will be slower, and in the case
of sinsyn, will not allow any type of frequency (or timescale)
transformations of the original analysis data.

7. CONCLUSION AND FUTURE PROSPECTS

The fsig framework in Csound5 and its spectral opcodes provide
a comprehensive, flexible and intuitive way to build frequencydo-
main effects computer instruments. It is expected that new opcodes
will be added to the exiting set. Also, it is important to mention
the work on a sliding DFT analysis/resynthesis method by ffitch
and Dobson [11], which will eventually be incorporated into the
system.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the work of Richard Dob-
son in the development of the fsig framework and opcodes for
Csound 4.13. It is also important to mention the contribution of
John ffitch and Istvan Varga, among others, to the development of
the Csound 5 infra-structure.

9. REFERENCES

[1] J. ffitch, “On the design of Csound 5,” in Proc. 3rd Linux
Audio Conf., 2005, pp. 37–42.

[2] V. Lazzarini, “Extensions to the Csound language: from
user-defined to plugin opcodes and beyond,” in Proc. of the
3rd Linux Audio Conf., 2005, pp. 13–20.

[3] V. Lazzarini, J. Timoney, and T. Lysaght, “Alternative
analysis-synthesis approaches for timescale, frequency and
other transformations of musical signals,” in Proc. Int. Conf.
on Digital Audio Effects (DAFx-05), Madrid, Spain, 2005,
pp. 18–23.

[4] V. Lazzarini, J. Timoney, and T. Lysagh, “Time-stretching
using the instantaneous frequency distribution and partial
tracking,” in Proc. Int. Comp. Music Conf. (ICMC’05),
Barcelona, Spain, 2005, pp. 14–27.

[5] V. Verfaille and P. Depalle, “Adaptive effects based on STFT,
using a source-filter model,” in Proc. Int. Conf. on Digital
Audio Effects (DAFx-04), Naples, Italy, 2004, pp. 296–301.

[6] X. Rodet and A. Röbel, “Real time signal transposition with
envelope preservation in the phase vocoder,” in Proc. Int.
Comp. Music Conf. (ICMC’05), Barcelona, Spain, 2005, pp.
672–675.

[7] J. ffitch, R. Bradford, and R. Dobson, “Sliding is smoother
than jumping,” in Proc. Int. Comp. Music Conf. (ICMC’05),
Barcelona, Spain, 2005, pp. 287–290.

[8] M. Dolson, “The phase vocoder: a tutorial,” Computer Music
J., vol. 10, no. 4, pp. 14–27, 1986.

[9] B. Vercoe, Csound: A Manual of the Audio Processing Sys-
tem. MIT Media Lab, 1986.

[10] T. Wishart, Audible Design. Orpheus the Pantomime, York,
1996.

[11] X. Serra, Musical Signal Processing. G. D. Poli and A.
Picialli and S. T. Pope and C. Roads Eds. Swets & Zeitlinger,
1996, ch. Musical sound modeling with sinusoids plus noise,
pp. 91–122.

DAFX-278

	1 Introduction
	2 The Fsig Framework
	2.1 Data Formats

	3 Spectral Analysis
	3.1 Phase Vocoder

	4 Instantaneous Frequency Distribution
	4.1 Partial track analysis

	5 Spectral processing
	5.1 Amplitude transformations
	5.2 Frequency transformations
	5.3 Cross-synthesis and other effects

	6 Resynthesis
	6.1 Overlap-add
	6.2 Additive synthesis

	7 Conclusion and Future Prospects
	8 Acknowledgements
	9 References

