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ABSTRACT

We present a method for simulating reverberation in real-time us-
ing arbitrary object shapes. This method is an extension of digital
plate reverberation where a dry signal is filtered through a physical
model of an object vibrating in response to audio input. Using the
modal synthesis method, we can simulate the vibration of many
different shapes and materials in real time. Sound samples are
available at the follwing website:
http://cynthia.code404.com/dafx-audio/.

1. INTRODUCTION

Historically, plate reverberation was used as a synthetic means to
simulate large room acoustics. It was one of the first types of ar-
tificial reverberation used in recording [1]. Despite the unnatural
sound produced as compared to large room reverberation, plates
were used extensively due to their relative low cost and small size.
Recently, researchers have looked for a means of digitally simu-
lating plate reverberation to recreate this unique analog recording
style [2].

Analog plate reverberation works by mounting a steel plate
with tension supplied by springs at the corners where the plate is
attached to a stable frame. A signal from a transducer is applied to
the plate, causing it to vibrate. This vibration is then sensed else-
where on the plate with contact microphones. A nearby absorbing
pad can also be used to control the near-field radiation.

Before the prevalence of physical modeling, plate reverbera-
tion was simulated by recording impulse responses of plates made
from different materials and different geometries. By convolution
of the input with the impulse response of choice, the resulting au-
dio could sound as though it was recorded through an actual plate.
Although this method is very efficient, it is limited by the number
of, and variations in, the recordings available.

Bilbao et al. [2] demonstrated a model for plate reverbera-
tion using a linear Kirchoff plate formulation. By using a phys-
ical model instead of convolution with impulse responses, they
could modify the geometry of the plate and input/output param-
eters. To simulate plate vibration, the model was discretized in
space and time using finite differences. One drawback of this
method, however, was the large performance requirements pre-
venting their model from running in real-time on an average digital
workstation.

Using the modal synthesis method, we can compute a plate
reverberation model in real-time and still allow for modifications
of the plate and input/output parameters. To achieve this perfor-
mance, we use the same finite element model as described in [3]

and apply forces using the discrete convolution integral method as
described in [4] and [5]. We implement this reverberation as an
effect plug-in that takes an audio stream as the input and produces
the sound of the object vibration as the output.

The main contributions of this paper are to extend the use of
the modal synthesis and the discrete convolution integral for the
rapid simulation of the motion of objects in response to arbitrary
loading profiles. We give examples of using this technique for the
deformation of linear shell models of simple and complex shapes
in a real-time synthesis environment.

2. METHODS

To briefly review the steps in obtaining a resonator bank from a
arbitrary geometry we begin by discretizing the Mindlin/Reissner
thin plate equations as found in [6] and [7]. This plate model
differs from Kirchoff plate theory by adding the effects of shear
deformation across the plate thickness. This additional motion
allows for modeling thin and thick plates. We also extend the
plate model to include membrane forces essentially creating a shell
model from planar elements as described in [8]. The planar shell
elements can be made of quadrilateral or triangular patches.

This element allows for five degrees-of-freedom at each vertex
as demonstrated in Figure 1. In-plane displacement is captured by
the degrees-of-freedom, u and v. For out-of-plane motion, bend-
ing is represented by adding the rotational degrees-of-freedom,
θx = dw

dx
and θy = dw

dy
, about the x and y axes, as well as an out-

of-plane displacement, w. This formulation leads to the following
element stiffness representation that accounts for membrane Km,
shear Ks and bending stiffness Kb (Equation 1).

ke =

Z
Ωe

BT
b DbBbdΩ + (1)Z

Ωe

BT
s DsBsdΩ +Z

Ωe

BT
mDmBmdΩ

where D represents the constitutive matrices for each stress condi-
tion, N represents the interpolating functions and B represents the
operator applied on these functions. The exact entries in N and B
depend on the number of nodes per element and the order of the
interpolating polynomials used.

Similarly, the element mass matrix is represented as:

me =

Z
Ωe

NT NdΩ (2)
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Figure 1: Normal, shear and bending forces and moments.

A more detailed discussion of the exact entries in these matri-
ces is given in [6] and [7].

We sum the element matrices, ke and me together to form an
overall algebraic representation of the system. The result is the
canonical representation for the second order partial differential
equation of motion:

Mü + Du̇ + Ku = F (t) (3)

where M is the matrix representing the distribution of mass in the
system, D is a measure of damping, K is the stiffness matrix and
F (t) is the force applied to the object over time. This equation
expresses the balance of forces generated by the acceleration, ve-
locity and displacement of the object. In this form, the system
of equations for each degree-of-freedom (DOF) are coupled and
thus the solution involves manipulation of these large system ma-
trices. Alternatively, modal analysis seeks to decouple this system
into single DOF oscillators. For a detailed description of the modal
synthesis method as well as a comparison with other physical mod-
eling techniques see [3] and references therein.

Without damping, the procedure for uncoupling these equa-
tions is straightforward using the general eigenvalue decomposi-
tion Kx = λMx. However, with damping, decoupling these
equations requires some assumptions to be made [9].

In many finite element representations, there is no straight-
forward method of generating the damping matrix D. “A ma-
jor reason for this is that, in contrast with inertia and stiffness
forces, the physics behind the damping forces is in general not
clear. As a consequence, modelling of damping from the first prin-
ciples is difficult, if not impossible, for real-life engineering struc-
tures. The common approach is to use the proportional damping
model, where it is assumed that the damping matrix is proportional
to mass and stiffness matrices [10].” This proportionality is repre-
sented as:

D = α1M + α2K (4)

where α1and α2 are real scalars. This damping model is also
known as Rayleigh damping or classical damping. Modes of clas-
sically damped systems preserve the simplicity of the real normal
modes as in the undamped case.

The main limitation of the proportional damping approxima-
tion comes from the fact that the variation of damping factors with
respect to vibration frequency cannot be modelled accurately by

using this approach [10]. Research into the error introduced by as-
suming proportional damping is ongoing and current results seem
to suggest that there may never be one static assumption that ac-
curately diagonalizes a coupled damped system [11]. For now we
use the proportional damping model for its simplicity.

Substituting back into Equation 3, we have:

M(ü + α1u̇) + K(α2u̇ + u) = F (t) (5)

We assume a particular solution of the form:

u = Zv (6)

where Z is the matrix of eigenvectors that diagonalizes the system.
Substituting back into Equation 3 and pre-multiplying by ZT we
have:

ZT MZ(v̈ + α1v̇) + ZT KZ(α2v̇ + v) = ZT F (t) (7)

This equation simplifies to:

v̈ + (α1 + α2ω
2)v̇ + ω2v = ZT F (t) (8)

Equation 8 represents the uncoupled bank of resonators oscillating
at the natural frequencies determined by the eigenvalues of the sys-
tem. By solving each equation for u we can represent the response
at any location on the object at any time. Therefore, to solve for
the motion at the pickup locations we weight the contributions of
the various modes on the spatial positions of interest.

To apply the input to the system we know that in general, any
force-response history can be represented as a succession of in-
finitesimal impulses. We also know that the response of the system
to such a force profile can be built up from the response to each in-
finitesimal impulse individually [12]. Therefore we can represent
a discrete time excitation as a combination of unit step functions:

f(n) =

∞X
k=0

f(k)δ(n− k) (9)

where f(n) is the applied force and δ is the Dirac Delta function.
The response to this discrete-time excitation is then:

x(n) =

∞X
k=0

f(k)g(n− k) =

nX
k=0

f(k)g(n− k) (10)

where g(n) represents the discrete-time impulse response of a lin-
ear time invariant system to the unit impulse δ(n). Equation 10
essentially approximates the response x(n) in the form of a con-
volution sum, the discrete counterpart of the convolution integral.
The convolution or Duhamel’s integral is a means of finding so-
lutions to linear, nonhomogeneous, second order, ordinary differ-
ential equations with constant coefficients. The nonhomogeneous
part of the equations comes from the forcing function and depend-
ing on the complexity of this term, the integral may or may not
have a closed-form solution [13]. The convolution integral then, is
a means of finding the solution to the original system by summing
the individual impulse responses.

Instead of evaluating the non-recursive convolution sum as in
Equation 10, DiFilippo and Pai [4] use a different technique to
solve for the response to non-harmonic excitation. They use a re-
cursive method for approximating the response at the current time
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step by scaling the value at the previous time step and adding that
to the response to the new impulse. Thus, for each resonator:

xn(0) = anf(0) (11)

xn(k) = e
i Ωn

Fs xn(k − 1) + anf(k) (12)

where Ωn is the natural frequency and Fs is the sampling fre-
quency and:

Ωn = ωn + idn (13)

dn =
ωn

2π
π tan(φ) (14)

where φ is an internal damping factor. Thus the overall sound
generated at time t is:

s(t) = Re
“X

xn(k)
”

(15)

In this way, the incoming audio signal represents an arbitrary dis-
cretized force profile applied to the resonators interpolating the
input position.

2.1. Software Implementation

The rendering algorithm works by first performing the modal de-
composition and then filtering the incoming audio through the res-
onator bank produced. The time to compute the modal decomposi-
tion depends on the number of modes required and the number of
elements in the finite element model. We achieve real-time perfor-
mance by first computing the decomposition, which can take sev-
eral seconds. We then evaluate Equation 15 for each audio sample.
s(t) is computed in a parallel (or vectorized) fashion as each mode
is linearly independent.

The user interface for the plug-in loads an object geometry
and displays the surface for specifying the input and pickup loca-
tions. The left portion of the user-interface allows for modifica-
tion of the material parameters, object scale and plate thickness.
These parameters are adjusted before modal decomposition. The
right portion of the user interface has controls for the audio render-
ing parameters such as the frequency scaling and resonator decay.
These parameters do not require reanalysis, instead they are ap-
plied to the bank of resonators as audio is rendered. There is also
control for the number of resonators used for simulation. Using
more resonators creates a fuller tone but requires more computa-
tion.

3. RESULTS

The following examples were computed using one processor of a
dual 2.5GHz Power PC G5. The plug-ins were hosted using Apple
Inc.’s AULab application and audio input was streamed using the
built-in AUFilePlayer component. In each example, the points in
green represent the input position and the points in red represent
the pickup locations.

For the first example, we load a simple plate model as shown in
Figure 2 (top). The model has 100 elements, and the time to com-
pute the decomposition into 485 modes was 0.65 seconds. Figure 3
(top) shows the waveform and Figure 4 (top) shows the spectro-
gram of the incoming signal applied to the plate. Figure 3 (middle)
shows the resulting waveform and Figure 4 (middle) shows the fre-
quency profile generated for the left channel. Immediately, one can
see the effect of reverberation on the resulting audio. Where there

were once discrete peaks, the audio now blends together. More-
over, the frequency spectrum is low-pass filtered through the num-
ber of modes used in the synthesis algorithm.

We can use also this method on novel shapes and explore the
effect on the resulting audio. Figure 2 (bottom) shows a more
complex shell surface with arbitrary input and output locations.
This model had 500 elements and took 24.5 seconds to compute
all 1548 modes. Using the same input profile as Figure 3 (top), we
can compare the resulting waveform and frequency spectra when
rendering through this new geometry (Figure 3 (bottom), Figure 4
(bottom)).

Notice that in Figure 4, the output through the resonator bank
has less of the high frequency components than the original sig-
nal. This is to be expected as the resonant frequencies of the set
of resonators and user-selected damping values will not exactly
match the original signal. In some sense, the original signal acts to
imprint its frequency spectrum on the resonator bank roughly but
need not exactly match.

For both of these examples, simulating object vibration us-
ing 20 modes consumed around 1.4% CPU; 100 modes consumed
roughly 3%; 1000 modes consumed 22%; and 3000 modes used
84% for two channels of stereo processing. These results sug-
gest that for up to 1000 modes, the method performs well. For
the 3000 or so resonators needed for non-metalic, perceptually re-
alistic sounding reverberation [14], the real-time CPU demand is
considerable when using only one processor.

4. DISCUSSION

In this investigation we have demonstrated a method for simulating
reverberation using the modal synthesis method. By using a phys-
ical model of a vibrating object, we are free to use any arbitrary
geometry and material.

For plates with very thin cross-sections, it is likely that large
applied forces will cause large plate deformation. When this hap-
pens, linear models can no longer be used. As a result, techniques
such as linear modal superposition must be abandoned for nonlin-
ear modal analysis or nonlinear models and numerical integration.
Other researchers are actively investigating the importance of these
nonlinearities in plate reverberation models [15].
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Figure 2: Top: A traditional plate reverb geometry. Bottom: A complex reverb surface.
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Figure 3: Top: Incoming audio signal applied to the plate. Middle:
Simple plate vibration. Bottom: Complex surface vibration.

Figure 4: Top: Frequency profile of the force profile. Middle:
Simple plate vibration. Bottom: Complex surface vibration.

DAFX-6


	1  Introduction
	2  Methods
	2.1  Software Implementation

	3  Results
	4  Discussion
	5  Acknowledgements
	6  References

