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ABSTRACT 

This article discusses harmonic sinusoid modeling. Unlike standard 
sinusoid analyzers, the harmonic sinusoid analyzer keeps close 
watch on partial harmony from an early stage of modeling, there-
fore guarantees the harmonic relationship among the sinusoids. The 
key element in harmonic sinusoid modeling is the harmonic sinu-
soid particle, which can be found by grouping short-time sinusoids. 
Instead of tracking short-time sinusoids, the harmonic tracker oper-
ates on harmonic particles directly. To express harmonic partial 
frequencies in a compact and robust form, we have developed an 
inequality-based representation with adjustable tolerance on fre-
quency errors and inharmonicity, which is used in both the group-
ing and tracking stages. Frequency and amplitude continuity crite-
ria are considered for tracking purpose. Numerical simulations are 
performed on simple synthesized signals.    

1. INTRODUCTION 

The standard sinusoid model [1,2] expresses an audio signal as the 
combination of slow-varying sinusoids plus a noise. Although the 
sinusoids clearly model the partials of pitched sounds, it has not 
been made explicit. Due to the lack of emphasis on the relation-
ship among partials, the standard sinusoid tracking methods cannot 
guarantee harmonic consistence. Accordingly, the results do not 
provide a solid base for extracting pitched events. On the other 
hand, matching pursuit based methods have been proposed to ex-
tract harmonic structure from music [3, 4]. However, these methods 
lack the freedom of representing time-varying frequency within a 
single object, and tend to represent a harmonic event with time-
varying pitch as multiple events. To overcome these difficulties, we 
apply the harmonic constraint, which is more flexible than match-
ing pursuits, in an early stage of sinusoid analysis, preferably be-
fore the tracking of partials. This upgrades sinusoid modeling to 
harmonic sinusoid modeling. The frameworks of sinusoid and har-
monic sinusoid analyzers are compared in Figure 1. The key ele-
ment of the sinusoid model, the short-time sinusoid atom, becomes 
harmonic particle. The two main parts of the sinusoid analyzer, i.e. 
the sinusoid detector and the partial tracker, are replaced by har-
monic particle detector and harmonic sinusoid tracker, respectively. 
Compared to standard sinusoid models, the harmonic model pro-
vides a higher-level description of pitched events, which enables an 
extensive range of analysis and synthesis operations.  

A harmonic sinusoid is described by sinusoidal parameters 
{ , , | 0≤l<L, 1≤m≤M}, where L is the number of frames, 

M is the number of partials, ( , ) is the instantaneous 
frequency (amplitude, phase angle) of the mth partial at the lth frame. 
By fixing m we get a description of the mth partial; by fixing l we 
get a description of the harmonic particle at the lth frame. 
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This article is arranged as follows. Section 2 discusses the 
grouping of sinusoid atoms into harmonic particles. Section 3 dis-
cusses the harmonic sinusoid tracker. Section 4 presents some nu-
merical results of the algorithms, followed by a brief conclusion in 
section 5. 
 

 
Figure 1:Comparing standard and harmonic sinusoid analyzers 

2. HARMONIC GROUPING WITH INEQUALITIES 

We assume that the short-time sinusoid atoms have already been 
detected at frame l. This is accomplished by spectral peak picking 
[1] and sinusoid parameter estimation [2,5]. The harmonic group-
ing module collects sinusoid atoms, whose frequencies can be re-
garded as harmonic, from this pre-detected set. Perfect harmony is 
characterized by all partial frequencies being multiples of a funda-
mental frequency. Let  be the frequency of the mth partial, then 
perfect harmony implies . However, this does not pro-
vide a practical way to spot harmonic particles from the pre-
detected peaks, mainly for two reasons: 1) the frequency estimates 
carry errors, and 2) perfect harmony is not always guaranteed. 

mf
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2.1. Inharmonicity 

The 2nd problem, known as inharmonicity, is best known for free-
vibrating strings. [6] gives an example of explicitly expressing the 
partial frequencies as a function of fundamental frequency f1 and a 
stiffness coefficient B: 
  (1) 2/1211 )]1(1[),( −+⋅= mBmfBff m
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B is a constant for a given string. Strictly speaking (1) only ap-
proximately describes the inharmonicity due to string stiffness [7], 
and may still carry an error. However, it is reasonable to assume 
that this error is so small that it can be “absorbed” into the fre-
quency estimation error.  

2.2. Frequency estimation error 

The frequency estimate of a partial can be very accurate when its 
pitch is stable and the partial is spared of noise and disturbance. In 
real-world recordings, however, the pitch may have smooth or 
repetitive variations fast enough to affect frequency estimates, and 
noise and concurrent sinusoids do disturb sinusoid analyzers. The 
frequency estimate error depends on the estimator type and the 
signal behaviour, the latter being highly unpredictable. The estima-
tion of the error bound is out of the scope of this paper. However, 
we always assume that we can find an error bound  for . Let 

the frequency estimate be , then  

m∆ mf
mf̂

  (2) mmm ff ∆<− |ˆ|

The error bound  does not have to be tight. In most cases it is 
reasonable to set  at 1 spectral bin for low partials, and a few 
more for high partials if the pitch variation is fast. 

m∆
m∆

Combining (1) and (2) we get 

  (3a) mmmm fmBmff ∆+<−+⋅<∆− ˆ)]1(1[ˆ 2/121

Equation (3) relates the frequency estimates to the two parameters 
of the partial frequency model (1), i.e. f1 and B. If the frequency 
estimate satisfies (3a) for some f1 and B, we allow it to be the mth 
partial for this f1-B pair. 

2.3. Harmonic partial frequencies 

Now we address the following problem: given frequency estimates 
of M partials, , , …, , where m1

th, m2
th, …, mM

th are 
the partial indices, can they be grouped as harmonic partials? The 
answer is straightforward: if there exists f1 and B so that (3a) holds 
for all the frequency estimates, then they can be regarded as har-
monic partials. In other words, let the solution set of  
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be R, then the given frequencies can be regarded as harmonic par-
tials if and only if R≠Φ. However, (3b) is a non-linear inequality 
system, which makes R hard to represent in the f1-B plane. We 
linearize (3b) using the substitutions 

 ,  (4) 21 )( fF = 21)( fBFBG ==
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solution of (5) is R in the F-G plane. We impose additional con-
straints on the allowable ranges for f1 (e.g. 0~0.5) and B (e,g 
0~0.001). These constraints are linear in the F-G plane. R, if not 
empty, is always a convex polygon. We represent R using a list of 
its N vertices in the (F-G) plane, i.e. {N; (Fn, Gn), n=0, 1, …, N-1}. 
To solve for R we initialize it by presetting the f1 and B ranges (so 
R is a close polygon from the beginning), and apply the constraints 
one after another. Each constraint chops off the part of R outside a 
pair of parallel lines specified by . The more partial 
frequencies are used, the smaller becomes R. 

12 −= mk
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R represents a range for f1 and B so that those points, and only 
those points in R, can be the f1-B pairs to associate the given fre-
quencies with. We directly have 
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That is, the span of R on the F axis determines the precision of f1, 
and the angular sweep of R, with respect to (0,0), determines the 
precision of B. The smaller R is, the more precise are f1 and B. The 
mth partial frequency is located by 
 ,  (7a) )()( RffRf mmm

+− <<
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(7a) provides an estimation of  with a better precision than ∆m. 

However, most of the time we need (7a) for judging whether  
is compatible with R. If R is derived without using the mth partial, 
then  can be regarded as an additional harmonic partial, as long 
as 

mf
mf̂

mf̂
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2.4. Grouping partials by harmony 

The partial grouping based on the inequality representation R is 
simple in principle. To find a harmonic particle, one 

1) initialize R, find the first partial; 
2) use the found partial to update R; 
3) use R to compute the range to look for the next partial; 
4) find the next partial; 
5) if there are still partials to find, go back to 2. 

Notice that here the “first partial” refers to the first available 
partial: it does not have to be the fundamental partial, but may be 
any partial whose partial index is known. Figure 2 shows how R is 
updated for a perfect harmonic particle with neither frequency 
estimation error nor spurious peaks. We choose f1=0.1 and 
∆m=0.01, 0≤B≤0.05. R obtained by using the lowest 1, 2, 3, 4 par-
tials are shown in (a), (b), (c), (d) respectively. 

In more practical cases there are three complications. First, we 
do not have a range to look for the first partial; second, correct 
partials may not appear as a spectral peak, and therefore cannot be 
located; third, multiple partials may be found in step 4. We discuss 
them in reverse order. 

 

 DAFX-2 



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007 

 
Figure 2: Updating R using found partials 

2.4.1. Competing peaks 

If more than one atom lies in the searching range for the mth partial, 
they become competing peaks. A peak that competes with the true 
partial may be either a spurious peak, or a partial of a concurrent 
event. We can derive a candidate harmonic particle from every 
peak, and choose one from these candidate particles that is optimal 
in some sense. To do this we need a criterion, i.e. a scoring func-
tion, to compare two harmonic particles. The strength-harmony 
criterion is based on two assumptions: 

(1) most spurious peaks are weak; 
(2) correctly captured partials tend to have less departure from 

the model frequencies. 
From assumption (1) we derive the strength criterion. If the 
strength of particle p1 is higher than that of particle p2, then p1 is 
given a higher score on the strength side. The score can be the total 
amplitude calculated by summing up partial amplitudes, or the total 
partial SPL calculated by summing up the logarithms of partial 
amplitudes, or some other more perceptual measures. We always 
assume it can be written in an additive form, i.e. 
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Assumption (2) favours partials with more predictable frequencies. 
As said in 2.2, the error bounds ∆m used for harmonic grouping are 
not tight. Using large error bounds provides good robustness 
against frequency estimation errors. However, it is a main reason 
that we have competing peaks. To make up for this, we introduce 
the harmony criterion based on the departure of frequency esti-
mates from the model. The departure of the mth partial frequency 
estimate from model R is  mf̂
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where  and  are defined by (7b). We also assume 
that the harmony score sf can be written in an additive form: 
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The dependency of  on  allows us to design a harmony 

score that is consistent with   in some sense. Let ∆m be a 
maximal allowable frequency departure. We choose to assign a 
100% penalty to  if ≥∆m, and no penalty if 

=0, i.e. 
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Between =0 and ≥∆m we assign a partial pen-
alty, like the linear function in (11). The final score for evaluating a 
harmonic particle is 
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The number of candidates grows whenever we have competing 
peaks. However, at any stage we can combine two candidates p1 
and p2, if 1) s1>s2 and 2) R1⊇R2. In particular, if the two peaks with 
frequency estimates  and are competing for the mth partial, 

> , then we can immedi-

ately discard candidate 2 if a) > and , or 

b) < and . Finally the candidate har-
monic particle with the highest score is selected. 
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2.4.2. Unfound partials 

In addition to the spurious partial problem, a true partial may fail to 
appear as a spectral peak if 1) it is too weak, or 2) it is masked by 
noise. A partial being unfound is not a problem by itself, as its 
absence does not affect R or the searching of other partials. The 
real problem is that we do not know whether a partial appears as a 
spectral peak or not. Even when a partial does not produce a peak, 
it is possible for spurious peaks to appear where the partial is ex-
pected. If this were the case and the spurious peak were used to 
update R, the searching range of further partials would be biased. A 
safe way to deal with the unfound partial problem is to always 
reserve a candidate for “unfound partial”, even when one or more 
atom have been located. In fact this is necessary only when the size 
of R is relatively large and the located atom has large frequency 
departure, in which case it substantially reduces the size of R. Un-
found partials do not contribute to  or .  )ˆ( 1

m
a as ),ˆ( 1 Rfs mm

f

2.4.3. Unknown range for the first partial 

The frequency range to look for a partial is calculated from R. 
Once the first partial has been located, R can be updated with its 
frequency estimates so that the search range for any further partial 
is reduced to no more than a few bins. This, however, does not 
apply to the first partial. In many cases a small frequency range of 
the first partial can be provided externality (s.a. by a pitch detector, 
a score, or a user), or by a harmonic particle in an adjacent frame 
during the tracking stage (see section 3). However, if there is no 

(a) (b) 

(c) (d) 
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such information available, we can run an exhaustive search 
through the pre-detected atoms. That is, we start with a strong 
peak, assume this is the 1st, 2nd, …, mth, … partial, and derive a 
harmonic particle candidate from each assumption; then we com-
pare these candidates with some criterion to choose the best one. If 
the audio frame has a single pitch, the found particle shall represent 
this pitched event. If the audio frame has multiple pitches, the 
found particle is interpreted as a predominant harmonic particle, 
representing one of the pitched events.  

2.5. Estimating f 1 and B 

The polygon R represents our knowledge of f1 and B accumulated 
from the frequency estimates involved in (3b). f1 and B do not ap-
pear explicitly during harmonic grouping or harmonic partial track-
ing. (6) estimates the two parameters as intervals. The sizes of the 
intervals are determined by the frequency estimates  and the 
error bounds .  As mentioned before, we use relatively large 
error bounds to enhance robustness. This results in a large R and 
imprecise f1 and B. Accordingly, more precise estimates of f1 and B 
can be obtained by reducing the overlarge error bounds. Let θ be a 
number between 0 and 1. By setting the error bound associated 
with the mth partial to , we can get an f1-B range R(θ). Appar-
ently R(1)=R, and the size of R(θ) (hence the precision of f1 and B) 
is monotonous regarding θ. Since the size of R(0) is 0, we know 
that there exists η, 0≤η<1, so that the size of R(η) is 0, and ∀θ>η, 
the size of R(θ) is positive. In other words, by reducing θ from 1 to 
η, we shrink R(θ) from R to a zero-sized polygon. We can further 
prove this zero-sized polygon to be a single point. Therefore R(η) 
provides estimates of  f1 and B in the precise form. 
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We consider the constraints (3b) with argument θ. Given a 
point (f1, B) R, it lies on R(θ) if and only if it satisfies the co∈ n-
straint 
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θ(f1, B) is the minimal value of θ for R(θ) to contain the point (f1, 
B). We define  
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θ(R) satisfies 1) for any θ<θ(R), R(θ) is empty; 2) for any θ>θ(R), 
R(θ) is non-empty. Therefore we have η=θ(R). The model parame-
ters can be estimated at η: 
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This is a minimal-maximum problem. For the stiff string model this 
becomes 
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We can then calculate f1 and B by the inverse mapping of (4) 
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),(  the relative frequency estima-

tion error. Equations (15a) show that by shrinking R to zero-size, 
we locate the parameter pair that minimizes the maximal relative 
frequency error of all the given estimates.  

The implementation of the minimal-maximum search greatly 
benefits from the fact that the gradient ∇em has constant direction. 
Using this property we can show that if (F,G) R∈  is a local mini-
mal-maximum of em, then it is also the minimal-maximum in R. In 
other words, the minimal-maximum of em is unique. A key proposi-
tion for finding the minimal-maximum is given below. 

Proposition 1: if (F0, G0) R is not a minimal maximum, and∈  
= =…=  are K equalling maxima at (F0, G0), K>2, then 

there exist l1 and l2, 1≤l1, l2≤K, so that ∀1≤k≤K, along the de-
creasing direction of = , -  is non-increasing. 

1e 2e Ke

1le 2le ke 1le
Proposition 1 ensures that we can always search down a curve 

=  without losing track of the maximum. The search come to 
a stop when there is another l3 so that = = . If this is not 
the minimal-maximum, we continue the search on curve =  or 

= , in the decreasing direction. It can be shown that the mini-
mal-maximum can be reached in finite number of steps. 
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2.6. Detection in the presence of other harmonic particles 

In polyphonic music we have multiple concurrent pitched events. It 
is usual that we have multiple harmonic particles in the same 
frame. In [7] the detection of multiple pitches is addressed as itera-
tively detecting and removing pitched events. In harmonic sinusoid 
modeling we can also detect multiple harmonic particles in a simi-
lar iterative way. Instead of removing detected events, we ignore 
the spectral peaks that are already collected in other harmonic par-
ticles. The harmonic grouping process remains the same. We are 
able to ignore certain peaks by virtue that unfound partials do not 
critically affect harmonic grouping. However, this makes it easier 
for spurious peaks to be collected. We split the harmonic grouping 
in two stages. In the first stage, we skip a partial whenever there is 
an already used peak in its searching range; in the second stage, 
with R already reduced to a small size, we review these skipped 
partials. If the used peak is still within the searching range, and it is 
the only peak within the range, then it is appointed to the new par-
ticle (as a shared peak). However, if there is another peak within 
the range, we take the following actions. 

Let the partial index, frequency and amplitude estimates, and 
the f1-B range of the used peak 1 be m1, ,  and R1, of the un-

used peak 2 be m2, ,  and R2.  We define 
1̂f 1â

2̂f 2â

  (16) ))ˆ(),,,ˆ(()ˆ(),,ˆ,ˆ( asRmfdsasRmfas a
m
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and compare +  with 

+ .  If the former is larger, we 
collect peak 2 into the new harmonic particle; if the latter is larger, 
we replace peak 1 in the old harmonic particle with peak 2, and 
collect peak 1 into the new harmonic particle. 
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3. TRACKING HARMONIC PARTICLES 

Let pl be a harmonic particle at the lth frame in time, with the f1-B 
range Rl. Regarding f1 and B of the lth and (l+1)th frame, we assume 
that 
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(17) is the harmonic version of the frequency jump limiting used 
for sinusoid tracking [1]. The first line says that the inharmonicity 
feature remains constant during the same event, and the second line 
says that the pitch is not allowed to vary too fast. Given Rl and (17), 
we have the following inequality for the mth partial at the (l+1)th 
frame: 
  (18) ),)((),)(( 1
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This provides a range to look for any partial in the (l+1)th frame. To 
find a harmonic particle at frame l+1 as the successor of pl, we 
initialize Rl+1 by expanding Rl along the f1 axis by ∆l on both sides, 
i.e. 
  (19) }),(),,(|),{( 11

1 llll RBfBfR ∈+∆∆−∈∃=+ δδ

It can be shown that this expansion does not preserve the linearity 
of the sides of polygon R, so the Rl+1 initialized strictly by (19) is 
no longer a polygon in the F-G plane. However, as an approxima-
tion, we can initialize Rl+1 by expanding the vertices of Rl using (19) 
then take the convex hull (Figure 3). We can show that by taking 
this approximation Rl is expanded a little more than the amount in 
(19) near the sides, i.e. we are allowing a little more pitch variation 
at certain B’s. This is not a big problem since ∆l itself is not re-
quired to be very precise. 

 

Figure 3: Expanding R to allow pitch variation 

3.1. Short-term continuity 

Once Rl+1 has been initialized, the harmonic particle searching can 
be carried out using the method in section 2. However, with the 
knowledge of the predecessor particle, we are able to include short-
term continuity criteria in the harmonic grouping stage by compar-
ing the current candidates to the previous harmonic particle.  

3.1.1.  Frequency continuity 

The frequency continuity has already been used to initialize Rl+1. 
However, we may have competing pitches within the allowed pitch 
jump. This is comparable to completing peaks in standard sinusoid 
modeling. In sinusoid modeling the successor is often chosen to be 
the peak with the smallest frequency jump [1,2] or the peak that 

gives the smoothest frequency contour [8, 9]. Similarly, in case of 
competing pitches, we choose to favour small pitch jumps. This is 
implemented using a pitch continuity score 

 
p

l

ll
p

fflls
∆
−

−=+ +
11

11)1,( , p≥1 (20) 

The exponent p tunes the balance of small and large pitch varia-
tions. The less is p, the less we tolerate large pitch jumps. 

3.1.2. Amplitude continuity 

Short-term amplitude continuity compares the partial amplitudes of 
candidate harmonic sinusoids of frame l+1 to those of frame l. We 
measure the similarity of two amplitude vectors  and 
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sa combines two types of continuities: the total amplitude continu-
ity (sa)1, and the amplitude distribution continuity (sa)2. (sa)1 is a 
measure of the change in total volume; (sa)2 is a measure of the 
change in short-time timbre. 0≤(sa)1≤1, 0≤(sa)1≤1. 

However, we have observed that if the frequency has fast varia-
tion, the short-time amplitude continuity (21a) becomes question-
able, especially when the event has a formant structure. This is due 
to the large variation of the short-time timbre that accompanies 
pitch changes. In this case we use a long-term amplitude continuity 
criterion, as follows. 

G

Rl+1 
Rl 3.2. Long-term amplitude continuity 

Long-term amplitude continuity criterion is useful for events in-
volving repetitive pitch variation. It assumes that the amplitude 
distributions of two frames on the same event are similar if its 
pitches in these two frames are close. Therefore instead of compar-
ing the amplitude distribution with the frame closest in time, we 
compare it with the frame closest in frequency. Let the current 
harmonic sinusoid track contain frames 1, 2, …, l, with fundamen-
tal frequencies , , …, , and let  be a candidate funda-

mental frequency of the (l+1)th frame. We select 

1
1f

1
2f

1
lf

1
1+lf

l  between 1 and l 
so that 1

lf  is closest to , i.e. 1
1+lf

F

 11
11

minarg kllk
ffl −= +≤≤

. (22a) 

We define the long-term amplitude distribution continuity score as 
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(21a) can then be replaced by 
 ( ) ( )31)1,( aaa sslls =+  (22c) 
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Although in (21a) and (22c) we are combining the two types of 
amplitude continuity measures by direct multiplication, it is not 
compulsory. We can use any other combination methods as long as 
0≤sa≤1, with the identity sa=1 for identical amplitude vectors. 

3.3. Extending harmonic sinusoids 

Let p1,1, p1,2, p1,3, … be harmonic particles detected at frame 1, and 
h1, h2, h3, … be the harmonic sinusoids these particles are associ-
ated with. Now we look at the task of finding successor particles to 
p1,1, p1,2, p1,3, …, so that h1, h2, h3, … can be extended 1 frame 
forward. This task differs from the detection of concurrent har-
monic particles (section 2.6) in that the particles detected in frame 
l+1 must satisfy additional continuity with the previous frame. 
Therefore, instead of using (12) to compare competing results, we 
use  
 )1,()1,()1,( +++=+ llsllslls ap  (23) 

where the two addends are defined by (20) and (21a) (or (22c)). 
Like the detection of concurrent harmonic particles, the extension 
of concurrent harmonic sinusoids is performed in an iterative way, 
i.e. after the first harmonic particle is detected, additional harmonic 
particles are detected in the presence of the already found ones. The 
searching method remain the same, except for the scoring function 
(23) and the initialization of Rl+1,k with Rl,k, k=1, 2, …. 

If a successor for pl,k cannot be found at the (l+1)th frame, or 
any successor found for pl,k cannot meet a minimal continuity 
score, then hk is terminated at frame l. This is the harmonic version 
of the death of a sinusoid track. 

3.4. Forward harmonic sinusoid tracking 

Forward harmonic sinusoid tracking creates, continues, and kills 
harmonic sinusoids in the forward procession of time. It takes pre-
detected spectral peaks as input, and outputs harmonic sinusoids.  

The forward harmonic particle tracking proceeds as follows. 
Let p1,1, p1,2, p1,3, … be harmonic particles detected at frame 1. We 
associate each of them with a harmonic sinusoid, say h1, h2, h3, …, 
i.e. p1,k is hk constrained at the 1st frame. For l=2, 3, …, we do the 
following. 

1) find the most continuous successors for the existing har-
monic sinusoids (section 3.3); 

1.1) initialize Rl,1 with Rl-1,1, detect harmonic particle pl,1; 
1.2) for k=2, 3, …, do 1.3; 

1.3) initialize Rl,k with Rl-1,k, detect harmonic particle in 
the presence of pl,1, pl,2, …, pl,k-1 using continuity score 
(23), or terminate hk in case of failure; 

2) find harmonic particles in the presence of the harmonic par-
ticles detected in 1), initialize a new harmonic sinusoid with 
each new harmonic particle. 

3.5. Post-tracking parameter estimation  

Pre-detected short-time sinusoid atoms are usually estimated using 
a stationary sinusoid assumption. However, accurate parameter 
estimation is possible only when the estimator considers parameter 
dynamics within a frame. Rather than estimating local dynamics 
from the spectrum, such as in [10], we access the dynamic informa-
tion from the sinusoid tracks [11]. Post-estimation proceed in an 
iterative way. In each iteration, we do the following: 

1) interpolate the frequency estimates using a cubic spline;  
2) reestimate amplitudes using the interpolated frequency with  
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where wn (0≤n<N) is a low-pass window function and xn is the 
signal being analyzed;  
3) interpolate the amplitudes using a cubic spline; 
4) reestimate the frequencies by finding an approximate solu-
tion of  
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where . fmndttf
n

mmn
ˆ)(2)( −−=∆ ∫ πϕ

More details about (24) and (25) can be found in [11].  

4. EXPERIMENTAL RESULTS 

We run numerical tests on synthesized signals, for which the 
ground truth is available. The synthesized samples are 44100 points 
long. Amplitude and frequency variation rules include constant, 
exponential, and sinusoid-modulated variations. Stiff string model 
is applied to constant-frequency sounds. Partial amplitudes are 
designed to follow a 1/m rule, i.e. amplitudes are reciprocal to the 
partial index. We use the frame size 1024 and hop size 512. The 
fundamental frequency ranges from 5 bins to 40 bins 
(1bin=1/1024), spanning 3 octaves. We sample this range every 
semitone, i.e. at 37 different pitches. White noises are added to the 
test sampled optionally. 

We measure two types of error: a harmonic grouping error and 
a waveform model error. The harmonic grouping error is measured 
by the number of correctly collected short-time sinusoid atoms 
divided by the total number of atoms. The waveform model error is 
measured by a signal-to-noise ratio, where the noise refers to the 
difference between the original source waveform and the resynthe-
sized harmonic sinusoid waveform. The errors are measured inde-
pendently for each test sample, which are then averaged over 
groups of samples. 

4.1. Constant harmonic sinusoids 

This group includes 925 test samples, with the 37 fundamental 
frequencies (f1) from 5bins to 40 bins, 5 stiffness coefficients (B) 
from 0 to 0.0008, and 5 signal-to-noise ratios (SNR) from -15dB to 
45dB. Given the three parameters, the test signal is synthesized by 

 n

M

m

mm
n rnBff

m
x

f
M ++=⎥

⎦

⎥
⎢
⎣

⎢
= ∑

=1

1
1 )),(2cos(1,35.0 πϕ  (26) 

The phase angles  are taken at random. The noise r has been 
amplified to meet the selected SNR. The results are given Table 1. 
For stationary sinusoids the modeling is very successful, with more 
than 99.9% sinusoid peaks correctly collected into the partials 
when the SNR is above 15dB. We constantly get slightly better 
results for higher stiffness coefficients. This is due to the constraint 
of B above zero, which makes it easier to collect spurious peaks 
with a positive frequency departure than a negative one. 

mϕ
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 SNR 
B  -15dB 0dB 15dB 30dB 45dB 

0 27.5 86.4 99.9 100 100 
0.0002 37.1 93.0 100 100 100 
0.0004 40.6 94.2 100 100 100 
0.0006 43.6 95.5 100 100 100 
0.0008 44.9 95.8 99.9 100 100 

(a) Group 1: peak collection rate (%) 

 SNR 
B  -15dB 0dB 15dB 30dB 45dB 

0 -0.9 14.8 30.6 45.7 60.7 
0.0002 0.3 16.2 32.1 47.2 62.1 
0.0004 0.6 16.5 32.4 47.5 62.3 
0.0006 0.8 16.8 32.7 47.7 62.6 
0.0008 1.0 17.0 32.8 47.9 62.7 

(b) Group 1: Resynthesis SNR (dB) 

Table 1: Results for constant harmonic sinusoids. 

4.2. Constant pitch with exponential amplitude 
Exponential amplitudes are found in real-world free vibrating bod-
ies. This group includes 1850 test samples, with 37 fundamental 
frequencies (f1) from 5 bins to 40bins, 2 stiffness coefficients (B) 0 
and 0.0005, 5 amplitude decay rates (α) at -0.5, -1, -1.5, -2, -2.5 
dB/frame (here “per frame” means per hop size, i.e. per 512 points) 
, and 5 SNRs from -15dB to 45dB. Given the four parameters, the 
test signal is synthesized as 

 n

M

m

mm
n

n rnBff
m

x ++=∑
=1

1
10240/

)),(2cos(10 πϕ
α

 (27) 

where M, and r are determined in the same way as in (26). The 
results are given in Table 2. 

mϕ

 
 SNR 
α  -15dB 0dB 15dB 30dB 45dB 

-0.5 28.1 78.5 99.2 100 100 
-1 21.5 55.4 84.5 98.9 100 

-1.5 17.4 40.6 63.6 84.7 96.7 
-2 14.8 32.7 49.6 67.7 81.6 

-2.5 13.7 27.6 41.8 55.4 69.0 
(a) Group 2: peak collection rate (%) 
α: amplitude decay rate (dB/frame) 

 
 SNR 
α  -15dB 0dB 15dB 30dB 45dB 

-0.5 -0.2 15.2 31.0 46.3 61.2 
-1 -0.5 13.9 30.0 45.6 59.7 

-1.5 -0.9 12.9 21.7 44.5 56.1 
-2 -1.3 11.8 23.7 43.2 49.3 

-2.5 -1.8 12.5 21.9 26.7 22.0 
(b) Group 2: Resynthesis SNR (dB) 

Table 2: Results for exponential amplitudes. 

The decay rate has a very regular effect on both errors, partially 
because the signal drops below noise level after certain points. 
Although in this test all partials have the same decay rate, for par-
tial-dependent decay rates, which is common in real music signals, 
the behaviour is similar: all partials that falls below the noise level 
become hard to pick up. Unlike matching pursuits, sinusoid model-

ing does not assume any specific coupling between partial ampli-
tudes. 

4.3. Constant pitch with modulated amplitude 
This group includes 550 samples, with 22 fundamental frequencies 
(f1) from 5bins to 40bins (3 octaves on diatonic scale) , 5 modula-
tion depths (d) 0.1, 0.2, …,  0.5, 5 modulator periods (T) 2, 4, …, 
10 frames, SNR is fixed at 15dB. Given the four parameters, the 
test signal is synthesized as 

 n

M

m

m
n rnmfnd

m
x ++⎟
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1 )2cos(
T256

cos11 πϕπ  (28) 

where M, and r  are determined in the same way as in (26). The 
results are given in Table 3.   

mϕ

 
d \T all 
all > 99.98% 

(a) Group 3: peak collection rate 
 

 T 
d  2 4 6 8 10 

0.1 28.17 30.34 30.55 30.57 30.60 
0.2 24.64 29.57 30.36 30.56 30.56 
0.3 21.85 28.60 30.15 30.42 30.49 
0.4 19.74 27.54 29.77 30.31 30.44 
0.5 18.09 26.58 29.48 30.17 30.39 

(b) Group 3: Resynthesis SNR (dB) 
d: modulation depth; T: modulator period (frames) 

Table 3: Results for exponential amplitudes. 

With the SNR at 15dB, the partial collection rate stays consistently 
close to 100%. The waveform error increases with modulation 
depth and frequency.  

4.4. Pitch modulation with constant amplitudes 

This group includes 550 samples, with 22 fundamental frequencies 
(f1) from 5bins to 40bins (3 octaves on diatonic scale), 5 modulator 
amplitudes (d) 0.3, 0.6, …, 1.5 semitones, 5 modulator periods (T) 
2, 4, …, 10 frames, SNR ratio is set to 15dB. Given the four pa-
rameters, the test signal is synthesized as 
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where M, and r  are determined in the same way as in (26). 
Again the partial collection rate stays consistently close to 100%. 
We list the resynthesis SNR’s in Table 4. Only amplitude reestima-
tion is used in the post-tracking stage to generate these results. 

mϕ

 
 T 

d  2 4 6 8 10 

0.3 14.5 23.6 27.9 29.0 29.3 
0.6 10.8 17.9 21.5 25.4 27.0 
0.9 7.7 14.7 17.7 21.3 24.0 
1.2 6.0 11.2 13.0 18.5 21.0 
1.5 4.8 8.3 7.8 13.0 18.9 

Group4: Resynthesis SNR (dB) 
d: modulator amplitude (semitones); T: modulator period (frames) 

Table 4: Results for vibrato. 
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If we compare Table 4 with Table 3(b), we see that a frequency 
modulation of as small as 0.3 semitones brings more error than an 
amplitude modulation of 50% the central value.  

5. CONCLUSIONS 

In this article we have proposed a harmonic sinusoid modeling 
system, and discussed the harmonic sinusoid analyzer in brief. The 
harmonic sinusoid model is an update to the standard sinusoid 
model. Unlike sinusoid models that describe mostly low-level 
spectral contents, harmonic sinusoids directly model pitched 
events, which could provide solid starting points for music-related 
tasks. An application of this model in audio editors has been pro-
posed in [12]. 

The current model can be further improved on several aspects. 
1) The partial harmony has its origin in 1-dimension simple har-
monic oscillation in string and air column, and does not describe 
membrane or bar vibration, which lies behind percussion instru-
ments such as the kettledrum and marimba [13]. The analysis of 
these instruments requires partial frequency coupling rules different 
from simple harmony. 2) Even for harmonic instruments, there may 
exist extra partials that do not fall within a harmonic context [14]. 
These can be picked up by introducing individual spectral lines into 
the model, or be included in a more comprehensive harmonic 
model. 3) Harmonic tracking can be further refined by introducing 
finer frequency and amplitude continuity criteria, and the use of 
object models in partial tracking. 4) In [12] we have proposed the 
use of forward-backward searching [15] where atoms can be lo-
cated at multiple frames, so that the tracking is more robust to local 
disturbance. 5) The current model treats very close (or overlapping) 
partials from two or more harmonic sinusoids as a shared partial; 
we also need separation techniques to resolve these shared partials 
into individual harmonic sinusoids. 6) On the synthesizer side, a 
more robust and accurate modeling of time-varying sinusoids is 
necessary to achieve better SNRs. 
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