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ABSTRACT

In audio applications it is often necessary to process the signal in
“real time”. The method of segmented wavelet transform (SegWT)
makes it possible to compute the discrete-time wavelet transform
of a signal segment-by-segment, not using the classical “window-
ing”. This means that the method could be utilized for wavelet-
type processing of an audio signal in real time, or alternatively in
case we just need to process a long signal, but there is insufficient
computational memory capacity for it (e.g. in the DSPs). In the
paper, the principle of the segmented forward wavelet transform is
explained and the algorithm is described in detail.

1. INTRODUCTION

There are a number of theoretical papers and practical applications
of the wavelet transform. However, all of them approach the prob-
lem from such a point of view as if we knew the whole of the
signal (no matter how long it is). Due to this assumption, we can-
not perform the wavelet-type signal processing in real time in this
sense. Of course there are real-time applications of the wavelet
type, but, all of them utilize the principle of overlapping segments
of the “windowed” signal (e.g. [1]). In the reconstruction part of
their algorithms they certainly introduce errors into the processing,
because the segments are assembled using weighted averages.

Processing a signal in “real time” actually means processing
it with minimum delay. A signal, which is not known in advance,
usually comes to the input of a system piecewise, by mutually in-
dependent segments that have to be processed.

The new method, the so-called segmented wavelet transform
(SegWT — we introduce abbreviation SegWT (Segmented Wavelet
Transform), because SWT is already reserved for stationary wave-
let transform), enables this type of processing. It has a great poten-
tial application also in cases when it is necessary to process a long
signal off-line and no sufficient memory capacity is available. It is
then possible to use this method for equivalent segmentwise pro-
cessing of the signal and thus save the storage space. In this sense
SegWT corresponds to the overlap-add algorithm in Fourier-type
linear filtering.

Another possible application of the SegWT algorithm is the
instantaneous visualization of signal using an imaging technique
referred to as “scalogram”, see Fig.[I] The decomposition depth is
d = 5 in this Figure. The bigger is the absolute value of the single
coefficient, the whiter is the respective cell in the graph. In fact,
plotting scalogram is a technique very similar to plotting a spectro-
gram in real time. In wavelet transformation (represented by FIR
filters) there is an advantage in that the signal need not be weighted
with windows, which results in a distortion of the frequency infor-
mation, as is the case with the spectrogram. Moreover, there is
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Figure 1: Signal (top) and its scalogram (bottom). Scalogram is
a type of graph representing the frequency contents of a signal in
time. It is constructed from the wavelet coefficients.

one more good thing about it: a scalogram created by means of the
SegWT is quite independent of the chosen length of segment.

In the available literature, this way of performing the wavelet
transform is practically neglected, and this was the reason why our
effort was devoted to developing modified algorithm. In fact, a
modified method of forward wavelet transform is presented in this

paper.

2. THE CLASSICAL DTWT ALGORITHM

Algorithm 2.1: (decomposition pyramidal algorithm DTWT)
Let x be a discrete input signal of length s, the two wavelet decom-
position filters of length m are defined, highpass g and lowpass h,
d is a positive interger determining the decomposition depth. Also,
the type of boundary treatment [2, ch. 8] must be known.

1. We denote the input signal x as a® and set j = 0.

2. One decomposition step:
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(a) Extending the input vector. We extend al/ ) from both
the left and the right side by (m — 1) samples, ac-
cording to the type of boundary treatment.

(b) Filtering. We filter the extended signal with filter g,
which can be expressed by their convolution.

(c) Cropping. We take from the result just its central part,
so that the remaining “tails” on both the left and the
right sides have the same length m — 1 samples.

(d) Downsampling (decimation). We downsample the re-
sultant vector.

We denote the resulting vector dYtD) and store it.We repeat
items (b)—~(d), now with filter h, denoting and storing the
result as a1,

3. We increase j by one. If it now holds j < d, we return to
item 2., in the other case the algorithm ends.

Remark. After algorithm[2:T]has been finished, we hold the wa-

velet coefficients stored in d+1 vectors a’®, d¥ 0 b B N

3. THE METHOD OF SEGMENTED WAVELET
TRANSFORM

3.1. Motivation and Aim of the Method

Regularly used discrete-time wavelet transform (see Section 2)) is
suitable for processing signals “off-line”, i.e. known before pro-
cessing, even if very long. The task for the segmented wavelet
transform, SegWT, is naturally to allow signal processing by its
segments, so that in this manner we get the same result (same wa-
velet coefficients) as in the ordinary DTWT case. In this problem,
the following parameters play a crucial role.

m wavelet filter length, m > 0,

d transform depth, d > 0,

s length of segment, s > 0.

The derivation of the SegWT algorithm requires a very de-
tailed knowledge of the DTWT algorithm. Thanks to this it is pos-
sible to deduce fairly sophisticated rules how to handle the signal
segments. We have found that in dependence on m, d, s, it is nec-
essary to extend every segment from the left by an exact number
of samples from the preceding segment and from the right by an-
other number of samples from the subsequent segment. However,
every segment has to be extended by a different length from the
left and the right, and these lengths can also differ from segment
to segment! Also the first and the last segments have to be handled
in a particular way.

3.2. Important Theorems Derived from the DTWT Algorithm

Before we introduce detailed description of the SegWT algorithm,
several theorems must be presented. More of them and their proofs
can be found in [3| ch. 8]. We assume that the input signal x is
divided into S > 1 segments of equal length s. Single segments
will be denoted x,°x, ...,%x. The last one can be of a length
lower than s. See Fig.

By the formulation that two sets of coefficients from the k-th
decomposition level follow-up on each other we mean a situation
when two consecutive segments are properly extended see Figs.
[ so that applying the DTWT, with step 2(a) omitted, of depth

Figure 2: Scheme of signal segmentation. The input signal x (a) is
divided into segments of equal length, the last one can be shorter
than this (b); the n-th segment of x is denoted by "x.

k separately to both the segments and joining the resultant coeffi-
cients together lead to the same set of coefficients as computing it
via the DTWT applied to the two segments joined first.

Theorem 3.1: In case that the consecutive segments have

r(k) = (2" = 1)(m - 1) (M

common input signal samples, the coefficients from the k-th de-
composition level follow-up on each other.

Thus, for a decomposition depth equal to d it is necessary to
have r(d) = (2¢ — 1)(m — 1) common samples in the two con-
secutive extended segments.

The aim of the following part is to find the proper extension
of every two consecutive signal segments. We will show that the
length of such extension must comply with the strict rules.

The extension of a pair of consecutive segments, which is of
total length r(d), can be divided into the right extension of the
first segment (of length R) and the left extension of the following
segment (of length L), while r(d) = R+ L. However, the lengths
L > 0, R > 0 cannot be chosen arbitrarily. The lengths L, R are
not uniquely determined in general. The formula for the choice of
extension Lmax, Which is unique and the most appropriate in case
of real-time signal processing, is given in Theorem 3.2}

Theorem 3.2: Let a segment be given whose length including its
left extension is . The maximal possible left extension of the next
segment, Limax, can be computed by the formula

M) . @

Lmax:l—2dceil( 2d

The minimal possible right extension of the given segment is then
Runin = T(d) — Lax. (3)

For the purposes of the following text, it will be convenient
to assign the number of the respective segment to the variables
Lax, Rmin, l, i.e. the left extension of the n-th segment will be
of length Lmax(n), the right extension will be of length Rin (1)
and the length of the original n-th segment with the left extension
joined will be denoted I(n). Using this notation we can rewrite

equation (3) as
Rmin(n) = T(d) — Lmax(n + 1) (4)

Let us now comment on the special situation of the first or the
last segment. These naturally represent the “boundaries” of the
signal. The discrete-time wavelet transform uses several modes
how to treat the boundaries and we must preserve these modes
also in our modified algorithm. Therefore we must treat the first
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Figure 3: Illustration of extending of the segments.

and the last segment separately and a bit differently from the other
segments. For details and proofs we again refer to [3]. The ap-
propriate procedure is to extend the first segment from the left by
r(d) zero samples, i.e. Lmax(1) = r(d), and to process it using
Algorithm Similarly the last segment has to be extended by
r(d) zeros from the right and processed using Algorithm 3.8

Theorem 3.3: The length of the right extension of the n-th seg-

ment,n =1,2,...,5 — 2, must comply with
Runin(n) = 2% ceil (g) —ns, 5)

and the length of the left extension of the (n + 1)-th segment is
Lmax(n + 1) = 7(d) — Rmin(n).

Remark. From it is clear that Rpin is periodic with respect
to s with period 2%, i.e. Rmin(n + 2%) = Rmin(n). This relation
and also some more can be seen in Table[T]

Theorem 3.4: (on the total length of segment)

After the extension the n-th segment (of original length s) will be
of total length

S (n) = r(d) + 2° {ceil (g) — ceil (m;idl)sﬂ .6

This expression can acquire only one of two values, either

. S . S
r(d) 4 2% ceil (?> or r(d) + 2% ceil (ﬁ) -2 ()

3.3. The Algorithm of Segmented Wavelet Transform

The algorithm SegWT works such that it reads (receives) single
segments of the input signal, then it extends — overlaps them in a
proper way, then it computes the wavelet coefficients in a modified
way and, in the end, it easily joins the coefficients.

Algorithm 3.5: Let the wavelet filters g, h of length m, the de-
composition depth d, and the boundary treatment mode be given.
The segments of length s > 0 of the input signal x are denoted
x,%2x,3x, . ... The last segment can be shorter than s.

1. Set N = 1.

2. Read the first segment, x, and label it “current”. Extend it
from the left by r(d) zero samples.

3. If'the first segment is at the same time the last one

(a) It is the case of regular wavelet transform. Com-
pute the DTWT of this single segment using Algo-
rithm 2,11

(b) The Algorithm ends.

4. Read (N + 1)-th segment and label it “next”.
5. If this segment is the last one

(a) Join the current and next segment together and label
it “current”. (The current segment becomes the last
one now.)

(b) Extend the current vector from the right by r(d) zero
samples.

(c) Compute the DTWT of depth d from the extended
current segment using Algorithm3.8]

Otherwise

(d) Compute Lmax for the next segment and Rpmin for the
current segment (see Theorem [3.2).

(e) Extend the current segment from the right by Rmin
samples taken from the next segment. Extend the
next segment from the left by Lmna.x samples taken
from the current segment.

(f) If the current segment is the first one, compute the
DTWT of depth d from the extended current segment
using Algorithm[3.7] Otherwise compute the DTWT
of depth d from the extended current segment using

Algorithm

6. Modify the vectors containing the wavelet coefficients by
trimming off a certain number of redundant coefficients
from the left side, specifically:at the k-thlevel, k = 1,2, ...
...,d — 1, trim off r(d — k) coefficients from the left.

7. If the current segment is the last one, then in the same man-
ner as in the last item trim the redundant coefficients, this
time from the right.

8. Store the result as Na<d),Nd(d),Nd(d’1), ...

9. If the current segment is not the last one

’Nd(l).

(a) Label the next segment “current”.
(b) Increase N by 1 and go to item[4]

Remark. If the input signal has been divided into S > 1 seg-
ments, then (S — 1)(d + 1) vectors of wavelet coefficients

{ia(d)’ gD ige-n 7id(1)};9':—11.

are the output of the Algorithm. If we join these vectors together in
a simple way, we obtain a set of d 4 1 vectors, which are identical
with the wavelet coefficients of signal x.

Next we present the “subalgorithms” of the SegWT method.
The second and third algorithms serve to process the first and the
last segment.

Algorithm 3.6: This algorithm is identical with Algorithm [2.1
with the exception that we omit step 2(a), i.e. we do not extend the
vector.
Algorithm 3.7: This algorithm is identical with Algorithm
with the exception that we replace step 2(a) by the step:
Modify the coefficients of vector a¥) on positions
r(d—7)—m+2,...,7(d — j), as it corresponds
to the given boundary treatment mode.
Algorithm 3.8: This algorithm is identical with Algorithm [2.T]
with the exception that we replace step 2(a) by the step:
Modify the coefficients of vector a?) on positions
r(d—j3)—m+2,...,r(d — j), as it corresponds
to the given boundary treatment mode, however this
time taken from the right side of &%),
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S

| nl 1 2 3 4 5 6

7 8 9 10 11 12...

512

Lmax (’IL)
Ruin(n)
> (n)

105 105 105 105 105 105 105 105
o o0 o0 O O O 0 O
617 617 617 617 617 617 617 617

105 105 105 105 ...
o 0 0 O0...
617 617 617 617 ...

513

Limax (n)
ijn (n)
> (n)

105 98 99 100 101 102 103 104
7 6 5 4 3 2 1 0
625 617 617 617 617 617 617 617

105 98 99 100 ...
7 6 5 4...
625 617 617 617 ...

514

Lmax (’I’L)
Ruin (’I’L)
> (n)

105 99 101 103 105 99 101 103
6 4 2 0 6 4 2 O
625 617 617 617 625 617 617 617

105 99 101 103 ...
6 4 2 0...
625 617 617 617 ...

515

Lmax (TL)
Ruin(n)
> (n)

105 100 103 98 101 104 99 102
5 2 7 4 1 6 3 O
625 617 625 617 617 625 617 617

105 100 103 98 ...
5 2 7 4...
625 617 625 617 ...

516

Lmax(n)
Rumin(n)
> (n)

105 101 105 101 105 101 105 101
4 0 4 0 4 0 4 O
625 617 625 617 625 617 625 617

105 101 105 101 ...
4 0 4 O0...
625 617 625 617 ...

517

Lmax (’I’L)
Ruin(n)
> (n)

105 102 99 104 101 98 103 100
3 6 1 4 7 2 5 0
625 625 617 625 625 617 625 617

105 102 99 104 ...
3 6 1 4...
625 625 617 625 ...

518

Lmax(n)
Rumin(n)
> (n)

105 103 101 99 105 103 101 99
2 4 6 0 2 4 6 0
625 625 625 617 625 625 625 617

105 103 101 99 ...
2 4 6 O0...
625 625 625 617 ...

519

Lmax(n)
Ruin(n)
> (n)

105 104 103 102 101 100 99 98
1 2 3 4 5 6 7 0
625 625 625 625 625 625 625 617

105 104 103 102 ...
1 2 3 4...
625 625 625 625 ...

520

Lmax(n)
Ruin(n)

105 105 105 105 105 105 105 105
o o0 o0 O O O 0 O

105 105 105 105 ...
o 0 0 O0...

> (n)]|625 625 625 625 625 625 625 625(625 625 625 625 . ..

Table 1: Example — lengths of extensions for different lengths of
segments s. The depth of decomposition is d = 3 and the filter
length is m = 16.

3.4. Corollaries and Limitations of the SegWT Algorithm

In [3] there can be found several practical corollaries for SegWT,
e.g. that the segments cannot be shorter then 2¢.

From the description in the above sections it should be clear
that the time lag of Algorithm [3.3]is one segment (i.e. s samples)
plus the time needed for the computation of the coefficient from
the current segment. In a special case when s is divisible by 2¢ it
holds even Rmin(n) = 0 for every n € N (see Theorem , ie.
the lag is determined only by the computation time!

3.5. A Few Examples

e For d = 4 and m = 12, the minimum segment length is
just 16 samples. When we set s = 256, Rmin Will always
be zero and Limax = 7(4) = 165. The length of every
extended segment will be 256 + 165 = 421 samples.

e For d = 5 and m = 8, the minimum segment length is 32
samples. When we set s = 256, Rnin Will always be zero
and Lmax = r(5) = 217. The length of every extended
segment will be 256 4 217 = 473 samples.

e Ford = 5 and m = 8 we set s = 300, which is not di-
visible by 2°. Thus Rumin and Lmax will alternate such that
0 < Rmin < 31 and 186 < Lmax < 217. The length of
every extended segment will be 300+ r(5) = 473 samples.

3.6. Implementation

The SegWT algorithm had been implemented in C++ and its func-
tionality had been verified. We implemented a simple “band-stop
filter” as a VST plug-in module utilizing the SegWT Algorithm
and a reduced version of the inverse transform. The testing of the
efficiency showed that the most demanding part of the algorithm
is the computation of the convolution which must be done in each
stage of the transform.

4. CONCLUSION

The paper contains a description of the algorithm which allows
us to perform the wavelet transform in real time. The algorithm
works on the basis of calculating the optimal extension (overlap)
of signal segments, and subsequent performance of the modified
transform.

In the future it would be convenient to improve the computa-
tional effectivity by reducing redundant computations at the bor-
ders of the segments, as it follows from the Algorithm@ Also,
it should not be very difficult to generalize the SegWT method to
include biorthogonal wavelets and more general types of decima-
tion [4} 5], because the parameters of SegWT can be chosen in a
fairly general way.

Another important part of the future work is the derivation of
an efficient counterpart to the introduced method — the segmented
inverse transform. In fact, we made first experience, in which it
turned out, above all, that the time lag in the consecutive forward-
inverse processing will be, unfortunately, always nonzero.
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