
Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

SIMPLIFIED, PHYSICALLY-INFORMED MODELS OF DISTORTION AND OVERDRIVE
GUITAR EFFECTS PEDALS

David T. Yeh, Jonathan S. Abel and Julius O. Smith

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University, Stanford, CA

[dtyeh|abel|jos]@ccrma.stanford.edu

ABSTRACT

This paper explores a computationally efficient, physically in-
formed approach to design algorithms for emulating guitar distor-
tion circuits. Two iconic effects pedals are studied: the “Distor-
tion” pedal and the “Tube Screamer” or “Overdrive” pedal. The
primary distortion mechanism in both pedals is a diode clipper
with an embedded low-pass filter, and is shown to follow a non-
linear ordinary differential equation whose solution is computa-
tionally expensive for real-time use. In the proposed method, a
simplified model, comprising the cascade of a conditioning filter,
memoryless nonlinearity and equalization filter, is chosenfor its
computationally efficient, numerically robust properties. Often,
the design of distortion algorithms involves tuning the parameters
of this filter-distortion-filter model by ear to match the sound of
a prototype circuit. Here, the filter transfer functions andmemo-
ryless nonlinearities are derived by analysis of the prototype cir-
cuit. Comparisons of the resulting algorithms to actual pedals
show good agreement and demonstrate that the efficient algorithms
presented reproduce the general character of the modeled pedals.

1. INTRODUCTION

Guitarists tend to feel that digital implementations of distortion
effects sound inferior to the original analog gear. This work at-
tempts to provide a more accurate simulation of guitar distortion
and a physics based method for designing the algorithm according
to the virtual analog approach[1, 2].

Often guitar effects are digitized from a high level understand-
ing of the function of the effect [3, 4]. This work describes the
results of a more detailed, physical approach to model guitar dis-
tortion. This approach has been adopted previously in the context
of generating tube-like guitar distortion [5], not to modela specific
effect as done here. This approach starts with the equationsthat de-
scribe the physics of the circuit and is an alternative to obtaining
the static transfer curves of a nonlinear system by measurement
[6].

Many digital distortion pedals feature pre- and post-distortion
filters surrounding a saturating nonlinearity. The filters are com-
monly multiband (three or four bands) parametric filters that are
tuned to taste.

An analysis of the circuits shows that analog solid-state cir-
cuits tend to use low-order filters. To keep costs down, circuits
are designed with minimal component count, which limits filter
order. For the purpose of distortion effect modeling, the frequency
range of interest is from just above DC to 20 kHz. Features in the
frequency domain above 20 kHz can be ignored, also contribut-
ing to low-order filters. Frequency features below 20 Hz mustbe

retained, however, because intermodulation due to mixing of sub-
sonic components with audio frequency components is noticeable
in the audio band.

Stages are partitioned at points in the circuit where an active
element with low source impedance drives a high impedance load.
This approximation is also made with less accuracy where passive
components feed into loads with higher impedance. Neglecting
the interaction between the stages introduces magnitude error by a
scalar factor and neglects higher order terms in the transfer func-
tion that are usually small in the audio band.

The nonlinearity may be evaluated as a nonlinear ordinary dif-
ferential equation (ODE) using numerical techniques [7, 8]. How-
ever, the solution of nonlinear ODEs is computationally intensive,
and the differences are subtle. Therefore in this work, the nonlin-
earity is approximated by a static nonlinearity and tabulated. This
can be justified on perceptual grounds.

It is well known that nonlinearities cause an expansion of band-
width that may lead to aliasing if the sampling rate is insufficiently
high [3]. Consequently typical digital implementations ofdistor-
tion upsample by a factor of eight or ten, process the nonlineari-
ties, and downsample back to typical audio rates[3, 9]. Frequency
content tends to roll off with increasing frequency, and remaining
aliases at oversampling factors of eight or above tend to be masked
by the dense spectrum of guitar distortion.

Because the filters in this work are derived from analog pro-
totypes, upsampling also increases the audio band accuracyof
the discretization by bilinear transform. An alternate approach
would be to design low order filters so that the response at Nyquist
matches the continuous time transfer function [10, 11].

The following is an analysis of the stages in two typical dis-
tortion pedals.

2. FUNDAMENTAL TOOLS

2.1. SPICE simulation

For circuits that are difficult to analyze, SPICE simulationpro-
vides detailed numerical analysis. DC analysis in SPICE performs
static sweeps of voltage or current sources to measure memory-
less transfer curves. AC analysis finds the frequency response of
a circuit linearized about an operating point. These responses can
be imported into Matlab and converted to digital filters as in[1].
SPICE also serves as a reference solver for numerical solutions of
the time domain response for nonlinear ODEs.
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Figure 1:Non-inverting op amp gain

2.2. Continuous time pole-zero analysis

Linear circuits are described by rational transfer functions. For
most low-cost audio circuits such as guitar effects, the transfer
functions are typically low order. The poles and zeros can beiden-
tified on a log-frequency plot of magnitude in dB. In dB, it can
be seen that the magnitude contributions of poles subtract and the
magnitude contributions of zeros add. For the low pass filter, at
the pole frequency, the magnitude is 3 dB lower than at its low
frequency asymptote. For the high pass filter, the magnitudeat
the pole frequency is 3 dB lower that at its high frequency asymp-
tote. Therefore, well separated pole and zero frequencies can be
identified from the decibel magnitude response by looking for the
3-dB points. These frequencies can then be used to reconstruct the
rational expression for the transfer function.

2.3. Analysis of operational amplifier circuits

Transfer functions can be easily found analytically for circuits with
operational amplifiers (op amps).

2.3.1. Ideal op amp approximation

The ideal op amp approximation states that if negative feedback is
present,

1. V+ = V
−

,

2. I+ = I
−

= 0

whereV+ is the voltage at the+ terminal of the op amp andV
−

,
the voltage at the− terminal. I+ andI

−
are the currents flowing

into the two terminals. These conditions do not hold if negative
feedback is not present, for example, ifVo is not connected toV

−

or if the op amp output is close to the supply voltages, causing it
to clip.

2.3.2. Non-inverting configuration

An example of this analysis is done for the non-inverting op amp
configuration shown in Fig. 1. The ideal op amp rule givesV

−
=

Vi, so the current throughZs is Is = Vi/Zs. BecauseI
−

= 0,
all the current flows acrossZf , so V0 = Vi + IsZf = Vi +
Vi/Zs. After algebraic manipulation, the transfer function is found
to be Vo

Vi
=

Zs+Zf

Zs
. This results in a continuous time transfer

function if complex impedances are used forZf andZs. Writing

Tone filterSaturating nonlin

9V 4.5V

Gain + filter

bjt buf

bjt buf

in

out

pwr supply "Distortion" effect

Figure 2:Block diagram of Distortion pedal.

it in the form shown in (1) allows the poles and zeros to be seen
more easily:

Av(s) =
Zf

Zs

(

Zs

Zf
+ 1

)

(1)

2.4. Bilinear Transform of low order transfer functions

Once a continuous time transfer function is obtained eitherby anal-
ysis or by inspection of the magnitude response, the bilinear trans-
form can be used to digitize this filter. First- and second-order
continuous time systems are common, so their mappings are given
below.

The continuous time system,

H(s) =
bnsn + ... + b1s + b0

ansn + ... + a1s + a0

, (2)

results in

H(z) =
B0 + B1z

−1 + ... + Bnz−n

A0 + A1z−1 + ... + Anz−n
, (3)

where for a second order system, coefficients ofH(z) are

B0 = b0 + b1c + b2c
2, (4)

B1 = 2b0 − 2b2c
2, (5)

B2 = b0 − b1c + b2c
2, (6)

A0 = a0 + a1c + a2c
2, (7)

A1 = 2a0 − 2a2c
2, (8)

A2 = a0 − a1c + a2c
2, (9)

and for a first-order system, coefficients ofH(z) are

B0 = b0 + b1c, (10)

B1 = b0 − b1c, (11)

A0 = a0 + a1c, (12)

A1 = a0 − a1c. (13)

(14)

Herec = 2/T is chosen as typical for the bilinear transform.

3. CIRCUIT ANALYSIS OF DISTORTION PEDAL

The block diagram of the Boss DS-1 Distortion pedal [12] is shown
in Fig. 2. It is basically gain with a saturating nonlinearity sand-
wiched between filters. However, distortion from the bipolar tran-
sistor (BJT) emitter follower buffers and first gain stage are not
negligible.
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3.1. Emitter Follower buffers

A typical guitar pedal has an emitter follower (Fig. 3) at theinput
to buffer the signal from the guitar pickups, and another similar
emitter follower at the output to drive the cable and subsequent
load. The emitter follower topology is nominally linear in oper-
ation and flat in frequency response in the audio band. Typically
it is used in conjunction with high pass filters, whose cutofffre-
quency can be determined from the resistance and capacitance val-
ues. Here it is 3 Hz. The stage can be implemented as cascaded
low order high pass filters . Implementation of high pass filters is
straightforward with the bilinear transform method of digitizing an
analog prototype as described in Section 2.

3.2. Single bipolar transistor transimpedance gain stage

Gain can be provided by a single bipolar junction transistor(BJT)
in a transimpedance gain topology shown in Fig. 4.

The frequency response is found from SPICE and digitized by
finding the continuous time poles and zeros, forming the transfer
function and taking the bilinear transform. This stage shows 36 dB
of bandpass gain (Fig. 5). There are two zeros at DC, one pole at
3 Hz, one pole at 600 Hz, and another at 72 kHz, which is ignored
because it is well outside the audio band. A transfer function is
formed directly in (15):

H(s) =
s2

(s + ω1)(s + ω2)
, (15)

where the numerator is the product of two zeros,s, and the denom-
inator is the product of the poles atω1 = 2π3 andω1 = 2π600.
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Figure 5:Frequency response of BJT stage

The bilinear transform applied toH(s) with a sampling rate
fs = 44.1 kHz gives a second order digital filter whose coeffi-
cients can be found using (9).

This stage introduces significant nonlinearity at large inputs,
but this is neglected for now.

3.3. Op amp gain stage

Non-inverting op amp “buffers” are common in guitar circuits be-
cause they minimize loading on the preceding stage. To analyze
the circuit in Fig. 6 impedances are used in (1). The final transfer
function in factored form is given by (16).

H(s) =
(s + 1

RtCc
)(s + 1

RbCz
) + s

RbCc

(s + 1

RtCc
)(s + 1

RbCz
)

(16)

whereRt = D·100kΩ, Rb = (1−D)100kΩ+4.7kΩ, Cz = 1µF,
andCc = 250pF. CapacitorCz blocks DC to prevent the output
from saturating in the presence of DC offset, whileCc stabilizes
the op amp and contributes a low pass pole.D ranges between
(0, 1) and is the value of the “DIST” knob that controls the amount
of gain before saturation and therefore the intensity of thedistor-
tion.

The frequency response is shown in Fig. 7 for values ofD
from 0 to 1 in increments of0.1. This is a second-order stage
than can be digitized directly by the bilinear transform, forming
a second-order section with variable coefficients. The frequency
response of this stage depends on the “DIST” knob. Notice that
the frequency response at half the audio sampling rate,|H(f =
22050)|, is not zero and considerable warping will take place with-
out oversampling or the filter design method by Orfanidis [10].

This transfer function can be discretized by the bilinear trans-
form, (9), which also preserves the mapping of the “DIST” param-
eter.

The op amp provides the main nonlinearity of the Distortion
effect. To first order, the op amp hard clips the signal atVdd/2. In
reality the op amp response is much slower because it is open loop
and needs to recover from overdrive. It is also typically asymmetri-
cal in behavior, leading to significant even-order harmonics where
otherwise only odd-order harmonics are expected. Refinements of
the op amp clipping model can be based upon the macromodel-
ing technique as done in SPICE to speed up simulations [13]. A
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black box approach, the macromodeling technique emulates the
input/output behavior of the op amp instead of simulating the be-
havior of its internal devices.

3.4. Diode clipper

Following the op amp clipper is a RC low pass filter with a diode
limiter across the capacitor (Fig. 8). The diode clipper limits the
voltage excursion across the capacitor to about a diode dropin
either direction about signal ground.

The model of the pn diode is

Id = Is(e
V/Vt − 1), (17)

where the reverse saturation currentIs, and thermal voltageVt of
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Figure 9: Static nonlinear functions compared: tabulated, tanh,
arctan, approximation to tanh

the device are model parameters that can be extracted from mea-
surement.

The nonlinear ODE of the diode can be derived from Kirch-
hoff’s laws:

dVo

dt
=

Vi − Vo

RC
− 2

Is

C
(sinh(Vo/Vt)), (18)

whereVi, Vo are the input and output signals respectively.
This is not a memoryless nonlinearity because it is a low-pass

filter whose pole location changes with voltage. Fig. 10 depicts
the input-output characteristic, which can be described asa “clip-
ping” function, along with various analytic approximations based
on hyperbolic tangent and arctangent. At high amplitude levels,
the differences between different clipping functions is subtle.

For efficiency, this nonlinearity is approximated as static, and
the DC transfer curve is computed by settingdVo

dt
= 0 in (18),

and tabulating the functionVo = f(Vi) by Newton iteration. A
nonuniform sampling of the input to output transfer curve isused
that utilizes a constant error percentage or signal to quantization
noise ratio. The rationale for this is that at small amplitudes, the
curve is most linear with the highest gain, and most susceptible to
quantization noise. At high levels, the nonlinearity is compressive,
reducing the gain and quantization error. A logarithmic sampling
with a floor about zero is chosen. Linear interpolation is used to
further reduce quantization noise.

Alternatively an approximation such as

x

(1 + |x|n)1/n
(19)

can be used to compute the nonlinearity. This formula (19) well
approximates hyperbolic tangent whenn = 2.5. The transfer
curve of the tabulated function is compared with that of tanh, arc-
tan, and (19) in Fig. 9. The curves are normalized so that the slope
aboutVi = 0 matches visually andVo at the extremes match. The
formula (19) can be seen to be a good approximation of tanh. Arc-
tan looks like a close approximation to the actual DC nonlinearity
but it is not as linear aboutVi = 0. The approximation (19) has the
advantage of an additional parametern that can be varied to better
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Figure 11:Tone circuit of Distortion pedal

match the actual function. In this work, the tabulated nonlinearity
is chosen.

3.5. Tone stage

The tone stage (Fig. 11) is a highly interconnected passive network
that cannot be accurately separated. However, an analysis of the
circuit shows its design intent, and the error due to separating the
blocks is less than that due to component tolerance in an actual
circuit.

This circuit involves a fade between high pass filter and low
pass filter blocks. The fading affects the cutoff frequencies of the
filters, but this effect is small. A digitization of this circuit can
capture the essence of its operation, which is a loudness boost:
a V-shaped equalization as commonly observed for tone circuits
intended for electric guitars[5, 1].

A full analysis is straightforward but tedious, so AC analysis is
performed in SPICE, and the corner frequencies found graphically.
The weightings for the fade are also determined by simulation.
The high pass corner frequency isfhpf = 1.16 kHz and the low
pass corner frequency isflpf = 320 Hz.

This is implemented digitally as a weighted sum of first-order
high pass and low pass filters discretized by the bilinear transform
rather than discretizing the complete transfer function. This sim-
plification eliminates time-varying filters and the computation to
update the coefficients, using static coefficients instead.Modeling
a user controlled parameter with greater accuracy is unnecessary
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Figure 12:Distortion pedal tone circuit frequency response. Solid
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Figure 13:Block diagram of Overdrive pedal.

because a user would not likely notice the difference in filter re-
sponse.

The magnitude response of the original circuit is compared
with the Matlab approximation in Fig. 12. The responses are very
similar with< 1 dB error in most cases.

4. CIRCUIT ANALYSIS OF OVERDRIVE PEDAL

The block diagram of an overdrive pedal, specifically the Ibanez
Tube Screamer, is given in Fig. 13[14]. It is characterized by high
pass filters, followed by the summation of a high-pass filtered and
clipped signal summed with the input signal. This is followed by
low-pass tone filtering and a high pass in the output buffer. The
following is an analysis of the circuit in rigor

4.1. High pass filters

The first stages of the overdrive pedal are high pass filters with the
following cutoff frequencies:fc1 = 15.9 Hz, fc2 = 15.6 Hz.

4.2. Non-inverting op amp with diode limiter

The non-inverting op amp (Fig. 14) of the overdrive pedal is sim-
ilar to that of the distortion except the diode limiter is nowacross
Zf . The diode limiter essentially limits voltage excursion across
the op amp keeping it within ideal op amp conditions. The voltage
at the minus input of the op amp is then the same as that on the
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plus terminal. This generates a current acrossZs,

In =
Vneg

Zs
= Vi

s

R1(s + ωz)
, (20)

whereωz = (R1Cz)
−1, R1 = 4.7kΩ, Cz = 0.047µF. In flows

through the components connected between the minus terminal
and the output of the op amp. Circuit analysis produces the fol-
lowing equation:

In =
Vo − Vi

R2

+ Cc
d

dt
(Vo − Vi) + 2Is sinh(

Vo − Vi

Vt
) (21)

Making a variable substitutionV = Vo − Vi yields,

dV

dt
=

In

Cc
−

V

R2Cc
−

2Is

Cc
sinh(V/Vt), (22)

whereCC = 51pF,R2 = 51k+D500k, andD ∈ (0, 1), control-
ling the intensity of the overdrive. It can be seen that this ODE is
the same as that for the Distortion pedal, (18), whenIn is replaced
by Vi/R.

The arithmetic introduced by the variable substitution canbe
described in block diagram form as depicted in Fig. 13. The essence
of the overdrive circuit is the summation of the input signalwith
the input filtered and clipped. The above variable substitution is
solved forVo:

Vo = V + Vi, (23)

whereV is obtained by solving (22).

4.3. Tone stage

The tone stage (Fig. 15) can also be analyzed according to ideal op
amp rules. The algebra is complicated, but the result is

Vo

Vi
=

(RlRf + Y )

Y RsCs

s + Wωz

(s + ωp)(s + ωz) + Xs
, (24)

where

W =
Y

RlRf + Y
,

X =
Rr

Rl + Rr

1

(Rz + Rl‖Rr)Cz
,

Y = (Rl + Rr)(Rz + Rl‖Rr),

−

+
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Figure 15:Overdrive tone circuit.
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Figure 16: Overdrive tone circuit frequency response for T = 0,
0.5, 1.

ωz = 1/ (Cz (Rz + Rl‖Rr)), ωp = 1/ (Cs (Rs‖Ri)), Rf =
1k, Rr = (1 − T )20k, Rl = T20k, Rz = 220, Cz = 0.22µF,
Ri = 10k, Rs = 1k, Cs = 0.22µF, andT ∈ (0, 1) controls the
cutoff frequency of the low pass.

This is a second-order transfer function with variable coeffi-
cients. Fig. 16 shows the essentially low-pass character ofthe
magnitude response.

5. RESULTS

Actual Distortion and Overdrive pedals are compared to the digital
emulations for a 220 Hz sine signal with amplitude of 200 mV, and
an exponential sine sweep. The settings on the actual pedal are
adjusted until the spectrum resembles that of the digital version for
the sine input. Adjustments were made approximately to match the
difference in magnitude of the first two harmonics, and to match
the position of notches in the frequency domain.

The time waveforms and magnitude spectra for the single-
frequency excitation are shown in Figs. 17–20. The sinusoidal
sweeps are represented by a log-frequency spectrogram [15]in
Figs. 21–24 with 80-dB dynamic range.

The waveforms show a general similarity. The spectrograms
indicate that frequency equalization is close. The measured spec-
tra exhibit a strong even-order nonlinearity that is not modeled in
the digital implementation. The emulated versions using the sim-
plified algorithms in both cases sound slightly brighter than the
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Figure 17: Time response to 220 Hz sine, measured distortion
pedal (dashed) and algorithm (solid)
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Figure 18:Normalized spectrum of response to 220 Hz sine, dis-
tortion pedal (top), algorithm (bottom)
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Figure 19: Time response to 220 Hz sine, measured overdrive
pedal (dashed) and algorithm (solid)

actual pedals, possibly due to the lack of even-order nonlinearity
and a difference in equalization..

The digitally emulated result also deviates from the measured
one because there was no attempt to calibrate the model to the
actual pedal with its particular component values and parameter
settings. It is more representative of a circuit whose components
are exactly the values as in the schematic.
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Figure 20:Normalized spectrum of response to 220 Hz sine, over-
drive pedal (top), algorithm (bottom)
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Figure 21:Measured distortion pedal, sine sweep log spectrogram
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Figure 22:Distortion algorithm, sine sweep log spectrogram

DAFX-7



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007
F

re
q 

(lo
g1

0)

Time (sec)

 

 

0 1 2 3 4 5

1.5

2

2.5

3

3.5

4

−80

−70

−60

−50

−40

−30

−20

−10

0

Figure 23:Measured overdrive pedal, sine sweep log spectrogram
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Figure 24:Overdrive algorithm, sine sweep log spectrogram

6. CONCLUSIONS

The simplified, physically informed approach enables the design
of distortion algorithms that emulate the behavior of analog proto-
types. A first-pass design with no tuning is able to reproducethe
salient characteristics of the effect.

While the result is not an exact emulation of the analog imple-
mentation, it provides a procedural basis for the design of adistor-
tion algorithm, and a starting point from which further tuning can
be done. The computational power needed is comparable to that
available in commercially available guitar effects boxes because of
the similar architecture comprising oversampling, low order filters,
and a tabulated nonlinearity.

In this work, BJT gain stage and op amp clipping behaviors
are oversimplified. Nonlinearities are assumed to come froma
single symmetrical diode clipper, which is not true under large-
signal conditions. Improved models of remaining nonlinearities
are the subject of ongoing research.
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