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ABSTRACT

Frequency warping is a modifier that acts on sound signals by
remapping the frequency axis. Thus, the spectral content of the
original sound is displaced to other frequencies. At the same time,
the phase relationship among the signal components is altered,
nonlinearly with respect to frequency. While this effect is inter-
esting and has several applications, including in the synthesis by
physical models, its use has been so far limited by the lack of an
accurate and flexible real-time algorithm. In this paper we present
methods for frequency warping that are based on local approxima-
tions of the warping operators and allow for real-time implemen-
tation. Filter bank structures are derived that allow for efficient
realization of the approximate technique. An analysis of the error
is also presented, which shows that both numerical and perceptual
errors are within acceptable limits. Furthermore, the approximate
implementation allows for a larger variety of warping maps than
that achieved by the classical (non-causal) first-order allpass cas-
cade implementation.

1. INTRODUCTION

This paper is concerned with the computation of the frequency
warping operation on signals, such as a musical tone of duration of
about one second or longer. In other audio applications, frequency
warping is often applied to filters and to filter design, in which
case the computation presents little or no problem, the results are
classical and well studied [1] and the technique is implementable
in real-time. On the contrary, warping long-length signals presents
large computational problems, both from the point of view of com-
plexity and of causality, which hamper the possibility of using this
technique in real-time applications, at least in exact form. A few
plugins partially exploiting the musical capabilities offered by fre-
quency warping are available on the market [2, 3].

In this paper, we present a simple approximation method that
yields efficient and causal structures, in the form of unconventional
multirate filter banks, which allow for real-time computation of
frequency warping, for a large class of warping maps. At simi-
lar computational cost, the algorithm largely improves the quality
of warping with respect to the one presented in [4, 5]. The new
approximation is based on the intuitive idea that frequency warp-
ing a narrowband signal, such as a sinusoidal wave packet, simply
amounts to properly time scale the amplitude envelope and to re-
modulate the signal to warped frequency. The scaling factor of the
envelope approximately depends on the derivative of the warping
map at warped frequency.

If a wideband signal is decomposed into sinusoidal wave pack-
ets, e.g., by means of a Gabor expansion or short-time Fourier
transform [6, 7], then the warped signal can be generated by scal-
ing, remodulating and properly delaying each packet. Due to the
dispersive character of frequency warping, the original time shift
of the wave packets transforms into a frequency dependent delay,
which can be approximated to a constant delay for wave packets at
each given frequency. Fortunately, scaling and delay transform in
a covariant way by warping. As it can be expected, this results into
generalized phase vocoder filter bank structures [8] where differ-
ent resampling factors are applied to the various channels. More-
over, scaling is achieved by enforcing unequal downsampling and
upsampling rates in each channel.

The efficient filter bank structures for the computation are dis-
cussed in this paper together with an analysis of the complexity
and of the error. Our results show that both the numerical and the
perceptual errors are largely tolerable.

The applications of the approximate warping filter bank struc-
ture range from signal representations [9] to synthesis and digital
audio effects [10, 5]. In particular, in the physical models of piano
strings and rods, the frequency warping section can be cascaded to
a digital waveguide in order to simulate dispersion [11]. At compa-
rable computational cost and similar warping map flexibility, this
is a viable alternative to the use of dispersive waveguides that does
not require the design of very high order allpass filters [12].

2. FREQUENCY WARPING OPERATORS

Frequency warping is completely characterized by a frequency
transformation, i.e., by a map θ(ω) of the frequency axis into or
onto itself. Given a signal s(t) with Fourier transform S(ω), the
Fourier transform of the warped signal is the function

S(θ(ω)) = 1√
2π

Z +∞

−∞
s(t)e−jθ(ω)tdt. (1)

Thus, frequency warping can be defined as action of the operator

Wθ = F†CθF, (2)

where F is the Fourier transform operator and F† its adjoint. The
symbol Cθ denotes the composition by θ operator, i.e.,

[CθS] (ω) = [S ◦ θ] (ω) = S(θ(ω)). (3)

The arbitrary shape of the map θ defines the character of the fre-
quency warping operations. In most applications, θ(ω) is a contin-
uously increasing and differentiable antisymmetric function map-
ping zero frequency to zero frequency, as shown in Figure 1. How-
ever, more general forms in which the warping map θ(ω) is not
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Figure 1: A typical warping map.

one-to-one can be considered provided that local invertibility is
guaranteed.

If the map is one-to-one and almost everywhere differentiable
then a unitary form of the warping operator can be defined by the
action

S̃(ω) = [UθS] (ω) =
q˛̨

dθ
dω

˛̨
S(θ(ω)). (4)

We will assume henceforth that the map is increasing so that
its first derivative is non-negative and the absolute value can be
dropped in (4). The main property of the unitary warping oper-
ator is to preserve in-band energy. This is an important property
even from the perceptual point of view: since warping a given fre-
quency band results in a dilated or compressed band, without nor-
malization the warped band may be perceived as louder or fainter,
respectively. If the map θ is strictly increasing, then the warping
operator is invertible and the action of the inverse is given byh

U†θS
i
(ω) =

ˆ
U−1
θ S

˜
(ω) = [Uθ−1S] (ω)

=

q
dθ−1

dω
S(θ−1(ω)),

(5)

where the symbol † denotes the adjoint operator, which is identical
to the inverse in view of unitarity.

A spectral peak of the signal at ω = ω0 may result into one
or more peaks of the warped signal located at the roots Ω of the
equation θ(Ω) = ω0, if any. If the map θ is one-to-one and onto
then the peak at ω = ω0 transforms into a peak at θ−1(ω0). In
this sense, frequency warping is a frequency dependent modula-
tion technique, where each component sinusoid is modulated to a
different frequency.

2.1. Warping Quasi-Sinusoidal Signals

It is instructive to investigate on how an amplitude modulated si-
nusoidal signal of the form

s(t) = g(t)ejω0t, (6)

where g(t) is a real smooth envelope, is transformed by frequency
warping. In this case we have

S(ω) = G(ω − ω0), (7)

hence the Fourier transform of the warped signal is

S̃(ω) =
q

dθ
dω
G(θ(ω)− ω0). (8)

If the amplitude envelope g(t) is narrowband then G(θ(ω) − ω0)
is nonzero only in a small neighborhood of θ−1(ω0). Therefore, if
the map is continuous and differentiable in this neighborhood, we
can expand θ(ω) in a Taylor series about ω = ω0. Truncation to
first order yields:

θ(ω) ≈ θ(θ−1(ω0)) + β(ω − θ−1(ω0))

= ω0 + β(ω − θ−1(ω0)),
(9)

where

β = dθ
dω

˛̨
ω=θ−1(ω0)

=

»
dθ−1

dω

˛̨̨
ω=ω0

–−1

. (10)

Substituting (9) into (8) and approximating, within the warped
band, the first derivative of θ with the constant β obtains

S̃(ω) ≈
p
βG(β(ω − θ−1(ω0))). (11)

Equation (11) shows that warping a narrowband signal is approx-
imately equivalent to scaling the signal envelope by β and to re-
modulating to the warped frequency θ−1(ω0). Indeed, from (11)
and the Fourier scale theorem, we obtain:

s̃(t) ≈ 1√
β
g

“
t
β

”
ejθ

−1(ω0)t. (12)

Consequently, the frequency warped version of a wideband sig-
nal represented in terms of narrowband Gabor grains can be ob-
tained approximately by individually scaling and remodulating the
grains.

Another essential ingredient for the approximation of warping
is dispersion. It is easy to see that the warped version of the shifted
signal s(t− τ) has Fourier transform

[FUθs(t− τ)] (ω) =
q˛̨

dθ
dω

˛̨
e−jθ(ω)τS(θ(ω)). (13)

Accordingly, each frequency component of the signal is time
shifted by a different amount controlled by the warping map θ,
acting as a multiplier of the time shift τ . If s(t) is the narrowband
signal in (6) then, within the same approximation as in (11), we
have

[FUθs(t− τ)] (ω) ≈ e−j[βω+ω0−βθ−1(ω0)]τ S̃(ω). (14)

As the result of warping, the delayed enveloped sinusoid is shifted
by βτ . Hence, the warped group delay β acts as a multiplier of
time shift. The phase correction term

ˆ
βθ−1(ω0)− ω0

˜
τ adjusts

the phase delay of the unwarped sinusoid to that of the warped one.
Indeed, it is easy to show that the approximately warped version
of a running sinusoid amplitude modulated by a delayed envelope,
i.e., of a signal of the form:

v(t) = g(t− τ)ejω0t, (15)

is the following:

ṽ(t) = Uθv(t) ≈ 1√
β
g

“
t
β
− τ

”
ejθ

−1(ω0)t. (16)

The last approximation can be written in the compact form:

UθMω0Tτg(t) ≈ Mθ−1(ω0)TβτDβg(t), (17)
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where Mω0 is the modulation operator

Mω0g(t) = ejω0tg(t), (18)

Tτ is the time-shift operator

Tτg(t) = g(t− τ), (19)

and Dβ is the dilation operator

Dβg(t) = 1√
β
g

“
t
β

”
. (20)

In other words, since (17) can be rewritten as follows:

D−1
β T−1

βτM−1
θ−1(ω0)

UθMω0Tτg(t) ≈ g(t), (21)

the low-pass window g(t) must be selected as an approximate
eigenfunction of the unitary operator on the left hand side, with
eigenvalue 1.

It is interesting to note that both the modulation and the di-
lation operator are particular cases of unitary warping operators,
where the map θ is chosen as ω − ω0 and βω, respectively. In-
deed, using this fact and the commutation rule TβτDβ = DβTτ ,
one can show that (21) is equivalent to

UψTτg(t) ≈ Tτg(t) (22)

with
ψ(ω) = θ

“
ω
β

+ θ−1(ω0)
”
− ω0. (23)

In other words, the time-shifted window must be close to an eigen-
function of the incremental warping operator Uψ .

3. APPROXIMATE FREQUENCY WARPING THROUGH
GABOR FRAMES

By means of Gabor expansions [7, 6], signals are represented in
terms of a collection of windowed sinusoids:

s(t) =
X
q,n∈Z

Sq,ngq,n(t), (24)

where

gq,n(t) = M2πqaTnτg(t) = ej2πqatg(t− nτ); q, n ∈ Z, (25)

in which q is the frequency index and n the time index. The rep-
resentative elements are obtained by time-shifting and modulating
a unique window function g(t). The representation is complete
provided that the frame operator

Ps(t) =
X
q,n∈Z

〈s, gq,n〉 gq,n(t) (26)

is invertible, where the symbol 〈, 〉 denotes scalar product in
L2(R). This is true if there exist two finite non-zero constants
A and B such that

A 6
X
q,n∈Z

|〈s, gq,n〉|2 6 B, (27)

in which case (25) is said to be a frame and the expansion coeffi-
cients Sq,n in (24) can be computed – not uniquely in the general
case – as the scalar products

Sq,n = 〈s, ĝq,n〉 , (28)

where ĝq,n = P−1gq,n(t) is the dual frame. For the Gabor frame
(27) can only be satisfied if the time-frequency sampling grid is
sufficiently fine, i.e., if aτ 6 1.

The definition of frame (27) and of frame operator (26) is inde-
pendent on the way the frame elements gq,n(t) are generated, i.e.,
it extends to non-Gabor frames in which the frame elements are
not generated by time-shift and modulation. For the Gabor frame
one can show that

ĝq,n(t) = M2πqaTnτ ĝ(t) = ej2πqatĝ(t− nτ); q, n ∈ Z, (29)

i.e., the dual Gabor frame is also obtained by time-shifting and
modulating a unique dual window function ĝ(t), so that (28) takes
on the form of a short-time Fourier transform with inverse (24).

Any unitary operation on the frame results in a new frame with
the same frame bounds A and B [13]. In particular, when applied
to a Gabor frame, the unitary warping operator Uθ generates the
frequency warped frame and dual frame

g̃q,n(t) = UθM2πqaTnτg(t),

˜̂gq,n(t) = UθM2πqaTnτ ĝ(t).
(30)

A discrete-time version of warped frame was introduced in [14]
for the non-uniform time-frequency representation of signals. As
we showed in the previous Section, the warped Gabor frame and
its dual are not Gabor frames. Unless the warping map is linear,
there is no exact commutation rule between warping and time-shift
operators. However, reasoning as in (17), one can show that

g̃q,n(t) ≈ Mθ−1(2πqa)TnβqτDβqg(t), (31)

where

βq =
dθ

dω

˛̨̨̨
ω=θ−1(2πqa)

=

"
dθ−1

dω

˛̨̨̨
ω=2πqa

#−1

, (32)

provided that g(t) is sufficiently smooth and narrowband, and sim-
ilarly for the dual frame.

In this paper we will not focus on the unitarily equivalent
warped frame representation. Rather, we seek approximations of
the warping operator through Gabor frame representation. The
main idea is that when (31) holds and the signal is represented
as in (24) then

Uθs(t) =
X
q,n∈Z

Sq,nUθgq,n(t)

≈
X
q,n∈Z

Sq,nMθ−1(2πqa)TβqτDβqg(t).
(33)

Notice that (33) is a peculiar “irregular” Gabor-like expansion in
which the windows are differently scaled by the dilation operators
Dβq and the modulation frequencies θ−1(2πqa) are not harmon-
ically related. Moreover, the expansion coefficients Sq,n are ob-
tained as in (28) by computing the scalar product of the signal with
the unwarped dual Gabor frame ĝq,n(t).

An alternate (dual) scheme consists, in principle, in warp-
ing the signal before computing the Gabor coefficients and us-
ing these coefficients for the expansion on a conventional Gabor
frame. Thus, one can compute the coefficients

S̃q,n = 〈Uθs, ĝq,n〉 =
D
s,U†θ ĝq,n

E
. (34)
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As shown in the rightmost term of (34), this process is unitarily
equivalent to computing the scalar product of the signal over the
inversely warped dual frame:

˜̂gq,n(t) = U†θ ĝq,n(t) = Uθ−1M2πqaTnτ ĝ(t). (35)

Summarizing the results of this Section, approximate fre-
quency warped can be computed by means of Gabor-like expan-
sions in which either the frame elements are approximately warped
by scaling and frequency dependent modulation or the dual frame
elements are approximately inversely warped by scaling and fre-
quency dependent modulation.

The resulting piecewise warping map approximation is shown
in Figure 2 for a very reduced number of bands. There, a warp-
ing curve is approximated by tangent linear segments in partly
overlapping bands. The edges and centerbands of the ideal uni-
form bandwidth frame elements can be read on the ordinates axis.
These are transformed according to the inverse map θ−1 into non-
uniformly spaced frequencies as read on the abscissae axis (dot-
ted lines). As a result of the approximation, the band edges are
transformed according to the tangent lines and can be traced in the
figure as dashed lines.

We remark that, according to the local convexity of the warp-
ing map, the bands resulting from the local scaling approxima-
tion of warping may either overlap in the frequency domain or
there can be gaps. However, as the number of bands increases, the
overlapping portions or the gaps become less and less pronounced.
Other piecewise linear approximations are possible, e.g., by trac-
ing chord segments joining the band edges. The one we selected
exactly warps the centerband frequencies.

0
0

ω

θ(ω)

2πa

4πa

8πa

6πa

θ
−1

(6πa)θ
−1

(4πa)

Figure 2: Piecewise linear approximation of warping map with a
very small set of points: thin solid lines denote center bands and
dotted lines denote band edges(initial and warped).

4. DISCRETE-TIME FREQUENCY WARPING

The discrete-time counterpart of the frequency warping approxi-
mation easily follows from the continuous time version discussed
in the previous sections. The discrete-time Gabor set requires only
a finite number of bands M to cover the normalized frequency
range ω ∈ [−π,+π), with frequency resolution a = 2π/M . The

discrete-time Gabor frame elements gq,n(r) are obtained by shift-
ing and modulating a unique window sequence g(n), where only
integer shifts multiple of an integer N ≤M are allowed, thus

gq,n(r) = M 2πq
M

TnNg(r) = ej
2πq
M

rg(r − nN), (36)

for q = 0, 1, ...,M − 1 and n ∈ Z, and similarly for the dual
frame gq,n(r).

A few remarks on the warping maps are however necessary.
In fact, since frequency warping transforms bandwidths, the re-
striction of an invertible analog frequency map to the interval
[−π,+π) is not necessarily one-to-one and onto over this interval.
For a strictly increasing map mapping zero frequency to zero fre-
quency one needs to require that ±π is mapped to ±π. If the map
maps [−π,+π] one to one onto a smaller interval then aliasing-
like phenomena occur, similar to downsampling, unless the orig-
inal signal sequence is suitably bandlimited to the smaller inter-
val θ([−π,+π)). Vice versa, if the map maps [−π,+π] one to
one onto a larger interval then spectral replication occurs, similar
to upsampling, unless the domain of the map is restricted to the
smaller interval θ−1([−π,+π)). In other words, in order to avoid
both aliasing and imaging one needs to restrict both domain and
co-domain of the warping map to the interval [−π,+π], keeping
in mind that there can be frequencies that are not mapped by any
frequency or frequencies that do not map to any frequency. In the
latter case, only the scalar products of the signal with a subset of
the Gabor frame elements, with respect to the frequency index q,
are required in order to compute warping.

The choice of the analysis and synthesis windows, respectively
ĝ(n) and g(n), is arbitrary, provided that the discrete-time coun-
terpart of (27) is satisfied. Ideally, the synthesis window should
match eigenfunctions of the incremental warping operator Uψ as
in (22). However, the Fourier transform of an eigenfunction of
the unitary warping operator corresponds to the square root of the
derivative of an eigenfunction of the composition operator Cψ , up
to an additive constant. Using the theory developed in [15], we
were able to prove that the only eigenfunctions of Uψ with eigen-
value 1 are constant, corresponding to a Dirac pulse at ω = 0 in
the frequency domain. In order to approach this shape, we can
select the window to be narrowband lowpass, which leads to con-
ventional window design in short-time spectral analysis. We let
M be an integer multiple of N , i.e., M = KN , with K a small
integer (usually K = 2 or 3), and determine a length M lowpass
symmetric window g(n) such thatX

n∈Z

g2(r − nN) =
1

KM
. (37)

In this case, by choosing identical analysis and synthesis windows:
g(n) = ĝ(n), one obtains a tight frame, i.e., a frame with bounds
A = B = 1 in (27). This is similar to orthogonal bases, however,
the frame is complete but not a basis. A popular choice is

g2(r) =
1− cos

`
2πr
M

´
KM

; r = 0, 1, ...,M − 1, (38)

i.e., g2(r) is the Von Hann window and

g(r) =

r
2

KM
sin

“πr
M

”
; r = 0, 1, ...,M − 1 (39)

is the sine window, which we will enforce in this paper. One of the
advantages of this choice is that the sinusoidal form of the window
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leads to a single frequency term, which warps to another single
frequency term. Therefore, except for terms deriving from the fi-
nite length of the window, the shape of the warped window is very
close to that of a dilated window.

Computation of the expansion coefficients

Sq,n = 〈s, gq,n〉 =
X
r∈Z

s(r)e−j
2π
M
qrg(r − nN) (40)

can be performed using the analysis section of the filter bank struc-
ture in Figure 3, which corresponds to the analysis section of a
phase vocoder [16, 17, 8], with impulse responses

gq(r) = ej
2π
M
qrg(M − r) = ej

2π
M
qrg(r). (41)

A delay ofK−1 samples is introduced in the coefficient sequence
Sq,r in order to make computation causal.

The approximate synthesis of the warped signal requires a dis-
crete counterpart of (33). The discrete-time window can be con-
sidered as the samples of a continuous-time function g(t) taken
at unit sampling rate. In order to form the discrete-time warping
synthesis windows one can apply the dilation operation Dβqg(t)
to the continuous-time window and then sample at unit sampling
rate. This operation yields the window

hq(r) =

s
1

βq
g

„
r

βq

«
. (42)

However, the result is sharper if only the window lengthM is mod-
ulated to some other integer Mq . To the purpose we let Mq be the
closest integer to βqM and we let

hq(r) =

s
M

Mq
g

„
rM

Mq

«
; r = 0, 1, ...,M − 1. (43)

Similarly, for the discrete-time counterpart of the shift operator
Tβqτ , we enforce the integer shifts nNq = nMq/K. Both dilation
and shifting operations are quantized in the discrete-time warping
algorithm, which is a source of error that can be controlled by
choosing a sufficiently large window length M and a sufficiently
small overlap factor K. This is preferable with respect to the non-
integer choice, which causes amplitude modulation since the win-
dow would not satisfy the overlap add identity (37). In this form,
the approximate warped signal can be obtained as output of the
synthesis filter bank in Figure 3. There, the analysis coefficients
are phase corrected, upsampled with a different upsampling rate in
each channel and interpolated by unequal length modulated win-
dows

g̃q(r) = M
θ−1

„
2πq
M

«hq(r) = e
−jθ−1

„
2πq
M

«
r
hq(r). (44)

The phase correction terms

γq = Nqθ
−1 `

2πq
M

´
− 2πqN

M
, (45)

which are the discrete analogues of (14), originate from the filter
bank implementation of the phase vocoder, where the modulating
terms in the frame elements need to be time shifted for both the
analysis and synthesis procedures to be put in the form of (resam-
pled) convolution. To the purpose, we use the following commu-
tation rule:

Mω0Tτ = ejω0τTτMω0 (46)

in both the analysis and synthesis. While in conventional phase
vocoders the phase correction factors cancel out, in reason of the
heterogeneous analysis and synthesis sections these factors are in-
deed necessary for correct computation in the approximate warp-
ing filter bank scheme.

An alternate structure, with similar properties, to that shown
in Figure 3 can be worked out from (34) and (35). It consists of an
approximate inverse warping analysis section, followed by a con-
ventional phase vocoder synthesis section. Furthermore, an exten-
sion to rational numbers Nq and Mq is possible, which achieves a
smaller error but requires a more costly implementation in terms
of upsamplers and downsamplers by possibly high factors.

5. PERFORMANCE

In this Section we give a brief account of the performance of the
approximate warping algorithm, in terms of operation count and
numerical and perceptual error.

5.1. Computational Cost

The analysis section of the approximate warping filter bank in Fig-
ure 3 can be efficiently implemented with a length M FFT, with
a cost of O(M logM) operations, which are repeated every N
input samples, for a total rate of O(K logM) operations per sam-
ple. The synthesis filter bank section cannot be efficiently com-
puted by means of FFT since the modulating frequencies of the
warped frame elements are not harmonically related. For real sig-
nals, only half of the filters in the bank must be computed since
the other half are complex conjugated versions applied to complex
conjugated coefficient sequences. Therefore, a set ofM/2 real im-
pulse responses can be derived by combining each pair of complex
conjugates sections of index q and M − q. For each expansion co-
efficient, the generic section q filter generates Nq output samples;
the other Mq − Nq = (K − 1)Nq samples need to be prepared
for the overlap with subsequent outputs in the overlap-add scheme.
This operation requiresMq multiplies of the coefficient Sq,r times
the corresponding precomputed synthesis window. Thus, each fil-
ter section requires Mq/Nq = K operations per output sample.
For M even there are M/2 + 1 sections and for M odd there
are bM/2c + 1 sections. In each length Nq output segment there
are K slices of shifted windows to be added together. Therefore,
the total cost of the complete synthesis section is (bM/2c+ 1)K
multiplies and bM/2c (K−1) adds per sample. Notice that in this
computational scheme the phase correction factors are not needed
as they are embedded in the modulated windows both in the anal-
ysis and in the synthesis.

For a finite-length input signal, the overall cost of the approx-
imate frequency warping structure grows linearly. This should be
compared with the non-causal allpass cascade structures in classi-
cal computation of the Laguerre transform for frequency warping
[18, 14], whose complexity grows quadratically with the number
of samples.

5.2. Numerical and Perceptual Error

A direct estimate of the warping approximation error bounds pro-
vides the following characteristics: both the `2 error norm and the
absolute error decrease as M−3/2 as M grows. Therefore, the er-
ror can be reduced by choosing a sufficiently wide window. More-
over, due to the fact that the approximation of the delays tends to
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Figure 3: Efficient warping structure based on Gabor filter bank for the analysis and approximated warped Gabor filter bank for the
synthesis.

cumulate in time, the error grows with the length of the input sig-
nal. With this respect, for fixed window length M , our estimates
provide an error trend of O(L5/4/M2) as the length L of the sig-
nal grows. For example, for a window length of 2400 samples,
the error remains confined within 10% for about 1 s at 44.1 kHz
sampling rate. The error is also proportional to the sum of the co-
efficients βq , showing that the error depends on the steepness of
the warping curve. Moreover, the influence of the overlap factor
over the error decays modestly as K−1/2. However, since N de-
creases as K grows, the heavier quantization of the delays and of
the window shifts tends to increase the error. Therefore, from the
error point of view increasing K is not beneficial.

We extensively tested the theoretical error estimates against
the numerical error. In this task we employed a number of sources
like noise and tones of musical instruments with sharp or slow
attack and decay. In the comparison we used the one-parameter
family of Laguerre maps, as only in this case an exact algorithm
to compute warping is available. The experimental results confirm
the theoretical estimates and show proportionality with the given
trends by small constants, confirming that the theoretical estimates
provide worst case bounds.

Additionally, we evaluated the perceptual error introduced by
warping. For the purpose, for a set of instrument sounds, we evalu-
ated the error of the approximation with respect to Laguerre maps.
Using a procedure similar to that found in MPEG coders, we com-
puted the masking curves of the signal over the error. As the er-
ror is coherent with the signal, masking is likely to occur. This
is due to the fact that the most relevant part of the error originates
from the approximation of frequency dependent delays as constant

within narrow frequency bands and from their quantization. In our
results, the approximation error rarely exceeds the masking thresh-
old. In sounds of approximately 1 s duration and using a window
length ofM = 2400 samples, the masking threshold overshooting
occurred in less than 1% of the frames, mostly located at the attack
and at the decay segments of the tones.

6. APPLICATIONS

The frequency warping effect introduces a coloration in the
signal in which harmonically related partial can become more
or less inharmonic, with consequent beating and floating. The
effect is per se interesting and can be applied to the sounds
of several instruments and, especially, strings. Examples
employing the proposed algorithm on a variety of sounds,
together with a comparison with the exact algorithm in the avail-
able cases (Laguerre maps) can be found at the following URL:
http://www.itn.liu.se/∼giaev/soundexamples.h
tml.

With properly selected maps, frequency warping can be used
in physical models as an alternative to dispersive delay lines. In
fact, a dispersive delay line can be considered as a warped delay
line in which the elementary delay (or a group of them) is replaced
by an allpass filter. The structure is therefore equivalent to a delay
line cascaded with a warping section, provided that all the inputs
are inversely warped. A dispersive waveguide may contain several
dispersive digital lines, each going from the excitation input to the
boundaries or vice versa and to and from the output pick-up point.
Often the inputs are control signals that can be either prewarped
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off-line or, in the case of noise, are unaffected by warping. Each
dispersive chunk is formed by a chain of allpass filters, or, what is
equivalent, by a high order all-pass filter. The design of heteroge-
neous length allpass filters simulating the proper dispersion is very
hard and still an open problem [12]. Rather, it may be convenient
to simulate a non-dispersive waveguide, moving dispersion out-
side the closed loop, which is accomplished by warping the output
signal.

In contrast to the one parameter family of Laguerre maps in
allpass cascade implementations, the proposed warping algorithm
leaves ample freedom in the choice of warping map. In fact, fixed
the window length M , both the discrete set of warped frequencies
ωq = θ−1(2πq/M) and the slopes βq can be arbitrarily selected.
The latter control the scale of the warped signal about the corre-
sponding frequency ωq , where large values of βq generate longer
signals. This property can be used in digital audio warping ef-
fects in order to change the decay rates of the output signal in a
frequency dependent fashion.

While the cascade allpass structure for Laguerre warping are
strongly non-causal and impractical for real-time computation, the
proposed warping algorithm lends itself to real-time computation.
However, the limitation of our algorithm toward real-time is that
the upsampling rates Nq in each channel of the synthesis structure
should never be smaller than the corresponding downsampling rate
N of the analysis section, otherwise data would be missing for the
computation of the current sample. Since the ratio Nq/N ≈ βq ,
then (see (32)) a condition for real-time operation is that the first
derivative of the warping map should not be smaller than 1. Warp-
ing maps having this characteristic bring frequencies in [−π,+π]
to frequencies in a smaller interval around zero frequency.

In the synthesis by physical models, the previous limitation
can be circumvented by calibrating the non-dispersive waveguide
to a much higher pitch than the target one, so that the tone is
brought back to the desired height by warping. If the warping map
has a specific form θ̂(ω), as dictated by physical laws or by exper-
imental measures, one can easily transform this into a map having
derivative greater than one simply by multiplying it by a constant
α > 1. With the new map θ(ω) = αθ̂(ω), a frequency ω0 warps
to frequency ω̃0 = θ−1(ω0/α). Therefore, in order to achieve the
desired frequency ωd = θ̂−1(ω0) one simply needs to start with
frequency αω0. The linearity of this relationship ensures that the
relationships among the desired frequencies, e.g., the harmonics to
be warped to inharmonic partials with a given law, is not altered.
The only limitation is therefore the reduced frequency range due
to the [−π,+π] clipping of the scaled warping map. This can be
handled by oversampling.

In digital audio effects, the above limitation toward real-time
may be too severe. However, a workaround is possible by embed-
ding pitch-shifting in the modified phase vocoder scheme. This
is indeed directly possible by frequency bin reassignment and by
phase correction in the analysis section [19, 20].

The latency of the approximate warping scheme is propor-
tional, via the sampling interval, to the window shift integer pa-
rameter N . The latter is the minimum number of samples in or-
der to produce a set of coefficients, assuming that the previous
(K − 1)N samples are known or zero. For a fixed window length
M , one can reduce N by increasing the overlap factor K. How-
ever, as we have seen in Section 5, reducing N increases the com-
putational cost and the quantization error of the delays and win-
dow shifts in the synthesis section. This results in lower adherence
to the established warping rule but in no other annoying effect.

Therefore, a trade-off between latency and precision needs to be
achieved. For K = 2 and M = 2200, latency is estimated at
about 25ms at a sampling rate of 44.1 kHz.

7. CONCLUSION

In this paper we introduced an efficient scheme for frequency
warping audio signals, which overcomes several limitations of all-
pass chain based systems, notably those of the restricted family of
achievable maps and the non-causality of the computational struc-
ture. The approximate warping algorithm was shown to introduce
a negligible error, both numerical and perceptual, which can be
controlled by proper choice of the length of the window. With
some limitations and workarounds, the algorithm has a real-time
implementation and it can be suitable as a digital audio effect or in
the synthesis by physical models.
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