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ABSTRACT

This article presents a nonlinear discrete-time model of the EMS
VCS3 voltage-controlled filters. The development of the model
is based on the study of the filter circuitry and its behavior in the
time domain. From this circuitry a system of nonlinear differential
equations has been derived describing the dynamics in regime of
large signals. The digital implementation of the filter is based on a
numerical approximation of those equations. The resulting Matlab
model has been compared with a structurally identical simulation
running under PSpice. Finally, a real-time realization of the VCF
has been implemented under the Pure Data processing environ-
ment.

1. ANALOG SYSTEM

The Voltage-Controlled for Studio with 3 oscillators (VCS3) was
an analog modular monophonic synthesizer designed by David
Cockerell in 1969 and produced by Peter Zinovieff for the Elec-
tronic Music Studio Ltd in London. The voltage-controlled filter
(VCF) that was embedded in this synthesizer used junction diodes
as variable-resistance components to control the cutoff frequency.

The circuit is based on a ladder structure, that is very similar to
that implemented in the renowned Moog VCF [1, 2, 3, 4, 5]. The
main difference between the two circuits resides in the fact that
the latter uses bipolar junction transistors (BJT) instead of diodes
to control the cutoff frequency. Notes for a discrete-time imple-
mentation of this structure have been drawn by Borin [6].

Figure 1 shows the circuit of the VCF. It is basically a differ-
ential amplifier loaded with a diode-capacitor network, where the
diodes act as current-controlled resistors. Their resistance in fact
determines the filter cutoff frequency, and is related to the control
current I0 imposed by the BJT Q4 which acts as a current genera-
tor controlled by the voltage VCV . The polarization of the diodes
is ensured by Q3, which provides 9V at the top of the ladder: this
allows the current to flow in the two branches as indicated in Fig-
ure 1.

The VCF features also a feedback circuit whose variable re-
sistance can induce a gain ranging from 0 to about 10 (as indi-
cated on the control panel of the synthesizer). This circuit is based
on the OP-AMP U1 whose output is sent to the base of Q2 (thus
closing the feedback loop), as well as to the filter output. To re-
alize the feedback, the voltage across C4 (which is the output of
the filter in open-loop mode) is sent at the inputs of U1 through a
first-order highpass filter (the RC cell constituted by C7 and R7 on
one branch, and by C8 and R8 on the other one) to eliminate the
DC offset caused by the polarization voltages present in the sig-

nal. The same feature is realized by C5 and C6. The three diodes
D9, D11 and D13 and, correspondingly, D10, D12 and D14, act
as two pull-up current-controlled resistors. Indeed they could be
substituted with two resistors, but this solution would limit the ef-
ficiency of the control current I0 in varying the cutoff frequency,
furthermore it would linearize the whole circuit and consequently
change its peculiar sound.

2. DERIVATION OF THE MODEL

First, a linearized open-loop version of the circuit has been mod-
eled by disconnecting the feedback: in this open-loop version, the
diodes were substituted by equivalent differential resistances and
the two BJTs Q1 and Q2 were substituted by simplified versions
of the Hybrid-π model (also known as trans-conductance model)
[7]. The resulting circuit describes the open loop filter in regime
of small signals.

Then, the nonlinearities have been taken into account. Diodes
were modeled with an exponential voltage-to-current characteris-
tics that describes their behavior under conditions of direct polar-
ization. BJTs were modeled with the Ebers-Moll model [7]. A
model for the open-loop VCF has been so achieved, capable of
describing the system behavior in regime of large signals.

Last, the variable gain feedback circuit has been included in
the nonlinear model. As it usual for this type of amplifiers, the
OP-AMP U1 has been modeled under the assumption of linear
behavior.

3. NONLINEAR MODEL OF THE FILTER IN OPEN
LOOP

It is possible to assume that the diodes in the two branches of the
ladder are always directly polarized. Their behavior in the large
signals domain is therefore described with good approximation by
Eq. (1):

i = Iinv
“
e

v
ηVT − 1

”
, (1)

Where Iinv is the diode inverse polarization current, which usually
amounts to some nA and η is the emission coefficient, a parame-
ter related to the diode model: for the 1N4148 (used in the VCF),
η = 1.836. Furthermore, VT is the so-called thermal voltage:
VT = kT/q ≈ 0.026 mV at 25◦C, where q = 1, 60206−19C is
the fundamental electric charge unit, k is the Boltzmann constant,
T is the temperature measured in Kelvin degrees, and VT is the
so-called thermal voltage. The following equation can straightfor-
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Figure 1: Schematic of the EMS VCS3 VCF circuitry.

wardly be derived from Eq. (1):

v = ηVT ln

„
i

Iinv

«
. (2)

The transistors Q1 and Q2 have been modeled with the Ebers-Moll
model which is able to describe their nonlinear behavior in active
mode with good approximation. The Ebers-Moll model describes
the NPN BJTs in the form of an equivalent circuit, as shown in Fig-
ure 2. The two diodes in the model represent the base-to-emitter
and base-to-collector junctions. The two current sources quantify
minor transports of charge through the base region, and depend
on the intensity of the current flowing through each diode. The
equations which characterize the model are the following:

IE = IES

„
e
VBE
VT − 1

«
(3)

IC = α0IES

„
e
VBE
VT − 1

«
, (4)

where IE is current at the emitter, IC is the current at the collector,
α0 is the short circuit current gain in common base configuration
(values ranging between 0.980 and 0.998), IES is the inverse cur-
rent of the diode between the base and the emitter, and finally VBE

Figure 2: The NPN BJT equivalent circuit provided by the Ebers-
Moll model.

is the voltage between the base and the emitter. The current gain
β0 can be considered to be very high and, thus, approximating in-
finity. Moreover, by keeping in mind that:

β0 =
α0

1− α0
←→ α0 =

β0

1 + β0
, (5)
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then α0 can be approximatively considered equal to 1. Now, since:

α0 = IC/IE and β0 = IC/IB (6)

it can be deduced that the base current can be considered equal to
zero, while the emitter current is equal to that flowing along the
collector. Holding these assumptions, the fundamental equation
useful to describe the behavior of a BJT with the Ebers-Moll model
is Eq. (3).

In order to apply the model to the open-loop VCF, it is neces-
sary to understand how it deals with the circuit at the base of the
VCF itself, i.e. the long-tailed pair differential amplifier based on
the BJTs Q1 and Q2. Thus, it is useful to analyze the circuit part
shown in Figure 3. By applying Eq. (3) to Q1 and Q2 respectively,

Figure 3: The Ebers-Moll model in the long-tailed pair differential
amplifier.

the two following equations can be derived:

iC1 = IES1

“
e
vBE1
VT − 1

”
≈ IES1

“
e
vBE1
VT

”
iC2 = IES2

“
e
vBE2
VT − 1

”
≈ IES2

“
e
vBE2
VT

” . (7)

Thus:

vBE1 = VT ln

„
iC1

IES1

«
and vBE2 = VT ln

„
iC2

IES2

«
. (8)

Now, it is interesting to study the behavior of a long-tailed pair
differential amplifier taking the voltage between the input termi-
nals as an input signal. The two following relations have to be
considered:

vBE2 − vBE1 = VT ln

„
iC2 · IES1

iC1 · IES2

«
. (9)

Assuming that the inverse base-to-emitter current in Q1 has the
same value of the one in Q2, i.e. IES1 = IES2 (for example, by
the adoption of a matched-pair of transistors), it can be obtained
that:

vBE2 − vBE1 = VT ln

„
iC2

iC1

«
. (10)

Now, since:

vBE2 − vBE1 = (vB2 − vE)− (vB1 − vE) ,

by taking into account that the two emitters are directly connected
together, it follows that:

vBE2 − vBE1 = vB2 − vB1 (11)

and, by calculating the exponential for both the members of Eq.
(10), it can be obtained that:

e
vB2−vB1

VT =
iC2

iC1
. (12)

Thus, as suggested in [4]:

iE = iC1 + iC2 = iC1 + iC1e
vB2−vB1

VT , (13)

which leads to:
iC1 =

iE

1 + e
vB2−vB1

VT

.

This formula can be rewritten as:

iC1 = 2iE

2

0@1+e

vB2−vB1
VT

1A

= iE
2

 
1+1+e

vB2−vB1
VT −e

vB2−vB1
VT

1+e

vB2−vB1
VT

!

= iE
2

 
1 + 1−e

vB2−vB1
VT

1+e

vB2−vB1
VT

!
.

Now, since:

tanhx =
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1

by making the necessary substitutions, it can be derived that:

iC1 = iE
2

h
1− tanh

“
vB2−vB1

2VT

”i
= iE

2

h
1 + tanh

“
vB1−vB2

2VT

”i (14)

and

iC2 = iE − iC1 = iE − iE
2

h
1 + tanh

“
vB1−vB2

2VT

”i
= iE

2

h
1− tanh

“
vB1−vB2

2VT

”i
.

(15)

The last two equations have been exploited in order to ob-
tain the system of nonlinear differential equations constituting the
model of the VCF in regime of large signals: the nonlinear open
loop filter is shown in Figure 4. Since the three diodes D9, D11
and D13 are in series, they are traversed by the same current, fur-
thermore the voltage pull-down is the same for each of them. So:

VD9 + VD11 + VD13 = 3VD9 .

D10, D12 and D14 undertake the same effect:

VD10 + VD12 + VD14 = 3VD10 .

The application of the Kirchhoff law for voltages on the circuit in
Figure 4 leads to the following system of equations:8><>:

vD3 + vC2 − vD4 − vC1 = 0
vD5 + vC3 − vD6 − vC2 = 0
vD7 + vC4 − vD8 − vC3 = 0

3vD9 − 3vD10 − vC4 = 0

, (16)

DAFX-3



Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

Figure 4: The nonlinear open loop version of the VCF.

which, with the application of logarithms, and considering that
C1 = C2 = C3 = C4 = C, after some algebraic manipulations
can be rewritten as:8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

v̇C1 = I0
2C

1−e

vC1
−vC2
γ

1+e

vC1
−vC2
γ

+ i
C

v̇C2 = I0
2C

 
1−e

vC1
−vC2
γ

1+e

vC1
−vC2
γ

+ 1−e

vC2
−vC3
γ

1+e

vC2
−vC3
γ

!

v̇C3 = I0
2C

 
1−e

vC2
−vC3
γ

1+e

vC2
−vC3
γ

+ 1−e

vC3
−vC4
γ

1+e

vC3
−vC4
γ

!

v̇C4 = I0
2C

 
1−e

vC3
−vC4
γ

1+e

vC3
−vC4
γ

+ 1−e

vC4
3γ

1+e

vC4
3γ

!
, (17)

where γ is an auxiliary quantity defined in order to keep the nota-
tion readable:

γ , η · VT ≈ 1.836 · 0.026 ≈ 0.048, (18)

and the current i is due to the application of the input voltage vin at
the base of Q1. In order to obtain a set of equations which relates

Figure 5: The differential amplifier used in the VCF as variable
gain feedback circuit.

vin with the output vC4 , the substitution of (14) is necessary:

i =
I0
2

»
1 + tanh

„
vin + 3.2V − 3.2V

2VT

«–
=

I0
2

»
1 + tanh

„
vin

2VT

«–
.

Hence:8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

v̇C1 = I0
2C

1−e

vC1
−vC2
γ

1+e

vC1
−vC2
γ

+ I0
2C

“
1 + tanh

h
vin
2VT

i”

v̇C2 = I0
2C

 
1−e

vC1
−vC2
γ

1+e

vC1
−vC2
γ

+ 1−e

vC2
−vC3
γ

1+e

vC2
−vC3
γ

!

v̇C3 = I0
2C

 
1−e

vC2
−vC3
γ

1+e

vC2
−vC3
γ

+ 1−e

vC3
−vC4
γ

1+e

vC3
−vC4
γ

!

v̇C4 = I0
2C

 
1−e

vC3
−vC4
γ

1+e

vC3
−vC4
γ

+ 1−e

vC4
3γ

1+e

vC4
3γ

!
. (19)

The nonlinear system (19) describes the behavior of the VCF when
in open loop.

4. CLOSING THE LOOP

As previously said, the VCF features also a variable gain feedback
circuit based on the OP-AMP U1, which has been modeled assum-
ing linearity. In particular, this part of the circuit can be described
by applying the superposition principle to the circuit in Figure 5,
thus obtaining the following input-output relationship:

vout = vC4+

R9 +R13

R9
− vC4−

R13

R9
. (20)

Now, considering what happens to the currents and voltages in-
volved in the long-tailed pair differential amplifier, and applying
these considerations to the branches of the ladder based on Q1 and
Q2, it can be figured out that:

vC4+ = −vC4− .

Hence:
vC4 = vC4+ − vC4− = 2vC4+ .

DAFX-4



Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

Thus, Eq. (20) can be rewritten as:

vout = vC4+

R9 +R13

R9
+ vC4+

R13

R9

= vC4+ + 2vC4+

R13

R9
(21)

=
vC4

2
+ vC4

R13

R9
.

The termR13/R9 represents the gain of the feedback circuit. Now,
since R13 varies from 0 Ω to 500 kΩ and R9 = 56 kΩ, the gain
varies from 0 to about 10. Considering Eq. (14), then relation (21)
can be directly substituted in the system (19) obtaining:8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

v̇C1 = I0
2C

 
1−e

vC1
−vC2
γ

1+e

vC1
−vC2
γ

+ tanh

»
vin−

vC4
2 −vC4

R13
R9

2VT

–
+ 1

!

v̇C2 = I0
2C

 
1−e

vC1
−vC2
γ

1+e

vC1
−vC2
γ

+ 1−e

vC2
−vC3
γ

1+e

vC2
−vC3
γ

!

v̇C3 = I0
2C

 
1−e

vC2
−vC3
γ

1+e

vC2
−vC3
γ

+ 1−e

vC3
−vC4
γ

1+e

vC3
−vC4
γ

!

v̇C4 = I0
2C

 
1−e

vC3
−vC4
γ

1+e

vC3
−vC4
γ

+ 1−e

vC4
3γ

1+e

vC4
3γ

!
.

(22)
The system (22) describes the VCF in regime of large signals.

5. SIMULATIONS

Matlab simulations using explicit fourth-order Runge-Kutta have
been employed to integrate system (22) in the discrete domain.
For what concerns the integration algorithm, system (22) can be
written as

ẏ = F (t, vC)

which leads to the usual representation of the method:

K0 = hF (ti, vCi)

K1 = hF
`
ti + h

2
, vCi + K0

2

´
K2 = hF

`
ti + h

2
, vCi + K1

2

´
K3 = hF (ti + h, vCi +K2)

(23)

Where ti is the i-th integration step and vCi is a 4 × 1 vector
representing the voltages across the four capacitors at the i-th inte-
gration step. These voltages can thus be updated as follows:

vCi+1 = vCi +
1

6
(K0 + 2K1 + 2K2 +K3) (24)

A fixed-point iteration scheme has then been implemented in order
to find the exact value of vC4 (under a chosen threshold), for each
integration step, as required by system (22).

Figures 6-8 show simulation results coming out when linearly
sweeping sinusoids with fixed amplitude from 20 Hz to 8 kHz at
different input dynamics, along 4 s simulation time and using a
sampling frequency Fs = 88.2 kHz. In every figure the upper plot

Figure 6: 20 Hz to 8 kHz linear sinusoidal sweep with 10 mV am-
plitude peak. I0 = 30 µA, without feedback (R13 = 0).

Figure 7: 20 Hz to 8 kHz linear sinusoidal sweep with 100 mV
amplitude peak. I0 = 30 µA, without feedback (R13 = 0).

shows the waveform of the output signal, whereas the lower spec-
trogram depicts the evolution of the magnitude spectrum in the
corresponding simulation. The upper plots in every figure show
the frequency dependence of the lowpass characteristics: the am-
plitude of the output signal decreases with time, while frequency
grows up. Furthermore by comparing the spectrograms computed
for different dynamics it becomes evident that larger amplitudes
lead to higher harmonic distortion. Figures 9-13 investigate the
effects of feedback, using similar parameterizations of the circuit.
As it can be seen in the previously mentioned Figures, the model
suffers from aliasing: this particular problem will be taken into ac-
count in the next refinings of the model. Finally, Figure 14 shows
the waveform and the spectrogram of a drum loop used as test
sample; Figures 15-17 show some simulation results obtained by
injecting this loop into the filter with different setups.

The closed-loop nonlinear VCF was also analyzed using of-
fline PSpice software simulation as a reference: several sinusoids
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Figure 8: 20 Hz to 8 kHz linear sinusoidal sweep with 1 V ampli-
tude peak. I0 = 30 µA, without feedback.

Figure 9: 20 Hz to 8 kHz linear sinusoidal sweep with 100 mV
amplitude peak. I0 = 30 µA, feedback gain R13/R9 = 2.

with fixed amplitude and different frequency have been injected in
the PSpice model as well as in the Matlab model. The qualitative
comparison between the waveforms of the respective outputs out-
lined a good coherence of the two models: a relevant prove of that,
is the comparison between the RMS values of the outputs, shown
in Table 1. The results were very similar for almost all the inputs
used in the tests except for differences mainly due to the fact that
the proposed model does not account for the dc-cut capacitors C5,
C6, C7, and C8 (see section 1). These high-pass blocks in fact,
while completely blocking components below 20 Hz, obviously
filter the signal also above that frequency. Such effects should
have minor perceptual impact, however high-pass filtering blocks
will be introduced in a further version of the model.

Finally the model has been implemented on a 2.0 GHz Core 2
Duo MacBook laptop mounting MacOS X v. 10.4, equipped with
the Pure Data real time simulation environment, in the form of a
C external. Figure 18 shows a snapshot of the resulting Pure Data

Figure 10: 20 Hz to 8 kHz linear sinusoidal sweep with 100 mV
amplitude peak. I0 = 30 µA, feedback gain R13/R9 = 5.

Figure 11: 20 Hz to 8 kHz linear sinusoidal sweep with 100 mV
amplitude peak. I0 = 60 µA, feedback gain R13/R9 = 2.

patch realizing the VCF. In such an environment the constraint of
real time has been checked depending on the number of fixed-point
iterations needed by the system to converge to a solution satisfy-
ing an accepted threshold of accuracy. This number in fact must be
low enough, in order to prevent the formation of artifacts that be-
come audible when the computational burden overcomes the per-
formance of the computer. A non systematic campaign of tests has
been conducted using different kinds of input signals, such as saw-
tooth and square waves, noise, different kinds of audio samples,
etc. By setting a threshold of accuracy on vC4 equal to 10 mV,
the number of iterations needed to stay below that threshold was
never larger than 2. This means that the nonlinear implicit system
is in general well-conditioned for fixed-point iteration, and that
more accurate solutions can be easily achieved by scaling down
the threshold with the performance of the computer at hand.
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Figure 12: 20 Hz to 8 kHz linear sinusoidal sweep with 100 mV
amplitude peak. I0 = 120 µA, feedback gain R13/R9 = 2.

Figure 13: 20 Hz to 8 kHz linear sinusoidal sweep with 100 mV
amplitude peak. I0 = 300 µA, feedback gain R13/R9 = 2.

Some sound examples obtained with the real-time Pure Data
module of the filter are downloadable at the following URL:
https://mordente.sci.univr.it/samba/Accessible/VCS3Examples

6. CONCLUSIONS AND FUTURE WORK

This work has presented a digital model of the EMS VCS3 voltage-
controlled filter: its circuitry has been modeled in the discrete time
using Fourth-order Runge-Kutta, and fixed-point iteration has been
successfully implemented to solve the resulting nonlinear implicit
numerical system. In this way many structural features that give to
this device its particular sound could be simulated with good pre-
cision, such as its most evident nonlinear characteristics. Concern-
ing the numerical aspects, traditional and robust numerical recipes
have been chosen since they provide accurate enough solutions in
this particular case when the discrete components (which are also
the most relevant sources of nonlinearity) are supposed to work al-

Figure 14: Drum loop sample with kick drum, snare and hi-hat
used for tests.

Figure 15: Output generated with the drum sample of Figure 14
with feedback gain R13/R9 = 1, I0 = 4 µA.

ways in the active region (i.e., in conditions of direct polarization).
On the other hand, more expressive, but also computationally de-
manding models could be used instead in order to obtain a higher
grade of fidelity accounting also for other activity regions of the
semiconductors.

In addition to that, both the integration and the iteration prob-
lem could be recast by keeping into account alternative methods,
especially designed for the solution of nonlinear implicit numeri-
cal systems arising in presence of delay-free feedback chains [8].
The use of such methods is left to a future implementation of the
system.
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Figure 16: Output generated with the drum sample of Figure 14
with feedback gain R13/R9 = 1, I0 = 10 µA.

Figure 17: Output generated with the drum sample of Figure 14
with feedback gain R13/R9 = 1, I0 = 40 µA.
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