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ABSTRACT

In the context of non-stationary sinusoidal modeling, this paper in-
troduces the generalization of the derivative method (presented at
the first DAFx edition) for the analysis stage. This new method is
then compared to the reassignment method for the estimation of all
the parameters of the model (phase, amplitude, frequency, ampli-
tude modulation, and frequency modulation), and to the Cramér-
Rao bounds. It turns out that the new method is less biased, and
thus outperforms the reassignment method in most cases for signal-
to-noise ratios greater than −10dB.

1. INTRODUCTION

Sinusoidal sound modeling is widely used in many musical ap-
plications such as resynthesis, digital audio effects, transposition,
time scaling [1], etc.

As regards the estimation of the model’s parameters, many
publications have focused on stationary sinusoidal analysis. In this
context parameters of the partials are assumed not to evolve within
an analysis frame. The comparison of the corresponding analysis
methods is still an active research topic (see [2] for an example and
references).

The extension of sinusoidal modeling to the non-stationary
case improves quality when modeling the attacks or transients.
While the synthesis is not a problem anymore (see [3]), the anal-
ysis in the presence of amplitude and/or frequency modulations
remains a rather difficult task.

Non-stationary sinusoidal analysis has recently come back into
light. Well-known analysis methods such as the quadratic inter-
polation [4, 5], the reassignment [6, 7], or the phase vocoder [8]
have been generalized to the non-stationary case. Only the deriva-
tive method, which was proposed in the first edition of the DAFx
conference by the first author, has not been generalized yet. This
generalization is the aim of this paper.

After a brief presentation of non-stationary sinusoidal model-
ing in Section 2, we describe the reassignment method in Section
3 and we introduce the generalized derivative method in Section 4.
We then compare these methods in theory (Section 5), in practice
(Section 6), and against the Cramér-Rao lower bounds (CRBs).

2. NON-STATIONARY SINUSOIDAL MODELING

Additive synthesis can be considered as a spectrum modeling tech-
nique. It is originally rooted in Fourier’s theorem, which states
that any periodic function can be modeled as a sum of sinusoids at
various amplitudes and harmonically related frequencies. In this
paper we consider the sinusoidal model under its most general ex-
pression, which is a sum of complex exponentials (the partials)
with time-varying amplitudes ap and non-harmonically related fre-
quencies ωp (defined as the first derivative of the phases φp). The

resulting signal s is thus given by:

s(t) =

PX
p=1

ap(t) exp(φp(t)). (1)

In the context of this paper, amplitudes and frequencies are
supposed to evolve within an analysis frame under first-order am-
plitude and frequency modulations. Furthermore, as the present
study focuses on the statistical quality of the parameters’ estima-
tors rather than their frequency resolution, the signal model is re-
duced to only one partial (P = 1). The subscript notation for the
partials is then useless. We also define Π0 as being the value of the
parameter Π at time 0, corresponding to the center of the analysis
frame. The signal s is then given by:

s(t) = exp

0
BBB@ (λ0 + µ0t)| {z }
λ(t)=log(a(t))

+j

„
φ0 + ω0t+

ψ0

2
t2
«

| {z }
φ(t)

1
CCCA (2)

where µ0 (the amplitude modulation) is the derivative of λ (the
log-amplitude), and ω0 (the frequency), ψ0 (the frequency modu-
lation) are respectively, the first and second derivatives of φ (the
phase). Thus, the log-amplitude and the phase are modeled by
polynomials of degrees 1 and 2, respectively (see [3] for the cor-
responding synthesis method). These polynomial models can be
viewed either as truncated Taylor expansions of more complicated
amplitude and frequency modulations (e.g. tremolo / vibrato), or
either as an extension of the stationary case where µ0 = 0 and
ψ0 = 0. Note that a0 = exp(λ0) and φ0 are respectively the
initial amplitude and initial phase of the signal.

3. NON-STATIONARY SINUSOIDAL ANALYSIS

The main problem we have to tackle now is the estimation of the
model parameters, namely a0 = exp(λ0), µ0, φ0, ω0, and ψ0.
This can be achieved, as in the stationary case, by using the short-
time Fourier transform (STFT):

Sw(t, ω) =

Z +∞

−∞
s(τ)w(τ − t) exp (−jω(τ − t)) dτ (3)

where Sw is the short-time spectrum of the signal s. Note that we
use here a slightly modified definition of the STFT than the usual
one. Indeed we let the time reference slide with the window, which
results in a phase shift of −ωt. This is to simplify the comparison
of the methods in the context of this paper; it does not however
alter the quality of the estimations, all made at time t = 0. Sw
involves an analysis windoww, band-limited in such a way that for
any frequency corresponding to one specific partial (corresponding
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to some local maximum in the magnitude spectrum), the influence
of the other partials can be neglected (in the general case when
P > 1).
In the stationary case (µ0 = 0 and ψ0 = 0), the spectrum of
the analysis window is simply centered on the frequency ω0 and
multiplied by the complex amplitude s0 = exp(λ0 + jφ0). In the
non-stationary case however, s0 gets multiplied [8] by:

Γw(ω, µ0, ψ0) =

Z +∞

−∞
w(t) exp

„
µ0t+ j

„
ωt+

ψ0

2
t2
««

dt.

(4)
Some preliminary attempts in non-stationary sinusoidal anal-

ysis consider the distortion of the resulting phase spectrum first
from direct measurements [9], and then from polynomial approxi-
mations [10]. In the special case of using a Gaussian window for
w, analytic formulas can be derived [11], and the quadratic inter-
polation method [4] is generalized by Abe and Smith [5]. The re-
sulting so-called QIFFT method fits parabolas to the log-amplitude
and phase spectra in order to estimate the model parameters. How-
ever, this method requires the unwrapping of the phase spectrum,
zero padding, and is very sensitive to the shape of the window w
(which in theory should be a Gaussian one – of infinite time sup-
port and with possibly a bad frequency resolution). As we do not
want to impose the use of Gaussian windows nor zero padding in
this present study, the QIFFT method might perform badly while
another method, called the reassignment, seems to give better re-
sults (see [8]), at least as regards the estimation of the frequency.

The reassignment first proposed by Kodera, Gendrin, and de
Villedary [12, 13], was generalized by Auger and Flandrin [6] for
time and frequency. Hainsworth shows in [14] that the reassign-
ment can be easily generalized for the amplitude modulation. In-
deed, by considering Equation (3), one can easily derive:

∂

∂t
log (Sw(t, ω)) = jω − Sw′(t, ω)

Sw(t, ω)
(5)

where w′ denotes the derivative of w. From Equation (2), we then
obtain the reassigned frequency ω̂ and amplitude modulation µ̂:

ω̂(t, ω) =
∂

∂t
= (log (Sw(t, ω))) = ω −=

„
Sw′(t, ω)

Sw(t, ω)

«

| {z }
−∆ω

, (6)

µ̂(t, ω) =
∂

∂t
< (log (Sw(t, ω))) = −<

„
Sw′(t, ω)

Sw(t, ω)

«
. (7)

In practice, for a partial p corresponding to a local maximum m of
the (discrete) magnitude spectrum at the (discrete) frequency ωm,
the estimates of the frequency and the amplitude modulation are
respectively given by:

ω̂0 = ω̂(t, ωm) and µ̂0 = µ̂(t, ωm). (8)

Moreover, these instantaneous parameters are given for the reas-
signed time t̂0 = t̂(t, ωm), with:

t̂(t, ω) = t− ∂

∂ω
φ(t, ω) = t+ <

„
Stw(t, ω)

Sw(t, ω)

«

| {z }
−∆t

. (9)

Normally these parameters might be reassigned to time t̂0. How-
ever, it appears in the experiments described in Section 6 that ∆t

can be neglected. Indeed, except for very low signal-to-noise ra-
tios (SNRs) – in which case the estimation is not precise anyway –

∆t is less than the sampling period (thus very low when compared
to ω, µ, or ψ).

Nevertheless, Röbel has shown in [7] that, thanks to t̂, an esti-
mation of the frequency derivative ψ0 is ψ̂0 = ψ̂(t, ωm) with:

ψ̂ =
∂ω̂

∂t̂
=
∂ω̂

∂t

‹∂t̂
∂t

(10)

and

∂ω̂

∂t
= =

„
Sw′′

Sw

«
−=

 „
Sw′

Sw

«2
!
, (11)

∂t̂

∂t
= <

„
StwSw′

Sw
2

«
−<

„
Stw′

Sw

«
. (12)

Amplitude and phase are eventually to be estimated. Since
these estimations are not included in the original reassignment
method, and since we know the estimated modulations µ̂0 and ψ̂0,
we propose to use the Γw function of Equation (4), thus:

â0 =

˛̨
˛̨
˛

Sw(ωm)

Γw(∆ω, µ̂0, ψ̂0)

˛̨
˛̨
˛ , (13)

φ̂0 = ∠
 

Sw(ωm)

Γw(∆ω, µ̂0, ψ̂0)

!
. (14)

The reassignment method seems currently the best STFT-based
method in terms of estimation precision, at least regarding fre-
quency (see [8]).

4. GENERALIZED DERIVATIVE METHOD

At the first DAFx conference edition, the first author proposed in
[15] to use the signal derivatives to estimate frequency and am-
plitude parameters of a sinusoidal model in the stationary case.
We show here that the derivative method can be generalized to the
non-stationary case.

4.1. Theoretical Considerations

More precisely, considering Equation (2), and since the derivative
of an exponential is an exponential, we have:

s′(t) = (µ0 + j(ω0 + ψ0t)) · s(t) (15)

and thus

=
„
s′

s
(t)

«
= ω0 + ψ0t and <

„
s′

s

«
= µ0. (16)

For this method to work in the case of a signal made of several par-
tials, we have to switch to the spectral domain. We consider only
the spectrum values close to a given local magnitude maximum
m (see Section 3) that represents the partial under investigation in
order to be able to neglect the influence of the other partials.

We have to check first the contribution of r(t) = ψ0t in the
spectral domain. Fortunately, it has nice properties: Since r(t) is
an odd function, its spectrum R(f) is imaginary, thus jψ0t only
contributes to the real part of the spectrum of s′/s. Even-though
its amplitude can be very high at extreme frequencies, R(f) is null
at frequency zero, and exhibits small values around 0.

Thus, the spectrum of s′ involves a convolution sum between
R, which equals 0 at frequency 0, with Sw, which energy is still es-
sentially located around frequency ω0 (it is exactly the case in the

DAFX-2



Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

stationary case; it is only an approximation in the non-stationary
case because of Equation (4) and the fact that the local maximum
gets slightly shifted in frequency as shown by Abe and Smith in
[5]). This convolution sum results in a negligible contribution
when compared to ω0Sw. The complete theoretical investigation
of these properties is beyond the scope of this paper. However, in
practice, evaluating S′w/Sw close to the local maximum (discrete)
frequency ωm yields to an excellent estimation of the frequency:

ω̂0 = =
„
S′w
Sw

(ωm)

«
. (17)

Now that we have gotten an estimate of ω0, we can evaluate S′w
at this frequency, where R ∗Sw contribution equals zero, and thus
we obtain an estimate for the amplitude modulation:

µ̂0 = <
„
S′w
Sw

(ω̂0)

«
. (18)

In order to get the estimate of the frequency modulation ψ0, we
have to consider s′′, the second derivative of s. More precisely,
we have:

s′′(t)
‹
s(t) = (µ0

2 − ω0
2 − 2ω0ψ0t− ψ0

2t2)

+ j(ψ0 + 2µ0ω0 + 2µ0ψ0t). (19)

We then use the same kind of properties that we just used for the
spectrum of the first derivative. Even functions (e.g. proportional
to t2) in one part (real or imaginary) of the signal will contribute
to the same part (real or imaginary) of the spectrum, whether odd
functions (e.g. proportional to t) in one part (real or imaginary) of
the signal will contribute to the opposite part (imaginary or real)
of the spectrum. Moreover the effects of the convolution sums
are negligible for ωm ≈ ω0. Finally, we get the estimate of the
frequency modulation:

ψ̂0 = =
„
S′′w
Sw

(ω̂0)

«
− 2µ̂0ω̂0. (20)

Let us consider now the estimation of the initial amplitude and
initial phase of the signal. Since we know the estimated modula-
tions µ̂0 and ψ̂0, we propose to use the Γw function of Equation (4)
as we did for the extension of the reassignment method in Section
3, but this time with ∆ω = ω0 − ω̂0 ≈ 0, thus:

â0 =

˛̨
˛̨
˛

Sw(ω̂0)

Γw(0, µ̂0, ψ̂0)

˛̨
˛̨
˛ , (21)

φ̂0 = ∠
 

Sw(ω̂0)

Γw(0, µ̂0, ψ̂0)

!
. (22)

4.2. Practical Considerations

The last (but not least) problem is then in practice, to perform an
estimation of the (discrete-time) derivatives s′ and s′′ from the
(discrete-time) signal s. Unlike in [16], we will not reformulate
the previous equations to adapt them to the discrete-time case, but
instead, we will keep here with the mathematical definition:

s′(t) = lim
ε→0

s(t+ ε)− s(t)

ε
. (23)

Our first idea was to use a very accurate resampling method [17] to
set ε very close to 0 in Equation (23). The two reconstructor filters
(for s(t + ε) and s(t)) were then combined into a differentiator

filter. But there are other ways to design differentiator filters. No
matter the practical differentiator filter, as the order of this filter in-
creases, its impulse response shall converge to the theoretical one.
Indeed, differentiation is a linear operation, that can also be re-
garded as a filter of complex gain jω (where ω is the frequency of
the input sinusoid). The discrete-time response of this filter could
be obtained by the inverse Fourier transform of its frequency re-
sponse. However, we keep with the mathematical definitions. The
continuous-time signal s(t) can be reconstructed from its samples
s[m] = s(m/Fs) using the following equation:

s(t) =

+∞X
m=−∞

s[m] sinc(tFs −m| {z }
u(t)

), (24)

meaning that the signal s′(t) is:

s′(t) = Fs

+∞X
m=−∞

s[m]

„
cos(πu(t))

u(t)
− sin(πu(t))

πu(t)2

«
(25)

which samples are (given that the multiplicative term of s[m] in
Equation (25) equals 0 when m = n):

s′[n] = s′ (n/Fs) = Fs
X

m6=n
s[m]

 
(−1)(n−m)

(n−m)

!
. (26)

Thus, the discrete derivative s′ can be obtained by convolving the
discrete signal s by the following differentiator filter:

h[n] = Fs
(−1)n

n
for n 6= 0, and h(0) = 0 (27)

of infinite time support. In practice, we multiply h by the Hann
window (see Equation (42)). This works quite well for high fil-
ter orders. With an order of 1023, the bias introduced by the ap-
proximation of the discrete derivative can be neglected. And the
required convolution by an order-1023 impulse response is quite
fast on nowadays computers. Figure 1 shows the maximal relative
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Figure 1: Maximal estimation error when approximating the (first)
derivative of a sinusoid using the order-1023 differentiator. The
error is acceptable for all but very high frequencies. As a compar-
ison, the error obtained with the classic difference approximation
(equivalent to choosing ε = 1/Fs in the expression of Equation
(23)) is plotted with stars ∗.
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error for the first derivative, when the signal is a pure sinusoid of
constant (normalized) frequency ω and amplitude 1. The relative
error is the maximal absolute error divided by the norm of the gain
of the theoretic derivative (ω). These results show that the errors
remain acceptable for most frequencies, except very high frequen-
cies close to the (normalized) Nyquist frequency (π). To obtain
the second derivative, the differentiation is applied twice.

Finally, for each analysis frame, whereas the reassignment
method requires 5 fast Fourier transforms (FFTs), the derivative
method requires only 3 of them. When the derivatives are to be
estimated using the differentiator, an efficient implementation us-
ing a larger FFT size is still possible (but out of the scope of this
paper, which focuses on the precision of the estimations).

5. THEORETICAL EQUIVALENCES

In [2], the reassignment (Section 3) and derivative (Section 4)
methods are proven to be theoretically equivalent, at least as re-
gards the estimation of the frequency in the stationary case.

In order to prove similar equivalences in the non-stationary
case, we apply the same strategy than in [2] and thus we introduce
ρ = τ − t which gives another (equivalent) expression for the
STFT (see Equation (3)):

Sw(t, ω) =

Z +∞

−∞
s(t+ ρ)w(ρ) exp (−jωρ) dρ (28)

from which we can derive:

∂

∂t
log (Sw(t, ω)) =

S′w(t, ω)

Sw(t, ω)
. (29)

By considering Equation (29) instead of Equation (5) in Section 3,
we would have obtained:

ω̂ = =
„
S′w
Sw

«
, (30)

µ̂ = <
„
S′w
Sw

«
(31)

instead of Equations (6) and (7). Finally, when considering Equa-
tions (17) and (18), we can conclude that the reassignment and
derivative methods are equivalent, at least in theory and for the es-
timation of the frequency and the amplitude modulation. However,
Section 6 will show differences in practice, since their practical
implementations are very different.

6. PRACTICAL EXPERIMENTS AND RESULTS

In this section, we quantitatively evaluate the precision of the re-
assignment and derivative methods for the estimation of all the
model parameters, and compare them to theoretical lower bounds.

For these experiments, we consider discrete-time signals s,
with sampling rate Fs, consisting of 1 complex exponential gen-
erated according to Equation (2) with an initial amplitude a0 = 1,
and mixed with a Gaussian white noise of variance σ2.

The analysis frames we consider are of odd lengthN = 2H+
1 samples, with the estimation time 0 set at their center.

In Equations (3) and (4), the continuous integrals turn into dis-
crete summations over N values, with indices from −H to +H .

In this section, the parameters are normalized to make them
independent of the sampling frequency Fs. We thus define µ =

µ/Fs, ω = ω/Fs, and ψ = ψ/Fs
2.

6.1. Theoretical Bounds

When evaluating the performance of an estimator in the presence
of noise and in terms of the variance of the estimation error, an in-
teresting element to compare with is the Cramér-Rao bound (CRB).
The CRB is defined as the limit to the best possible performance
achievable by an unbiased estimator given a data set. For the model
of Equation (2), for the five model parameters, these bounds have
been derived by Zhou et al. [18]. We will consider their asymp-
totic versions (for a large N and a high number of observations).

Djurić and Kay [19] have shown that the CRBs depend on the
time sample n0 at which the parameters are estimated, and that the
optimal choice in terms of lower bounds is to set n0 at the center
of the frame, i.e. n0 = H , since the CRBs depend on:

εk(µ,N) =

N−1X
n=0

“n− n0

N

”k
exp

“
2µ
n− n0

N

”
. (32)

6.1.1. Amplitude and Amplitude Modulation

After Zhou et al. [18], we define:

D1(µ,N) = 2(ε0ε2 − ε1
2) (33)

and give the expressions of the bounds for the amplitude a and
amplitude modulation µ:

CRBa,N (σ, µ) ≈ σ2ε2
D1

, (34)

CRBµ,N (σ, a, µ) ≈ σ2ε0
a2N2D1

. (35)

6.1.2. Phase, Frequency, and Frequency Modulation

As explained by Zhou et al. [18], the expressions of the bounds are
different whether there is a frequency modulation or not (because
this changes the degree of the polynomial associated to the phase).

In the absence of frequency modulation (ψ = 0), the bounds
for the phase φ and frequency ω are given by:

CRBφ,N (σ, a, µ) ≈ σ2ε2
a2D1

, (36)

CRBω,N (σ, a, µ) ≈ σ2ε0
a2N2D1

. (37)

In the presence of frequency modulation, the expressions of
the bounds for the phase (φ), frequency (ω), and frequency modu-
lation (ψ) are given by:

CRBφ,N (σ, a, µ) ≈ σ2(ε2ε4 − ε3
2)

a2D2
, (38)

CRBω,N (σ, a, µ) ≈ σ2(ε0ε4 − ε2
2)

a2N2D2
, (39)

CRBψ,N (σ, a, µ) ≈ 4
σ2(ε0ε2 − ε1

2)

a2N4D2
, (40)

where D2(µ,N) is defined as:

D2(µ,N) = 2(ε0ε2ε4 − ε1
2ε4 − ε0ε3

2 + 2ε1ε2ε3 − ε2
3). (41)
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6.2. Practical Experiments

In our experiments, we set Fs = 44100Hz, N = 511, and the
signal-to-noise ratio (SNR) expressed in dB is 10log10(σ

2/a2),
and goes from −20dB to +100dB by steps of 5dB.

For each SNR and for each analysis method, we test 99 fre-
quencies (ω) linearly distributed in the (0, 3Fs/8) interval, and 9
phases (φ) linearly distributed in the (−π,+π) interval. The am-
plitude modulation (µ) is either 0 (no-AM case) or one of 5 values
linearly distributed in the [−100,+100] interval (AM case). The
frequency modulation (ψ) is either 0 (no-FM case) or one of 5
values linearly distributed in the [−10000,+10000] interval (FM
case). We limit the frequency to 3/4 of the Nyquist frequency
because very high frequencies are problematic (cause bias) for the
derivative method (see Section 4). This is not really problematic in
practice, since with a sampling rate of 44100Hz, this mostly covers
the range of audible frequencies. Moreover, nowadays sampling
frequencies can be as high as 96kHz, or even 192kHz.

For the analysis window w, we use the zero-centered (sym-
metric) Hann window of duration T = N/Fs – that is of (odd)
size N samples, defined for continuous time by:

w(t) =
1

2

„
1 + cos

„
2π

t

T

««
. (42)

We then compare the reassignment method (R) – see Section
3 – and two variants of the derivative method (D) – see Section
4: The estimated derivative method (ED), where the derivatives
s′ and s′′ are estimated using the differentiator filter described in
Section 4; and the theoretic derivative method (TD), where the
exact derivatives s′ and s′′ are given by Equations (15) and (19).
As regards the noise, the derivatives are approximated by using
the differentiator filter. We consider the TD method because the
estimated derivatives can be improved (e.g. by increasing the order
of the differentiator filter). Thus the results of the TD method can
be regarded as the best performance the D method could achieve,
though with a better approximation of the discrete derivatives.

As mentioned previously, the comparison with QIFFT [5] is
left apart in this paper and part of our future work. However, the
comparison of reassignment with QIFFT [5] in various situations
can be found in [8], but only for the estimation of the frequency.

It is also important to note that Badeau et al. have shown
in [20] that the high-resolution ESPRIT method was close to the
CRBs. But this method is very sensitive to the choice of the model
order and do not consider frequency modulation (ψ = 0).

6.3. Experimental Results

When looking at the results of these experiments (see Figures 2–
6, it turns out that with the proposed differentiator filter, the order
of 1023 is sufficient for the method to achieve in practice (ED)
performances very close to the theory (TD).

Below −10dB (high-error range), the derivative method ap-
pears to make larger errors than the reassignment method (except
for phase and frequency, where the two methods behave similarly).
However, this area is of poor practical interest since the errors are
too important.

Above−10dB, as the SNR increases the reassignment method
gets almost always biased, whereas the derivative method achieves
performances closer to the CRB in nearly all cases. When FM is
present, the derivative method is better for the estimation of the
amplitude (see Figure 2), amplitude modulation (see Figure 3), and
phase (see Figure 4); both methods are equivalent for the estima-
tion of the frequency (see Figure 5); and the reassignment method
is better for the estimation of the frequency modulation (see Figure
6), while the error of the derivative method is very low.

Moreover, we have observed the following trends: For small
frame sizes, the derivative method outperforms the reassignment
method in all cases. When the frame size increases, both methods
are quite equivalent without FM, even if the order of the differen-
tiator might have to be increased to lower the bias for the estima-
tion of the amplitude modulation and frequency.

7. CONCLUSION AND FUTURE WORK

In this paper, we have generalized the derivative method for non-
stationary sinusoidal modeling, and compared it to the reassign-
ment method, which is currently among the best analysis methods.
We have shown that, in theory, these two methods are equivalent
for the estimation of the frequency and amplitude modulation. In
practice, for signal-to-noise ratios above −10dB and without con-
sidering very high frequencies, the derivative method outperforms
the reassignment method in all cases except for the estimation of
the frequency modulation.
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(a) stationary case (µ = 0,ψ = 0)
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(b) AM-only case (|µ| ≤ 100,ψ = 0)
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(c) FM-only case (µ = 0,|ψ| ≤ 10000)
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(d) AM/FM case (|µ| ≤ 100,|ψ| ≤ 10000)

Figure 2: Amplitude estimation error as a function of the SNR (sta-
tionary, AM-only, FM-only, and AM/FM cases) for the R, ED, and
TD methods, and comparison to CRBa.
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(a) stationary case (µ = 0,ψ = 0)
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(b) AM-only case (|µ| ≤ 100,ψ = 0)
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(c) FM-only case (µ = 0,|ψ| ≤ 10000)
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(d) AM/FM case (|µ| ≤ 100,|ψ| ≤ 10000)

Figure 3: Amplitude modulation estimation error as a function of
the SNR (stationary, AM-only, FM-only, and AM/FM cases) for the
R, ED, and TD methods, and comparison to CRBµ.
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(a) stationary case (µ = 0,ψ = 0)
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(b) AM-only case (|µ| ≤ 100,ψ = 0)
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(c) FM-only case (µ = 0,|ψ| ≤ 10000)
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(d) AM/FM case (|µ| ≤ 100,|ψ| ≤ 10000)

Figure 4: Phase estimation error as a function of the SNR (station-
ary, AM-only, FM-only, and AM/FM cases) for the R, ED, and TD
methods, and comparison to CRBφ.
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(a) stationary case (µ = 0,ψ = 0)
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(b) AM-only case (|µ| ≤ 100,ψ = 0)
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(c) FM-only case (µ = 0,|ψ| ≤ 10000)
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(d) AM/FM case (|µ| ≤ 100,|ψ| ≤ 10000)

Figure 5: Frequency estimation error as a function of the SNR
(stationary, AM-only, FM-only, and AM/FM cases) for the R, ED,
and TD methods, and comparison to CRBω .

-20

-15

-10

-5

-20 0 20 40 60 80 100

va
ri

an
ce

 o
f 

th
e 

er
ro

r 
(l

og
10

 s
ca

le
)

signal-to-noise ratio (dB)

estimation of the frequency modulation

R
TD
ED

CRB

(a) stationary case (µ = 0,ψ = 0)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

-20 0 20 40 60 80 100

va
ri

an
ce

 o
f 

th
e 

er
ro

r 
(l

og
10

 s
ca

le
)

signal-to-noise ratio (dB)

estimation of the frequency modulation

R
TD
ED

CRB

(b) AM-only case (|µ| ≤ 100,ψ = 0)
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(c) FM-only case (µ = 0,|ψ| ≤ 10000)
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(d) AM/FM case (|µ| ≤ 100,|ψ| ≤ 10000)

Figure 6: Frequency modulation estimation error as a function of
the SNR (stationary, AM-only, FM-only, and AM/FM cases) for the
R, ED, and TD methods, and comparison to CRBψ .
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