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ABSTRACT

The proposed automatic target mixing algorithm determines
the gains and the equalization settings for the mixing of
a multi-track recording using a least-squares optimization.
These parameters are estimated using a single channel target
mix, that is a signal which contains the same audio tracks
as the multi-track recording, but that has been previously
mixed using some unknown settings.
Several tests have been done in order to evaluate the per-
formances of two different approaches to the optimization,
namely the sub-band estimator and the FIR filters estimator.
The results show that, using the latter technique, the pro-
posed algorithm is able to retrieve the parameters originally
applied to the target mix.
This achievement can be useful for remastering applications,
where both the original recording sessions and the final mix
are available, but there is the need to retrieve the mixing
parameters originally applied to the various audio tracks.

1. INTRODUCTION

Automatic mixing is an emerging research field whose ob-
jective is to provide new tools for sound engineers in order
to partially or completely automate the mixing process for
both live and studio productions.
In particular, the goal of automatic target mixing is to de-
rive the parameters in the mixing of a multi-track recording
based on a target mix. The target can be, in theory, any au-
dio signal which the user can choose as a reference because
of some particular qualities like a certain equalization curve
for a given instrument or a certain balance between the am-
plitude of the various tracks.
Although the algorithms shown in this paper can be applied
to any kind of target, their evaluation in the context of a tar-
get mix and a multi-track recording which contain different
source signals is not a trivial problem and is left for further
research. In this work, we focus on the case where the target
mix was obtained applying a set of unknown parameters to

the multi-track recording. Thus, the value of the estimated
parameters should depend only on the mixing process and
not on the audio content of the tracks.

The main application of the proposed technique is remas-
tering [1]. Figure 1 shows a common situation where an
old analog multi-track session is remastered in a new digital
format, applying modern techniques in order to improve the
quality of the recording.
Firstly, the single tracks are converted to the digital domain
through the ADC, then processing is applied on the signals
in order to eliminate noise and other typical artifacts present
in old media formats. At this point, the single tracks have to
be mixed but, in most cases, the original mixing parameters
are not available. Using our proposed automatic target mix-
ing (ATM), it is possible to retrieve these parameters from
the final mix of the analog multi-track recording. Option-
ally, the mixing process can include an up-mixing stage,
which can be used to create multichannel versions of the
recording.
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Figure 1: Application of automatic target mixing: remaster-
ing of an analog recording.

In addition to remastering, our algorithm can be useful since
some artists have recently released multi-track recordings
along with the final mix of some of their works [2], giving
the listeners the opportunity to create their own mixes. From
this prospective, the automatic target mixing can be a valid
teaching instrument that shows how famous and skilled sound
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engineers have mixed a certain song.

Some commercial products exist that suggest mixing pa-
rameters according to a target [3], [4]. They are based on a
comparison between single tracks or whole mixes, and thus
they do not define specific parameters for each one of the
recordings in a multi-track session. Other previous work
in automatic mixing based on a target has been done by
Reed [5], who designed a system which suggests equaliza-
tion settings depending on a users’ goal (for instance make
the sound "brighter", or make the frequency content more
"smooth") and uses an inductive nearest neighbour machine
learning algorithm.
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Parameters

Feature
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Figure 2: Automatic Target Mixing Framework

Kolasinski [6] proposed an automatic target mixing tech-
nique which has inspired our research and whose general
framework is depicted in figure 2.
As can be seen, the multi-track recording is mixed using a
certain set of parameters, then a feature or a set of features
is extracted from the resulting mix and from the target mix.
The distance between those features is computed and is in-
put to an optimization algorithm. This estimates the set of
parameters which minimize the distance from the target, so
that this particular set can be used to build the estimated
mix.

The algorithm designed by Kolasinski [6] aims to find the
gains to apply to each track which minimize the euclidean
distance between the spectrum histograms [7] of estimated
and target mix. In his work, the optimization task is per-
formed by a genetic algorithm [8]. This is a search tech-
nique that has been proved to be effective in locating the
global minimum of large and uneven parameters’ spaces.
However, for the purpose of this application, the results are
quite poor as the number of tracks increases and the algo-
rithm is computationally expensive. Moreover, an iterative
optimization like the genetic algorithm can only converge to
an approximate solution of the problem.
In the next section a geometric approach is described in or-
der to analytically solve the optimization problem.

2. SOLVING THE OPTIMIZATION PROBLEM.
A GEOMETRIC APPROACH

Assume that the parameters of the mix that we want to esti-
mate are the gains applied to each track xi and that we are
comparing a linear feature extracted from mix and target,
that is a feature F such that

F (α1x1 + α2x2) = α1F (x1) + α2F (x2) ∀α ∈ R (1)

Then the optimization task can be solved analytically using
least squares.

Let t = F (target mix) be the feature extracted from the
target mix and vi = F (xi) the feature extracted from the
i-th track of the multi-track recording.
t can be represented as a vector in an M-dimensional space
(where M is the size of the feature), as is shown in figure 3.
We can define λ as the sub-space generated by any linear
combination of the vectors vi with positive coefficients. The
dimensionality of λ is equal to the number of tracks N and,
in general, we have N << M . The mix which minimizes
the distance from the target is the projection of t on the sub-
space λ.
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Figure 3: Geometric Representation of Target Mix and
Multi-track Recording

We can write the projection vector v as a linear combination
of the tracks vectors vi with the gains α̂ that we want to
retrieve.

v =
N−1∑
i=0

α̂ivi

A is defined as the matrix whose columns are the vectors vi

A =


v1


v2

 . . .

vN



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and v is then written as

v = Aα̂

The vector t − v is orthogonal to each of the vectors vi.
Therefore the inner products between vi and t − v must be
zero for each i. This leads to the following equation:

AT (t− v) = 0

Substituting, we obtain

AT t−ATAα̂ = 0

which implies
α̂ = (ATA)−1AT t (2)

Equation 2 is known as the least squares method [9]. The
only condition for the matrix ATA to be invertible is that
the vectors vi must be linearly independent, which is an as-
sumption we can make in general.

As already mentioned, the least square optimization of a
multi-track recording can be performed using any feature
extracted from the audio signals as long as it respect equa-
tion 1. Unfortunately many features (for instance, those
based, on the power spectrum or on psycho-acoustical mod-
els) are not linear and therefore cannot be used in this frame-
work. However, for the purpose of our problem, we will
only consider the signals in the time domain and their Fourier
transform as the feature vectors.

In particular, choosing the latter, we can extend the least-
squares approach to the equalization problem applying dif-
ferent gains to different frequency bands of the tracks. This
results in increasing the dimension of the sub-space λ, choos-
ing sets of orthogonal vectors wi,j ⊥ wi,k such that

P∑
j=1

wi,j = vi

where P is the number of frequency bands.
This algorithm is estimating the equalization curve applied
to the various tracks in the target mix using a piecewise con-
stant function for each track, and will be referred as the sub-
band estimator. As P increases, the estimation is more ac-
curate and, in theory, able to approximate any transfer func-
tion at the expense of a higher computational cost.

3. TARGET EQUALIZATION

As described in the previous section, the equalization pa-
rameters can be retrieved using the sub-band estimator. How-
ever, this method does not reflect the way equalization is
usually performed, using combinations of FIR or IIR filters.

There exist various techniques for matching a target trans-
fer function to a filter’s impulse responses [10],[11]. For
instance, the method described by Lee [12] is based on a
least squares optimization and is similar to the one pro-
posed in this section. These techniques are often applied
to loudspeaker and microphone equalization. Yet, to the
authors’ knowledge, filter optimization techniques have not
been adapted to the target mixing problem, where a differ-
ent transfer function is applied to each track.

The FIR filters estimation technique described in this sec-
tion finds the coefficients of filters which, when applied to
the tracks of the multi-track recording, minimize the Eu-
clidean distance between the target mix and estimated mix.

3.1. Linear Predictive Model

Since the proposed technique is inspired by linear predic-
tion, the basic theory of this model is presented, and then
extended to the target equalization problem.

Let v be an audio signal, then its value v(n) at time n can be
estimated as a linear combination of its S previous samples:

ṽ(n) =
S−1∑
j=0

αjv(n− j)

The goal of the linear predictive model is to find the co-
efficients α̂j that minimize the squared euclidean distance
between signal and predicted signal. We can define this
squared distance as a function of α

J(α) = ||ṽ − v||2

and compute the coefficients α̂ setting the gradient ∇J(α)
to zero.
This results in solving the following system of linear equa-
tions:

Rl =
S−1∑
j=0

α̂jRj−l (3)

where Rl is the autocorrelation of the signal v and Rj−l the
j-shifted autocorrelation.
The coefficients α̂ define an FIR filter which is applied to
the signal v, therefore we can use the same approach and
define a new squared distance function in order to solve the
target equalization problem.

3.2. FIR Coefficients Estimation

Let t be the target mix, M the length of the target, N the
number of tracks in the multi-track recording and P the or-
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der of the filter we want to estimate. Then we can define the
following squared distance function:

J(α) = ||t−
N−1∑
i=0

vi ∗ αi||2

=
M+P−1∑

n=0

[
t(n)−

N−1∑
i=0

P−1∑
j=0

αijvi(n− j)
]2

The partial derivative is computed as:

∂J(α)
∂αkl

= 2
M+P−1∑

n=0

[
t(n)−

N−1∑
i=0

P−1∑
j=0

αijvi(n−j)
]
vk(n−l)

and then the gradient∇J(α) is set to zero. This corresponds
to solving the following system of linear equations:

M+P−1∑
n=0

t(n)vk(n− l) = (4)

N−1∑
i=0

P−1∑
j=0

α̂ij

M+P−1∑
n=0

vi(n− j)vk(n− l)

The first sum on the left side of equation 4 is the correla-
tion Cl(t, vk) between the target t and the k-th track vk,
while the sum over n on the right side is the shifted correla-
tion Cj−l(vi, vk) between the i-th track and the k-th track.
Equation 4 can be written as:

Cl(t, vk) =
N−1∑
i=0

P−1∑
j=0

α̂ijCj−l(vi, vk) (5)

∀ k = 0, . . . , N − 1 l = 0, . . . , P − 1

The correlation Cl(v, w) between two vectors v and w is
the inner product between v and the l-shifted version of the
vector w. Thus, we can build a matrix A whose columns
contain the tracks v along with the l-shifted tracks:

A =

0BBB@
26664

v1
37775

26664
v1

37775 . . .

26664
v1

37775 . . .

26664
vN

37775 . . .

26664
vN

37775
1CCCA

and write equation 5 in matrix form:

(ATA)α̂ = AT t

which can be solved again with the least square method:

α̂ = (ATA)−1AT t

It is interesting to consider a particular case of the equation
5. If we set the order of the filter P to one, then we are sim-
ply applying different gains to each track, and the matrix

A is equal to the one defined in the section 2. Therefore,
the FIR estimation can be viewed as a generalization of the
geometric approach described to retrieve the gain settings.
This least squares estimation minimizes the norm of the er-
ror function J(α) in the time domain. But, since the Fourier
transform doesn’t affect the norm of a function, up to a fac-
tor 1/2π, then this means that the distance in the Fourier
domain between target and estimated mix will also be min-
imized.

The only parameter we have to chose is P . As with the sub-
band estimator, the number of parameters determines the
accuracy of the algorithm, but also its computational cost.
The next section describes some experiments that have been
performed in order to compare the two methods.

4. ESTIMATORS EVALUATION

In general we know neither the number nor the type of fil-
ters applied to the multi-track recording and, therefore, the
estimation of equalization parameters must be robust to dif-
ferent choices of filters. For this reason we have designed
some experiments in order to compare the performances of
the sub-band and FIR estimators.
The algorithms were tested on a 6-tracks recording that con-
tains different instruments on each channel. The audio files
are sampled at 16 bits/44100 Hz, and their duration is ap-
proximately 30 seconds.
As a preliminary result, we estimated parameters for the
equalization of a single track then we applied our algorithm
on the whole multi-track recording in order to retrieve dif-
ferent parameters for each channel.

Firstly we designed a 256-order FIR multiband filter, whose
impulse response is depicted in figure 5 and whose frequency
response is shown in figure 6. This filter can be viewed as a
graphic equalizer with extreme settings where the frequency
bands 0-0.2KHz, 1.5-3KHz and 15-22KHz have unitary gain
and the other bands are fully attenuated.
The convolution of one instrument of our multi-track record-
ing with this filter was the target mix. Then, we applied it-
eratively both the sub-band estimator and the FIR estimator,
increasing progressively the number of estimation parame-
ters. For each iteration, we computed the euclidean distance
between target and estimated mix.

Figure 4 shows the distance as the number of parameters ap-
proaches the order of the filter. As can be seen, the sub-band
estimation does not improve much as the number of parame-
ters increases, while the distance function decreases to zero
using the FIR estimator. The experimental results suggest
that there must be a correspondence between the distance
function and the energy present in the target’s impulse re-
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Figure 4: Distance from target for a high order FIR multiband filter
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Figure 5: Impulse response of a high order FIR multiband
filter

sponse. In fact, most of the energy of the impulse response
depicted in figure 5 is present at less than 3 ms (correspond-
ing to 130 samples) and we can see that, when the number
of parameters of the FIR estimator reaches a value around
130, the distance drops to a very small value.
This behaviour has been confirmed using other target im-
pulse responses. It implies that, as long as the target fil-
ter has an impulse response whose energy decays quickly
enough, then the FIR estimator will produce a good approx-
imation of it with a finite number of coefficients.

Figures 7 and 9 show the impulse and frequency response
of an 8th order IIR low-pass filter used to test the estima-
tors. The cutoff frequency is 1KHz and the design is based
on a Butterworth analog prototype. The distance between
the target and estimated signal as a function of the number
of parameters is shown in figure 8.
Again we can see that the sub-band estimator doesn’t pro-
duce good results, while using the FIR estimator the dis-
tance from target decreases towards zero as the number of
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Figure 6: Frequency response of a high order FIR multiband
filter

parameters increases.
In this case, the FIR estimator can’t reproduce the exact
target impulse response because we would need an infinite
number of parameters. However, since the energy of the tar-
get impulse response decays quickly to zero, we can achieve
a good approximation even with a small number of coeffi-
cients.
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Figure 7: Impulse response of an 8th order IIR lowpass filter
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Figure 8: Distance from target for an 8th order IIR lowpass filter
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Figure 9: Frequency response of an 8th order IIR lowpass
filter

Figure 10 shows the computational time required for the es-
timation of parameters for a 1024-samples audio signal. The
length of the test signal for this experiment has been chosen
to be one of the typical values used in a frame-by-frame im-
plementation.
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Figure 10: Computational time required for parameters’ es-
timation

The FIR estimator works completely in the time domain,
while the sub-band method requires the computation of the
Fourier transforms of each channel of the multi-track record-
ing. Therefore the computational time required by the FIR
technique is always smaller.

In order to demonstrate the effectiveness of the FIR estima-
tor with a multi-track recording, six different 128-order FIR
filters have been applied to six different channels, and then
the channels were mixed to produce the target mix.
The filters have a "free-hand" impulse response which is the
result of choosing random gains for 8 particular frequencies
and designing a 128-order FIR filter whose response is an
interpolation between these points.
Figure 11 shows the response of one of the filters. The fre-
quencies specified by the dashed lines have a fixed gain level
between +12dB and −12dB.

The FIR estimator is able to retrieve different filter coef-
ficients for each track, and figure 12 shows the results in
terms of the distance between target and estimated mix.
Although the distance doesn’t drop exactly to zero as the
number of parameters reaches the order of the target filter,
the error becomes very small and the estimated mix can be
considered to be almost equal to the target. This error may
be due to the great number of operations involved in the es-
timation, and may be reduced by performing the algorithm
on a frame-by-frame basis.

5. CONCLUSIONS AND FURTHER RESEARCH

A new method for automatic retrieving of mixing parame-
ters has been proposed which improves the precision, the
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Figure 12: Distance from target for a 6-track recording, equalized with one different free-hand FIR filter for each track
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Figure 11: Frequency response of a 128th order Free-hand
FIR filter

robustness and the computational cost of previous work [6]
and takes into account equalization parameters.

As discussed in section 1, a possible direction for further re-
search aims at solving the general problem when target and
multi-track recording contain different audio tracks which
would result in the automation of the mixing of novel record-
ings. In this case our system is not directly applicable be-
cause the estimated parameters would depend not only on
the actual mixing parameters, but also on the content of tar-
get and multi-track recordings.
Having said that, it is possible to perform an optimization
of parameters defining different objective functions, which
may take into account perceptual similarity between target
and estimated mix. In this case the system will build a mix
which is percieved as similar to the target, even if the pa-

rameters applied are different from those used to construct
it.

Our current research is focused on the extension of the ATM
algorithm to the estimation of dynamic processor parame-
ters in a multi-track mix. For this purpose we are apply-
ing the algorithm on a frame-by-frame basis, assuming that
the parameters are constant within a small analysis win-
dow. This frame based implementation may also be used
to retrieve time varying gains and equalization parameters.
However preliminary results indicate that this extension is
not straightforward.

6. REFERENCES

[1] Bob Katz, Mastering Audio: The Art and the Science,
Number ISBN 0240805453. Focal Press, 2002.

[2] Nine Inch Nails, “Remix,” http://remix.nin.com.

[3] Stephen Travis Pope and Alex Kouznetsov, “Expert
mastering assistant,” Tech. Rep., FastLab, Sep 2008.

[4] TC Electronics, http://www.tcelectronic.com/, Assim-
ilator Manual.

[5] Dale Reed, “A perceptual assistant to do sound equal-
ization,” in Intelligent User Interfaces 5th Conference,
Jan 2000.

[6] Bennett A Kolasinski, “A framework for automatic
mixing using timbral similarity measures and genetic
optimization,” in AES 124th Convention, 2008.

DAFX-7

http://remix.nin.com
http://www.tcelectronic.com/media/Assimilator_Man_EN(1).pdf


Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

[7] E Pampalk, S Dixon, and G Widmer, “On the evalu-
ation of perceptual similarity measures for music,” in
DAFx 03, Jan 2003.

[8] David Goldberg, Genetic Algorithm in Search, Op-
timization and Machine Learning, Number ISBN
0201157675. Addison-Wesley, 1989.

[9] Gilbert Strang, Introduction to Linear Algebra, Num-
ber ISBN 0961408898. SIAM, 3 edition, 2003.

[10] O Kirkeby and PA Nelson, “Digital filter design for
inversion problems in sound reproduction,” Journal
of the Audio Engineering Society, vol. 47, no. 7/8, pp.
583–595, July/August 1999.

[11] Richard Greenfield and Malcom Omar Hawksford,
“Efficient filter design for loudspeaker equalization,”
Journal of the Audio Engineering Society, vol. 39, no.
10, pp. 739–751, October 1991.

[12] Richard Lee, “Simple arbitrary iirs,” in AES 125th
Convention, 2008.

DAFX-8


	1  Introduction
	2  Solving the optimization problem. A geometric approach
	3  Target Equalization
	3.1  Linear Predictive Model
	3.2  FIR Coefficients Estimation

	4  Estimators Evaluation
	5  Conclusions and Further Research
	6  References

