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ABSTRACT

The construction of new virtual instruments is one longreoal

of physical modeling synthesis; a common strategy acrassus
different physical modeling methodologies, including hed net-
work models, modal synthesis and scattering based mettsotds,
provide a canonical set of basic elements, and allow the taser
build an instrument via certain specified connection rukgh an
environment may be described as modular.

Percussion instruments form a good test-bed for the devel-
opment of modular synthesis techniques—the basic comp®nen
are bars and plates, and may be accompanied by connection el

ements, with a nonlinear character. Modular synthesis kas b
approached using all of the techniques mentioned aboveinbet
domain finite difference schemes are an alternative, atigwiany
problems inherent in the above methods, including comjlitiab
large memory and precomputation requirements, and lack-of e
tensibility to more complex systems, to be circumvented.

synthesis environments|[2,[3, 4]. Modal synthesis [5, 6] famd-
tional transformation approachés [7] also incorporate utarity

as a fundamental feature, as do methods based on scatteting n
works employing components such as digital waveguides ave w
digital filters [8,9]. Beyond modularity, other issues oégt rele-
vance, at least to the programmer/algorithm designerhareper-
ation count, memory requirements, precomputation, angrpro-
ming complexity [10].

There are advantages and disadvantages to all of the above
methods. Lumped methods, which are based on primitive ele-
ments such as masses and springs, allow for quite flexiblelaod
connection among elements, but the modeling of distribetee
ments, such as those that appear in acoustic musical irstitsns
awkward—certain components, such as stiff bars and plagss m
only be modeled in this way using very elaborate design proce
dures. Modal synthesis methods can produce solutions aragt
fidelity to an underlying model problem, but only providedth
one has modal data available—in some cases this is easy to ob-

One such network model is presented here along with the assO1ain, but in others, potentially large eigenvalue problemsst be

ciated difference schemes, followed by a discussion of émgin-
tation details, the issues of excitation and output, andsarg&ion
of various instrument configurations. The article conctudith a
presentation of simulation results, generated in the Matlato-
typing language.

1. INTRODUCTION

Physical modeling sound synthesis has been applied,itnaality,
for two distinct purposes: one is the emulation of existingsioal
instruments, but another is the creation of new musicaluns¢nts
without an acoustic counterpart or reference, which retagrun-
derpinnings of the laws of physics. Ifitis the second goailivlis
of interest, then a modular approach, employing well-ustded
canonical, or primitive elements is often taken, and the (c@m-
poser) is given the additional role of an instrument desigaed
must necessarily specify connections among various iostaaf
the primitive elements, in order to build an instrument. Tibpes
of such an approach are twofold: first, to obtain synthetimso
which possesses an acoustic character but which is, nelesth
new, and second, to retain the ease of control and playabititch
is a great benefit of any physical modeling synthesis styateg
Modularity has been approached in all physical modelingosit
ologies. The earliest and most profound influence is due td&wo
on networks of mass-spring elements by Caddz [1], whichesubs
quently developed into the CORDIS and CORDIS ANIMA sound

* This work was supported by the Engineering and PhysicalnSe®
Council UK, under grant number C007328/1.

solved, before run-time, in order to obtain such data (arelexc
lent example of such a system is a rectangular plate under fre
boundary conditions); memory requirements can be venel#rg
the modal shapes or their values at a set of specified locadian
stored, as they often are in implementation [11]. In addjtroodal
and functional transformation methods do not extend e&siig-
corporate nonlinearities of distributed type, though masi tech-
niques have been proposéed|[d2] 13]. Scattering methods fito
extremely efficient solutions for distributed componentsch be-
have nearly according to the 1D wave equation (such as |inear
non-stiff strings). But such an efficiency advantage dodsexe
tend to stiff or nonlinear systems, or to systems in 2D, such a
plates and membranes. The modular connection among element
is usually carried using scattering operations, and, wherped
elements are modeled, using wave digital filtering blockshilgv
attractive in the linear case, when nonlinearities areguesuch
designs become problematic, leading to solutions requpawer-
normalized waves (necessary for any nonlinear stabiliglyesis)
and iterative methods, and for which solutions may not bguei
and which may require a delicate ordering of operationserrtim-
time loop—indeed, it can be difficult to employ more than akén
nonlinearity in a given network [14,15].

Time domain finite difference schemes based on distributed
canonical elements offer a means of sidestepping many aftnee
problems; precomputation and memory requirements aremaini
and there are not the usual data flow complexities which amise
scattering networks, even when many nonlinearities araltime-
ously present. In addition, provable stability conditi@ms avail-
able, even under nonlinear conditions, based on energyssal
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[16]. In addition, such schemes, as they do not rely on paétic
assumptions such as the existence of a modal representation
of traveling wave solutions, may be easily extended to readidi-
tributed nonlinear models as well. On the other hand, theatios
count may be larger than for some of the above methods, though
normally not by much, except in the case of digital wavegsiide !
cases when they may be employed.

Percussion instruments form a very fertile test-bed fordine
velopment of such methods—excitation is relatively simptam- |
pared to the case of, say, wind instruments and bowed stning i
struments, for which the model of the excitation elementusial,
and, furthermore, such instruments will produce musicahsgain-
der a wide variety of playing conditions, which may not beetru
in the case of the wind and bowed string instruments mendione Multiple Channel Output
above. This is an especially important consideration if isnge-
signing novel instrument without a real-world referendee pa-
rameter space to be navigated by the eventual user may lee larg
and if the playability region is small, frustrations carsati

A description of a modular percussion synthesis envirorimen
appears in Sectidd 2, including PDE descriptions of thechiaai
and plate elements (strings and membranes could equally wel
be treated, but because computational expense is rejatarge
for simulations of such components, they will not be disedss
here), connecting elements which behave as nonlineargspaind
dampers, excitation, and multichannel output. A simufatiou-
tine based on finite difference approximations appears atiGe
[3, accompanied by a discussion of stability conditions, ata-
tional complexity, and implementation issues. Simulatiesults
are presented in Secti@h 4, and sound examples are provided o
the author’s website, at
http://ccrma. stanford. edu/ “bi | bao/ soundex/ bpnet /

Input Excitation

\l \l \l \l \l

Figure 1: A percussion synthesis network, composed of a set of
bars (at left) and plates (at right); connections betweesnetnts

at specified locations are indicated by dark lines and regtes.
Input consists of a series of pulses delivered to the netatsgec-

ified locations, and multiple channel output is drawn frorstigict
locations in the network.

to frequency-independent loss, and the term with coefficien
allows for increased loss at higher frequencies, which e&radty
teristic of most percussion instruments. The final term lve®
a series of functiong, = f,(t), with dimensions of force, repre-
senting either externally supplied excitations, or caugsito other
objects—both such types of force will be described in subeet
sections. The distributions;, = e4(x), which indicate the loca-
tions at which the excitations are to be applied are usubby@y
peaked in a percussion setting, perhaps of the form of Dietta d
functionseq (z) = 6(x —xz4) selecting a locatiom = z4, but need
2. INSTRUMENT FORMULATION not be.
N . . This model may be extended to allow for a spatial dependence
In the cqntext of percussion |nst.rumen.ts, the main eIerrqa‘nts of the various parameters an (giving models of, e.g., arched
terest will be bars, and p_Iateg. _Slmple linear models of mllkb_e bars [17]), high-amplitude nonlinearity [L8], more elader mod-
presented here, though in a finite difference frameworkettslit- els of loss[[19], and to include tensioning effects, in whietse
tle difficulty in extending such models to include distridtnon- the model is better described as a stiff string [20]. For mmre

"F‘e"’?f phenomena—see, e.4.J[16]. In _addl_tlon to theseifien this model of bar vibration, and the various extensions inaet
distributed elements, a type of connection is necessarswing above, see, e.g[L6]

!ns?ranon ffrom IuerQd ltwetworI: a_pprcl)a_ches, e;]s well _aslarrr]m In order to reduce the size of the parameter space faced by the
instances of acoustic instruments involving such couglingic _eventual user, it is useful to introduce the scaling vagalll =

astf[he pfrepgred plano,l.a connepﬂon medel bghavmgl;. as.acomblx/L; upon the substitution of this variable, and after removal o
hation of a damper, a finéar spring, and a cubic nonlineangpr primes, the resulting equation of motion is
will be presented here. See Figlile 1, showing a representati

a general instrument configuration.
g g Utt = 752“1111 - 20—0“2& + 20—1”1511 + Z Equ (2)

q

2.1. Bars
A simple model of linear uniform bar vibration is given by the now defined over the unit interval € [0,1], and where here,
following partial differential equation: k= \/EI/pA/L? is a stiffness parameter, which scales roughly
BI 1 with pitch, and wherd’, = f,/M is an excitation function with
Ut = — —Ugaze — 200Ut + 201 Utes + — Z eqfs (1) dimensions of acceleration, wheb¢ = pAL is the total mass of
A pA P the bar; the scaled distributidt, is defined af; = Le,.

There are many possible boundary terminations for such-a sys
' tem at an endpoint at = 0 or x = 1. Here are three of interest in
a musical setting:

Here,u = u(z,t) is the transverse displacement of such a bar
depending on timeé > 0 and a spatial coordinate € [0, L],
where L is the bar length. Sucbscriptsandz refer to temporal
and spatial differentiation, respectively. The constant$, £ and

: . = =0 Cl d 3a
I are the mass density, cross-sectional area, Young's meduld “ Y ‘am‘pe (32)
moment of inertia for the bar respectively; all are assument ¢ U = Use =0 Pivoting  (3b)
stant here. The term with coefficieat, on its own, gives rise Upe = K Upge — 201Uzt =0 Free (3¢)
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All are lossless; many other terminations, involving massprings,
and dampers, possibly nonlinear are possible, but thislsisgt
will suffice for the present study.

Asingle bar is thus characterized by the three parameters
ando, as well as choices of possible boundary conditions atreithe
end (nine, not counting multiplicities)x, as mentioned above,
scales roughly with pitch, but the placement of the resgliitodal
frequencies (nearly always inharmonic) is strongly depehan
the choice of boundary conditioay ando; allow two-parameter
control over damping rates. More useful perhaps to the riarsic
is the 60 dB decay time, as a function of frequerfdyn Hz, which
may be written[[15] as

61n(10)

Too(f) = oo+ 2mwo1 f /K

2.2. Plates
A simple model of the linear vibration of thin uniform platesan
extension of the above model to 2D:

D 1
=——AAu—2 201 A — E 4
Utt oH U oout + 201Aur + Py - eqfs  (4)

A given plate, then, is characterized by the five parameters
v, a, og ando, as well as choices of boundary condition at the
four edges (there are then 81 possible configurations, again
counting multiplicities).

2.3. Connecting Elements

As an example of a single connection between two basic elismen
of bar or plate type, consider the following pair of PDEs:

uy = ... +F.EY

WP = . +F'EP
where® and® refer to the first and second element, respectively,
and where the. . refer to the remaining terms in the PDEs, of the
forms given in[(2) and{6). The two elements are assumed t® hav
masses\/ Y and M @, respectively.

F. and F} can be related in many ways—a simple general
choice is of a nonlinear spring/damper connection, of thenfo

F. = —w%n—wfng—anﬁ (8a)
F; = —My,Fe (8b)

where the term with coefficient, describes a linear spring con-

Here, u(z,y,t) represents transverse displacement of the plate, nection, that with coefficient; a cubic nonlinear spring connec-

defined for timet > 0; in this article, for simplicity, the plate
is assumed defined over the rectangular regioa [0, L], y €
[0, Ly]. The subscript again represents partial time differentia-
tion, andA is the Laplacian, which in Cartesian coordinates, is
defined as

AU = Uge + Uyy (5)
where subscripts andy represent partial differentiation in the two
spatial coordinatesp is the mass density the plate thickness,
and the parametdD is defined ad = FH?/12(1 — v?), where
E'is Young’s modulus, and is Poisson'’s ratio for the materiat,

tion, and that with coefficierito . a linear damping mechanism—
the dot above, in this term signifies time differentiation. The con-
stantM, ;o = MM /M@ is the mass ratio of the two elements.
The lumped quantity) is defined as

n= @ EY) -, E®) ©)

where(-, -) signifies anL, inner product over the appropriate space
(1D in the case of a bar, and 2D in the case of the plate). Notice
that if the distributionsES" and E{? are highly localized, then

7n reduces to a simple measure of the relative displacemehieof t

ando, are loss parameters, as in the case of the bar—they may bdwo objects at the connection point.

related to a frequency-dependent decay time in exactly tHeer
described at the end of the last section. As befgre= f4(t)
represents a force due to external excitation or a coupdipglied
at the spatial location described by a distributign= e, (z, y).

Again, it is useful to simplify the system above by introchgi
the coordinates’ = z/\/LsLy, y' = y/+/L.L,—after sub-
sititution in the system above, and removal of primes, traesy
becomes

U = —KkZAAU — 200Ut + 201 Auy + Z E.F, (6)

q

which is now defined over the unit area regienc [0,a], y €
[0,1/a], whereaw = +/L./L, is the plate aspect ratiox =
VD/pH/L,L, is again a stiffness parameter, scaling roughly
with pitch, and wherd’, = f,/M is defined in terms of the total
plate mass\/ = pHL,L,, andE, = Le,.

Boundary conditions generalizing those of the bar may be wri
ten as

= u, =0 Clamped
U = Upp =0 Pivoting @)
Unn+Vitss = K (Unnn+(2 — V)Unss) —201Uns = 0 Free
at an edge with normal coordinateand tangential coordinate

[21]. (An extra corner conditiony,s = 0, is necessary for two
adjoining free edges.)

Such a connection may be shown to be strictly dissipative (an
lossless ifox = 0).

2.4. Excitation

In a true model of synthesis based on a percussion instryaent
model of the excitation mechanism (a mallet or hammer) is nec
essary. In general, this interaction is nonlinear, and @éiend
strongly on the mass and stiffening characteristics of théatr—
see, e.g.[[22] for the case of such a model as applied to lekett
drum. In the context of sound synthesis, rather than thahef t
pure investigation of musical instrument acoustics, ong naie
that the interaction time in most instruments is quite sit@ilthe
order of 1-5 ms), and thus as a shortcut, one may make use of a
predefined form of the excitation functidin = F.(¢), in the case

of both bars and plates. A simple pulse-like form, depending
few parameters, is the following raised cosine distributio

0 = {% <1fcos(%i:ﬁ2)) to <t < to+te

otherwise

F. (20)
Here, to is the time at which the excitation occufrs, is its dura-
tion, andFi,ax is its maximum amplitude. Generally, under linear
conditions, increases iAmax lead to an increase in output ampli-
tude, while decreases in lead to a brighter timbre—but under
nonlinear conditions, increases My,ax can have a strong impact
on timbre as well.
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2.5. Output

For synthesis purposes, it is probably overkill to use a detap
model of the sound path from the instrument to the listener—
crude but effective strategy, used across many physicaklimod
methods, is to read output velocity from a point or distribaton
the surface of one of the elements, and then apply post-gsoe
to emulate effects of sound directionality and/or room regea-
tion, if desired. To this end, an outpy(t) may be defined as

y - <E07 ut>

where as before, the bracket notation indicategaimner product
over the appropriate space (1D or 2D, depending on the elgmen
The distributionE,, in the simplest case, could be a Dirac delta
function, selecting ouput velocity at a given output locati

3. FINITE DIFFERENCE SCHEMES

3.1. Bars

In 1D, a grid functionu;* represents an approximation to a continu-
ous functionu(z, t), at grid locations: = [h and attimes = nk,
for integerl andn, whereh is the grid spacing, and is the time
step (andl/k is the sample rate, normally chosen a priori in audio
applications). When the spatial domain is the unit intenitails
convenient to choosk = 1/N, for some integetV, so that the
index! runs froml =0,..., N.

Difference operators may be defined as

Spu] = k_12 (ul”Jrl — 2up + ul”_l) (11a)
Seuy = i (up ™ — ) (11b)
Se—u; = % (u' — u?il) (11c)
Surt] = 1 (uy — 207+ ui) (11d)

The first is an approximation to a second time derivative st
ond and third to a first time derivative, and the fourth to aosec
spatial derivative.

choices), the above stability condition becomes suffiqiand will
remain so, even under nonlinear connection conditions/ighed
the nonlinear connections are discretized is a special veee—

a Sectior3:B). In a network configuration, the grid spacing (@nd

should) be chosen independently for each instance of a bar.

3.2. Plates

In 2D, a grid functionu;’,,, represents an approximation to a con-
tinuous functionu(z, y, t), at grid locationse = lhe, y = mhy,
for integerl, m andn, wherek is, as before, the time step, and
whereh, andh, are grid spacings in the andy directions re-
spectively. Though these may be chosen independentlyviiiey
be assumed here, for simplicity, to be equal, ig.,= hy, = h.
(For a plate defined over a unit area rectangle of aspectdaiio
is probably easiest to chooge= \/a/N,, for some integetV,,
and then setv, = floor(N;/«).)

The time difference operators given[n111) extend to 2D in an
obvious way; a simple approximation to the Laplacian, asmin

@, is

1 n n n n n
72 (U st + U1+ U1+ U1 — UL,

AU =
A scheme for[(p) then follows as

Suu = —K>6a0au — 2000, + 2010, dau+ Y | EgFy (14)

q

where as in the case of the bag, = F" is now a time series, and
whereE,; = E,,.~ is a 2D discrete distribution.

A stability condition for the above scheme, again under eppr
priate boundary terminations correspondindio (7), is

h>hmin=2\/k (Uf+\/ﬁ2+af)

again leading to maximum values of the grid s{2é,, N,).

(15)

3.3. Connections

Such operators may be employed to arrive at a scheme for aFor the connecting elements, it is useful to introduce sempiicit

bar, beginning from the forni}2):

Sttt = — K800 00ntu— 2000, U+ 20101 Sppu+ Y | EqFy (12)

q

Here, [, = F;' is now a time series, anfl, = E,; is a grid
function corresponding to the continuous distributionx) (ob-
tained via sampling, or, if the distribution is very sharplyaked,
other interpolation techniques [16]). This scheme is el the
absence of connections, and a necessary condition fotitabi

that
h > hmin = \/Qk (U%+\/H2+U%)

leading to a maximum oV = floor(1/hmin) for the number of
grid points covering the unit interval. Though the schemeeaps
to make use of values of the grid function outside the unérival,
numerical boundary conditions corresponding[fio (3) mayroe e
ployed to set such values in terms of values over the intefitre
domain. If such conditions are properly chosen (5eé [163done

(13)

methods, which have excellent stability properties—waiggtal
filters, in the linear case, are one instance of such a methad,
there are many others. As the connection element, as defined i
(83d) is lumped, it will be necessary to approximate the gtiast
F(t) andn(t) as time serieg™ andn™. In addition to the centered
time difference operator, as defined[in (L 1b) (and now ag@pit

to a grid function but a time series), an averaging operatafso
useful. To this end, define the operajar, as applied to a time
seriesp as

1 n e
5 (")

A semi-implicit discretization of(8a) is then

pen” =

F. = —wppe.n — winpen — 20x6e.ny  FFf = —M;y o Fe

Though nonlinear, this update may be solved uniquely foutie
known value ofy) at time stepr + 1, in terms of previously com-
puted values of” andn (i.e., up through time step):

n _n—1

Nt =P E (16)
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where 3.5. A Complete Network
pto= —2 (17a) When Q. connections and). excitations are present, the above
200 /k + w§ +wi(n")? update may be generalized as
"os 35272 T i; Iﬁggziz (17b) @'t = Ba" + Ca" '+ JF. + KF, (19)
The discrete definition of corresponding td{9) is postponed until  Here.Fe = [Feu, ..., Feq )" andFe = [Fe1,... Feq.]" are

the next section, after matrix representations have berdinced.
The above system of difference equations, combined with up-

dates for the individual elements, as described in the pgesiec-
tions, is stable, as long as the stability conditidng (18) @&) are
respected—a full proof is impossible here, but is carrietifou
systems of this type i [16]. In short, the system may be shtown
be strictly dissipative under transient conditions, an@maxcita-
tions are present, the size of the state of the system mayurelbd
in terms of supplied energy. What is more, as will be seentlshor
it also admits a unique solution update, which is something o
rarity for stable methods for nonlinear systems.

3.4. Matrix Representations

Looking towards implementation, it is useful to rewrite #i@ve
schemes in a vector-matrix form. For the schefmé (12), one may
define the column vector staté' as

n T

u” = [ug,...,uN]

and for schemd_{14), the 2D grid functieii,, may be “flattened"
to a vectoru™, by concatenating consecutive vertical strips as

n o __ n n n n T
u —[U()’O’A..7uO7Ny7...7uN27074..7”LLNI’Ny]

Assuming, for the moment, that no couplings or excitatiores a
present, the schemds [12) afhdl(14), then, may be writterein th

same general two-step update form as
"t =Bu" + Cu" ! (18)

Here, the matriceB andC are defined as

1 2,215 (4) (2)
B — (21— D@ 4 25, kD )
T ook rkk + 201k
1
- _ 1— ook)I + 2 D<2)>
C T (( ook)I + 201k

where hereD® and D are square matrices corresponding to
the operatorg,, (or da) andd,zdza (Or dada), with appropriate
boundary conditions taken into account, drid an identity matrix
of the appropriate size. For a bar, the matriBeand C will be of
size(N + 1) x (N + 1), and for the plate, of sizeV, + 1) (N, +
1) X (N.+1)(N,+1). They are very sparse, and possess a nearly
Toeplitz form (nearly block Toeplitz in the case of the p)ateith
perturbations due to the particular choice of boundary itimmd

In preparation for the introduction of connections and &xci
tion, it is useful to consider the case @fsuch systems, of bar or
plate type. Supposing that the states and correspondingcesat
areuy, By, andCy, forg = 1,...,Q, then a combined update
may be written as

ntl B = n—1
"' =Ba" + Cu"

wheret = [uf,...,uj]”, and where the block diagonal matrices
B andC are formed as the direct sums of the individual matrices
B,andC,, ¢ =1,...,Q. Ifthe sizes of the individual vectours,

are N, then the total size of the statewill be N = Zqul Ny.

DAFX-

vectors representing the connection and excitations $orespec-
tively.

The matrixJ = [j1|...|jq.] describes the ensemble of con-
nections, and is of siz& x Q.—there is a columrj,., r
1,...,Q. describing each connection. Each such column is a con-
catenation of) sub-columns, ag. = [j1 ,,....j5.,]"; each such
sub-columnj,, is of sizeNy, ¢ = 1,...,Q, and corresponds to
a separate element in the network. If tie connection associates
elementsx(r) and3(r), then the elements df may be set as

2
Ma(ry/8) k" Ee,(8(r),r)
1+ 00,5(mk

2
_KFEcamn
1+ Uo’a(r)k

ja(r),r jﬁ(r),r = -
and otherwise are zero. Het®, (4 (r),») andE. (), are the
two distributions associated with connectioand elements(r)
and3(r), andog oy andog (- are the two loss paramameters
associated with elements(r) and 3(r), respectively. Each such
assignment above is none other than connection fule (8lb), wi
additional factors appearing due to discretization.

Similarly, the matrixK = [k1| ... |ko,] describes the ensem-
ble of excitations, and is of siz&F x Q.; each such columk,,,
m=1,...,Q.issimilarly partitioned ak,, = (ki ., ..., ko.m]"-
If the mth excitation is associated with elemer(tm), through an
excitation distributionE. (o (m),m), then the elements d& may
be set as

Kk _ KEe (a@m)m)
a(m),m 1+ UO,a(m)k
and are otherwise zero.

Associated with the vector of forcds. is a set of relative
displacements; = [n1,...,7n0.]"; these will be related, from
(I9), at time stem, as

nn+1 _ PnF? + Rn,r]nfl (20)
———

Lgn
whereP”™ andR"™ are diagonal matrices containing valuesp6f
andr™, as given in[(Zl7) on the diagonal. The vecidrconsists of
previously computed values of the state.

It remains to writen) in terms of the stat@; this can be done
by applying a discrete version of the inner products give(@in
In order to determine@;”, the relative displacement associated with
connectionr, one may write

n T n T n
Nr = Oc,(a(m),m) Ee,(a(r),r)Uar) = Te,(8(r),m Be,(8(r),m Wa(r)
(21)

where o, (o(r),r ando. 3¢, are constants equal to the grid
spacing, in the case of a bar element, and the square of tthe gri
spacing, for a plate element. In matrix form, then, one has

n" =La" (22)
or, employing[(ID),

n"*' = (LBa" + LCu" ' + LKF!) +LJF}  (23)

LApn
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Figure 2: Snapshots of the time evolution of a network composed of andnd two plates, all under clamped boundary conditions.
Energy supplied by a strike applied to bar 1 is transmittegltde 1 and bar 2, then subsequently to plate 2 via both bar®ate 1.

whereb™ consists of previously computed values of the state, as 4.1. A Bar/Bar Connection

well as known values of the excitations. Finally.J(20) d08)@ay
be combined to give a unique solution Bg:

(LJ—P)Fo=a" —b" (24)

Despite the rather complicated formalism here, this lirsyatem
to be solved will be of the order of the number of connectiortheé
network, and thus, in most cases, relatively small—furtiae,
if the various distributions that describe the connectiaresnon-
overlapping (this is often the case for percussive exoitatiwhich
are highly localized), the system to be solved is diagonatedhe
connection force¥'. are known, schemg([L9) may then be updated
explicitly.

Referring to Sectioh 215 ,-channel outpuy™ may be de-
rived from the stat&” in a feedforward step, as

yn = S(it_ﬁ”

where herey™ is a@Q, x 1 vector, and wheré is aQ, x N
matrices, the rows of which consist of discrete output itigtions
E,, generally peaked about some set of output locationsgand
is a first time difference, as defined [D(11c). Note that imaeti
domain fomulation, it is quite straightforward to allow thetput
locations to be time-varying—such is not the case in a modal i
plementation.

4. SIMULATION RESULTSAND SOUND SYNTHESIS
EXAMPLES

This structure has been implemented in the Matlab prototypi
language. Memory requirements, for a bar element withnets
parametel, scale with\/ f./x, and for a plate, withy, /x units

of storage, wherg; is the sample rate, and are thus not extreme,
given thatx usually lies in the range between 5 and 200 for musi-
cal systems. The operation count/second scales with theoryem
times the sample ratg, due to the sparseness of the finite differ-
ence update. An illustration of simulation results for agiersys-

Considering first the case of two bars. Supposing first that th
bars are lossless, and that the connection consists of le simear
spring, then plots of output spectra are informative. Thelaho
frequencies of the combination, and especially the lowashs
frequencies, which serve as strong pitch cues, depend ima co
plicated way on the stiffness parameter, and also on theidoca
of the connection, as well as the mass ratio between the lsae—
Figure[3, illustrating some such variations. In generathsaicon-
nection can lead to highly dissonant sound output, far betybat
inherent to individual bars.

Further variations of this basic structure involve thedingamper,
and nonlinear spring mechanism—spectrograms of soundibutp
are shown in Figur€l4. The linear damper leads, obviously, to
to a shorter over-all decay time, but there are pronounced va
ations in the rates of decay of various components, as inr&igu
[(a). when a nonlinear spring is employed, in conjunctioth\ai
damper, there can be a dramatic noise-like burst in thelkaptac
tion of a strike, accompanied by a downward pitch glide, las-l
trated in Figur€W(b); pitch glides are typical perceptealtfires of
plucked string and percussion instruments, under high icundpl
excitation.

4.2. A Bar/Plate Connection

An interesting configuration of a bar/plate connection is dor
which the bar behaves as the primary vibrating element, lad t
plate as an auxiliary resonator—such a configuration islairno

a string/soundboard connection, or a plate reverberayistes, if
the stiffness parameterof the plate is chosen very small (on the
order approximately: = 2 or lower).

One set of output spectra is as shown in Figdre 5, for differ-
ent choices of the bar/plate mass ratio, with output drawmfr

tem is as shown in Figufd 2—sound examples, drawn from muchthe bar—notice that such results are considerably morergene

more complex configurations involving 20-50 individual quon
nents, and as many connections, are provided on the authelr's
site, atht t p: // ccr ma. st anf or d. edu/ “bi | bao/ soundex/ bpnet /
Given that the space of possible timbres becomes very lavge,
for a modest number of elements and connections, it is ugeful
explore some of the most basic features with reference tplsim
networks consisting of two elements and a single connection

than those obtained using commuted synthesis technig8gsri2
that the coloration of the resulting timbre (i.e., the posis and
strengths of the various partials in the output) will be defmnt
on not just this mass ratio, but also the location and pamrset
defining the connection itself. It is, of course, possibletfe bar
and plate to switch roles, with the plate behaving as the gmm
vibrating element, and the bar as a resonator.
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Figure 3:Output magnitude spectt& (f)|, in dB, as a function of
frequencyf in Hz, for a combination of two lossless bars, of stiff-
ness parameters = 100 andx = 50, under pivoting end condi-
tions, connected with a linear spring. In all cases, inpudpplied
and output read at location8.3 and 0.7 of the way from the left
end of the bar. In (a), and (b) output spectra for uncoupledsbin
the following panels are shown, in grey the output spectnaom f
the first bar, under a reference connection with= 1000, and at
locationz = 0.8 (first bar) andxz = 0.3 (second bar), and where
the mass ratio of the second bar to the first isIn (c), in black,
the output spectrum when the mass ratio is 4, in (d), in blu,
output spectrum whe@, = 4000, and in (e), in black, the out-
put spectrum when the position of coupling to the second dar i
changed tar = 0.8.

4.3. A Plate/Plate Connection

The modal frequencies of a plate are highly inharmonic thahg
modal density is uniform, and when a nonlinearity is presert
connection between two such plates, new perceptual pherame
beyond pitch glides are possible, and in particular, theegaion

of noise-like outputs which resemble cymbal crashes unigr h
amplitude excitations. See Figlide 6.

5. CONCLUSION

The model presented here is made up of abstract distriborad c
ponents, and a set of nonlinear connections—the main peistia
that an appeal to elaborate network theory constructiand ttee
introduction of wave variables, as is seen in scatterirgeap-
proaches to modular sound synthesis is not really necesshey
sum total of network theory principles necessary to manage p
sibly many inter-element connections is summarized in thee
tions [8) and[{(P); there are no data flow or computability éssu

3000

2000

1000

(b)

Figure 4: Spectrograms of sound output, as a function of time
in seconds, and frequengyin Hz, for a conection of two bars,
of parameters as described in the caption to Fiddre 3, undga(
linear damper connection, and (b) a nonlinear spring cortioes
accompanied by a damper.

0 0 0
[U(H] [U(H] [U(H]

-50 -50 -50

-100 -100

2000 0

-100

0 1000 1000 2000 0 1000

@) (b) (©

Figure 5: Output magnitude specti@/(f)|, in dB, as a function
of frequencyf in Hz, for output of a combination of a bar, with
x = 50, and a plate, with« = 10, and aspect ratiax = 1.3; both
are under clamped boundary conditions. There is a connectio
via a linear spring of stiffness parametes = 1000, connected to
the bar at positiont = 0.8, and to the plate at positionm = 0.4,

y = 0.3. Variations in the output spectrum are shown, for different
choices of the plate/bar mass ratio: (&)000, (b) 1000 and (c)
100, where output is drawn from the bar at= 0.9.

2000

as all nonlinearities are handled simultaneously in a sigghall)
linear system solution, as given {0_{24). Precomputatiamsists
mainly of forming the updating arrays, which, while not iaily is

not intensive in terms of memory or operation counts, unifie
procedure necessary for determining modal data. Staflityws

definitively for the network as presented here—this propisrin

part due to the special form of the nonlinearities (cubic)olrh
appear here, and is no longer strictly true when other typesrme

linearity are employed—among the forms that would be ofrege
are one-sided forms, allowing for rattling and collisiomsang el-
ements.

This model may be extended to incorporate elements of string
and membrane type very easily; this will affect the interstalic-
ture of the matrice® and C only, and not the connection ma-
chinery. Higher computational costs will result, however these
systems—this is a fundamental concern for such systemssaalio
physical modeling methodologies, except for the case ofgsr
where waveguide solutions are more efficient. The finiteediffice
model, unlike other types of synthesis strategies, may tenderd
to the case of fully nonlinear bar and plate vibration, tHoeg-
tra work at the level of algorithm design is necessary in otde
maintain a stability property [24, 25].
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Figure 6: Output spectrograms, as a function of frequerfgyin

Hz, and timet in seconds, for output from a connection between

two lossless plates, of stiffness parameters: 50 and x = 40,
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and aspect ratiosx = 1.3 and 1.4, under clamped boundary con-

ditions. The connection is of the form of a damper, combinigd w
a nonlinear spring, attached at the plate centers. Respakthe
second plate to a strike on the first are shown for (a) low-atuqbé
excitation, and (b) high-amplitude excitation.
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