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ABSTRACT

The construction of new virtual instruments is one long-term goal
of physical modeling synthesis; a common strategy across various
different physical modeling methodologies, including lumped net-
work models, modal synthesis and scattering based methods,is to
provide a canonical set of basic elements, and allow the userto
build an instrument via certain specified connection rules.Such an
environment may be described as modular.

Percussion instruments form a good test-bed for the devel-
opment of modular synthesis techniques—the basic components
are bars and plates, and may be accompanied by connection el-
ements, with a nonlinear character. Modular synthesis has been
approached using all of the techniques mentioned above, buttime
domain finite difference schemes are an alternative, allowing many
problems inherent in the above methods, including computability,
large memory and precomputation requirements, and lack of ex-
tensibility to more complex systems, to be circumvented.

One such network model is presented here along with the asso-
ciated difference schemes, followed by a discussion of implemen-
tation details, the issues of excitation and output, and a description
of various instrument configurations. The article concludes with a
presentation of simulation results, generated in the Matlab proto-
typing language.

1. INTRODUCTION

Physical modeling sound synthesis has been applied, traditionally,
for two distinct purposes: one is the emulation of existing musical
instruments, but another is the creation of new musical instruments
without an acoustic counterpart or reference, which retainthe un-
derpinnings of the laws of physics. If it is the second goal which is
of interest, then a modular approach, employing well-understood
canonical, or primitive elements is often taken, and the user (com-
poser) is given the additional role of an instrument designer, and
must necessarily specify connections among various instances of
the primitive elements, in order to build an instrument. Thehopes
of such an approach are twofold: first, to obtain synthetic sound
which possesses an acoustic character but which is, nevertheless,
new, and second, to retain the ease of control and playability which
is a great benefit of any physical modeling synthesis strategy.

Modularity has been approached in all physical modeling method-
ologies. The earliest and most profound influence is due to work
on networks of mass-spring elements by Cadoz [1], which subse-
quently developed into the CORDIS and CORDIS ANIMA sound
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synthesis environments [2, 3, 4]. Modal synthesis [5, 6] andfunc-
tional transformation approaches [7] also incorporate modularity
as a fundamental feature, as do methods based on scattering net-
works employing components such as digital waveguides and wave
digital filters [8, 9]. Beyond modularity, other issues of great rele-
vance, at least to the programmer/algorithm designer, are the oper-
ation count, memory requirements, precomputation, and program-
ming complexity [10].

There are advantages and disadvantages to all of the above
methods. Lumped methods, which are based on primitive ele-
ments such as masses and springs, allow for quite flexible modular
connection among elements, but the modeling of distributedele-
ments, such as those that appear in acoustic musical instruments is
awkward—certain components, such as stiff bars and plates may
only be modeled in this way using very elaborate design proce-
dures. Modal synthesis methods can produce solutions of extreme
fidelity to an underlying model problem, but only provided that
one has modal data available—in some cases this is easy to ob-
tain, but in others, potentially large eigenvalue problemsmust be
solved, before run-time, in order to obtain such data (an excel-
lent example of such a system is a rectangular plate under free
boundary conditions); memory requirements can be very large if
the modal shapes or their values at a set of specified locations are
stored, as they often are in implementation [11]. In addition, modal
and functional transformation methods do not extend easilyto in-
corporate nonlinearities of distributed type, though various tech-
niques have been proposed [12, 13]. Scattering methods allow for
extremely efficient solutions for distributed components which be-
have nearly according to the 1D wave equation (such as linear,
non-stiff strings). But such an efficiency advantage does not ex-
tend to stiff or nonlinear systems, or to systems in 2D, such as
plates and membranes. The modular connection among elements
is usually carried using scattering operations, and, when lumped
elements are modeled, using wave digital filtering blocks. While
attractive in the linear case, when nonlinearities are present, such
designs become problematic, leading to solutions requiring power-
normalized waves (necessary for any nonlinear stability analysis)
and iterative methods, and for which solutions may not be unique,
and which may require a delicate ordering of operations in the run-
time loop—indeed, it can be difficult to employ more than a single
nonlinearity in a given network [14, 15].

Time domain finite difference schemes based on distributed
canonical elements offer a means of sidestepping many of theabove
problems; precomputation and memory requirements are minimal,
and there are not the usual data flow complexities which arisein
scattering networks, even when many nonlinearities are simultane-
ously present. In addition, provable stability conditionsare avail-
able, even under nonlinear conditions, based on energy analysis
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[16]. In addition, such schemes, as they do not rely on particular
assumptions such as the existence of a modal representation, or
of traveling wave solutions, may be easily extended to handle dis-
tributed nonlinear models as well. On the other hand, the operation
count may be larger than for some of the above methods, though
normally not by much, except in the case of digital waveguides, in
cases when they may be employed.

Percussion instruments form a very fertile test-bed for thede-
velopment of such methods—excitation is relatively simple, com-
pared to the case of, say, wind instruments and bowed string in-
struments, for which the model of the excitation element is crucial,
and, furthermore, such instruments will produce musical sound un-
der a wide variety of playing conditions, which may not be true
in the case of the wind and bowed string instruments mentioned
above. This is an especially important consideration if oneis de-
signing novel instrument without a real-world reference; the pa-
rameter space to be navigated by the eventual user may be large,
and if the playability region is small, frustrations can arise!

A description of a modular percussion synthesis environment
appears in Section 2, including PDE descriptions of the basic bar
and plate elements (strings and membranes could equally well
be treated, but because computational expense is relatively large
for simulations of such components, they will not be discussed
here), connecting elements which behave as nonlinear springs and
dampers, excitation, and multichannel output. A simulation rou-
tine based on finite difference approximations appears in Section
3, accompanied by a discussion of stability conditions, computa-
tional complexity, and implementation issues. Simulationresults
are presented in Section 4, and sound examples are provided on
the author’s website, at
http://ccrma.stanford.edu/˜bilbao/soundex/bpnet/

2. INSTRUMENT FORMULATION

In the context of percussion instruments, the main elementsof in-
terest will be bars, and plates. Simple linear models of bothwill be
presented here, though in a finite difference framework, there is lit-
tle difficulty in extending such models to include distributed non-
linear phenomena—see, e.g., [16]. In addition to these primitive
distributed elements, a type of connection is necessary. Drawing
inspiration from lumped network approaches, as well as similar
instances of acoustic instruments involving such couplings, such
as the prepared piano, a connection model behaving as a combi-
nation of a damper, a linear spring, and a cubic nonlinear spring
will be presented here. See Figure 1, showing a representation of
a general instrument configuration.

2.1. Bars

A simple model of linear uniform bar vibration is given by the
following partial differential equation:

utt = −EI

ρA
uxxxx − 2σ0ut + 2σ1utxx +

1

ρA

∑

q

eqfq (1)

Here,u = u(x, t) is the transverse displacement of such a bar,
depending on timet ≥ 0 and a spatial coordinatex ∈ [0, L],
whereL is the bar length. Sucbscriptst andx refer to temporal
and spatial differentiation, respectively. The constantsρ, A, E and
I are the mass density, cross-sectional area, Young’s modulus and
moment of inertia for the bar respectively; all are assumed con-
stant here. The term with coefficientσ0, on its own, gives rise

Multiple Channel Output

Input Excitation

Figure 1: A percussion synthesis network, composed of a set of
bars (at left) and plates (at right); connections between elements
at specified locations are indicated by dark lines and rectangles.
Input consists of a series of pulses delivered to the networkat spec-
ified locations, and multiple channel output is drawn from distinct
locations in the network.

to frequency-independent loss, and the term with coefficient σ1

allows for increased loss at higher frequencies, which is charac-
teristic of most percussion instruments. The final term involves
a series of functionsfq = fq(t), with dimensions of force, repre-
senting either externally supplied excitations, or couplings to other
objects—both such types of force will be described in subsequent
sections. The distributionseq = eq(x), which indicate the loca-
tions at which the excitations are to be applied are usually sharply
peaked in a percussion setting, perhaps of the form of Dirac delta
functionseq(x) = δ(x−xq) selecting a locationx = xq, but need
not be.

This model may be extended to allow for a spatial dependence
of the various parameters onx (giving models of, e.g., arched
bars [17]), high-amplitude nonlinearity [18], more elaborate mod-
els of loss [19], and to include tensioning effects, in whichcase
the model is better described as a stiff string [20]. For moreon
this model of bar vibration, and the various extensions mentioned
above, see, e.g., [16].

In order to reduce the size of the parameter space faced by the
eventual user, it is useful to introduce the scaling variable x′ =
x/L; upon the substitution of this variable, and after removal of
primes, the resulting equation of motion is

utt = −κ2uxxxx − 2σ0ut + 2σ1utxx +
∑

q

EqFq (2)

now defined over the unit intervalx ∈ [0, 1], and where here,
κ =

√

EI/ρA/L2 is a stiffness parameter, which scales roughly
with pitch, and whereFq = fq/M is an excitation function with
dimensions of acceleration, whereM = ρAL is the total mass of
the bar; the scaled distributionEq is defined asEq = Leq .

There are many possible boundary terminations for such a sys-
tem at an endpoint atx = 0 or x = 1. Here are three of interest in
a musical setting:

u = ux = 0 Clamped (3a)

u = uxx = 0 Pivoting (3b)

uxx = κ2uxxx − 2σ1uxt = 0 Free (3c)
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All are lossless; many other terminations, involving masses, springs,
and dampers, possibly nonlinear are possible, but this simple set
will suffice for the present study.

A single bar is thus characterized by the three parametersκ, σ0

andσ1, as well as choices of possible boundary conditions at either
end (nine, not counting multiplicities).κ, as mentioned above,
scales roughly with pitch, but the placement of the resulting modal
frequencies (nearly always inharmonic) is strongly dependent on
the choice of boundary condition.σ0 andσ1 allow two-parameter
control over damping rates. More useful perhaps to the musician
is the 60 dB decay time, as a function of frequencyf in Hz, which
may be written [16] as

T60(f) =
6 ln(10)

σ0 + 2πσ1f/κ

2.2. Plates

A simple model of the linear vibration of thin uniform platesis an
extension of the above model to 2D:

utt = − D

ρH
∆∆u − 2σ0ut + 2σ1∆ut +

1

ρH

∑

q

eqfq (4)

Here, u(x, y, t) represents transverse displacement of the plate,
defined for timet ≥ 0; in this article, for simplicity, the plate
is assumed defined over the rectangular regionx ∈ [0, Lx], y ∈
[0, Ly ]. The subscriptt again represents partial time differentia-
tion, and∆ is the Laplacian, which in Cartesian coordinates, is
defined as

∆u = uxx + uyy (5)

where subscriptsx andy represent partial differentiation in the two
spatial coordinates.ρ is the mass density,H the plate thickness,
and the parameterD is defined asD = EH3/12(1 − ν2), where
E is Young’s modulus, andν is Poisson’s ratio for the material.σ0

andσ1 are loss parameters, as in the case of the bar—they may be
related to a frequency-dependent decay time in exactly the manner
described at the end of the last section. As before,fq = fq(t)
represents a force due to external excitation or a coupling,applied
at the spatial location described by a distributioneq = eq(x, y).

Again, it is useful to simplify the system above by introducing
the coordinatesx′ = x/

√
LxLy , y′ = y/

√
LxLy—after sub-

sititution in the system above, and removal of primes, the system
becomes

utt = −κ2∆∆u − 2σ0ut + 2σ1∆ut +
∑

q

EqFq (6)

which is now defined over the unit area regionx ∈ [0, α], y ∈
[0, 1/α], whereα =

√

Lx/Ly is the plate aspect ratio.κ =
√

D/ρH/LxLy is again a stiffness parameter, scaling roughly
with pitch, and whereFq = fq/M is defined in terms of the total
plate massM = ρHLxLy , andEq = Leq.

Boundary conditions generalizing those of the bar may be writ-
ten as

u = un = 0 Clamped

u = unn = 0 Pivoting (7)

unn+νuss = κ2 (unnn+(2 − ν)unss)−2σ1unt = 0 Free

at an edge with normal coordinaten and tangential coordinates
[21]. (An extra corner condition,uns = 0, is necessary for two
adjoining free edges.)

A given plate, then, is characterized by the five parametersκ,
ν, α, σ0 andσ1, as well as choices of boundary condition at the
four edges (there are then 81 possible configurations, againnot
counting multiplicities).

2.3. Connecting Elements

As an example of a single connection between two basic elements
of bar or plate type, consider the following pair of PDEs:

u
(1)
tt = . . . + FcE

(1)
c

u
(2)
tt = . . . + F ∗

c E(2)
c

where(1) and(2) refer to the first and second element, respectively,
and where the. . . refer to the remaining terms in the PDEs, of the
forms given in (2) and (6). The two elements are assumed to have
massesM (1) andM (2), respectively.

Fc and F ∗

c can be related in many ways—a simple general
choice is of a nonlinear spring/damper connection, of the form

Fc = −ω2
0η − ω4

1η3 − 2σ×η̇ (8a)

F ∗

c = −M1/2Fc (8b)

where the term with coefficientω0 describes a linear spring con-
nection, that with coefficientω1 a cubic nonlinear spring connec-
tion, and that with coefficient2σ× a linear damping mechanism—
the dot aboveη in this term signifies time differentiation. The con-
stantM1/2 = M (1)/M (2) is the mass ratio of the two elements.
The lumped quantityη is defined as

η = 〈u(1), E(1)
c 〉 − 〈u(2), E(2)

c 〉 (9)

where〈·, ·〉 signifies anL2 inner product over the appropriate space
(1D in the case of a bar, and 2D in the case of the plate). Notice
that if the distributionsE(1)

c andE
(2)
c are highly localized, then

η reduces to a simple measure of the relative displacement of the
two objects at the connection point.

Such a connection may be shown to be strictly dissipative (and
lossless ifσ× = 0).

2.4. Excitation

In a true model of synthesis based on a percussion instrument, a
model of the excitation mechanism (a mallet or hammer) is nec-
essary. In general, this interaction is nonlinear, and willdepend
strongly on the mass and stiffening characteristics of the mallet—
see, e.g., [22] for the case of such a model as applied to a kettle-
drum. In the context of sound synthesis, rather than that of the
pure investigation of musical instrument acoustics, one may note
that the interaction time in most instruments is quite small(on the
order of 1–5 ms), and thus as a shortcut, one may make use of a
predefined form of the excitation functionF = Fe(t), in the case
of both bars and plates. A simple pulse-like form, dependingon
few parameters, is the following raised cosine distribution:

Fe(t) =

{
Fmax

2

(

1 − cos( 2π(t−t0)
te

)
)

t0 ≤ t ≤ t0 + te

0 otherwise
(10)

Here,t0 is the time at which the excitation occurs,te is its dura-
tion, andFmax is its maximum amplitude. Generally, under linear
conditions, increases inFmax lead to an increase in output ampli-
tude, while decreases inte lead to a brighter timbre—but under
nonlinear conditions, increases inFmax can have a strong impact
on timbre as well.
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2.5. Output

For synthesis purposes, it is probably overkill to use a complete
model of the sound path from the instrument to the listener—a
crude but effective strategy, used across many physical modeling
methods, is to read output velocity from a point or distribution on
the surface of one of the elements, and then apply post-processing
to emulate effects of sound directionality and/or room reverbera-
tion, if desired. To this end, an outputy(t) may be defined as

y = 〈Eo, ut〉

where as before, the bracket notation indicates anL2 inner product
over the appropriate space (1D or 2D, depending on the element).
The distributionEo, in the simplest case, could be a Dirac delta
function, selecting ouput velocity at a given output location.

3. FINITE DIFFERENCE SCHEMES

3.1. Bars

In 1D, a grid functionun
l represents an approximation to a continu-

ous functionu(x, t), at grid locationsx = lh and at timest = nk,
for integerl andn, whereh is the grid spacing, andk is the time
step (and1/k is the sample rate, normally chosen a priori in audio
applications). When the spatial domain is the unit interval, it is
convenient to chooseh = 1/N , for some integerN , so that the
index l runs froml = 0, . . . , N .

Difference operators may be defined as

δttu
n
l =

1

k2

(
un+1

l − 2un
l + un−1

l

)
(11a)

δt·u
n
l =

1

2k

(
un+1

l − un−1
l

)
(11b)

δt−un
l =

1

k

(
un

l − un−1
l

)
(11c)

δxxun
l =

1

h2
(un

l+1 − 2un
l + un

l−1) (11d)

The first is an approximation to a second time derivative, thesec-
ond and third to a first time derivative, and the fourth to a second
spatial derivative.

Such operators may be employed to arrive at a scheme for a
bar, beginning from the form (2):

δttu = −κ2δxxδxxu−2σ0δt·u+2σ1δt−δxxu+
∑

q

EqFq (12)

Here,Fq = F n
q is now a time series, andEq = Eq,l is a grid

function corresponding to the continuous distributionEq(x) (ob-
tained via sampling, or, if the distribution is very sharplypeaked,
other interpolation techniques [16]). This scheme is explicit in the
absence of connections, and a necessary condition for stability is
that

h ≥ hmin =

√

2k

(

σ2
1 +

√

κ2 + σ2
1

)

(13)

leading to a maximum ofN = floor(1/hmin) for the number of
grid points covering the unit interval. Though the scheme appears
to make use of values of the grid function outside the unit interval,
numerical boundary conditions corresponding to (3) may be em-
ployed to set such values in terms of values over the interiorof the
domain. If such conditions are properly chosen (see [16] forsome

choices), the above stability condition becomes sufficient(and will
remain so, even under nonlinear connection conditions, provided
the nonlinear connections are discretized is a special way—see
Section 3.3). In a network configuration, the grid spacing can (and
should) be chosen independently for each instance of a bar.

3.2. Plates

In 2D, a grid functionun
l,m represents an approximation to a con-

tinuous functionu(x, y, t), at grid locationsx = lhx, y = mhy,
for integerl, m andn, wherek is, as before, the time step, and
wherehx andhy are grid spacings in thex andy directions re-
spectively. Though these may be chosen independently, theywill
be assumed here, for simplicity, to be equal, i.e.,hx = hy = h.
(For a plate defined over a unit area rectangle of aspect ratioα, it
is probably easiest to chooseh =

√
α/Nx, for some integerNx,

and then setNy = floor(Nx/α).)
The time difference operators given in (11) extend to 2D in an

obvious way; a simple approximation to the Laplacian, as given in
(5), is

δ∆un
l,m =

1

h2

(
un

l,m+1 + un
l,m−1 + un

l+1,m + un
l−1,m − 4un

l,m

)

A scheme for (6) then follows as

δttu = −κ2δ∆δ∆u − 2σ0δt·u + 2σ1δt−δ∆u +
∑

q

EqFq (14)

where as in the case of the bar,Fq = F n
q is now a time series, and

whereEq = Eq,l,m is a 2D discrete distribution.
A stability condition for the above scheme, again under appro-

priate boundary terminations corresponding to (7), is

h ≥ hmin = 2

√

k

(

σ2
1 +

√

κ2 + σ2
1

)

(15)

again leading to maximum values of the grid size(Nx, Ny).

3.3. Connections

For the connecting elements, it is useful to introduce semi-implicit
methods, which have excellent stability properties—wave digital
filters, in the linear case, are one instance of such a method,but
there are many others. As the connection element, as defined in
(8a) is lumped, it will be necessary to approximate the quantities
F (t) andη(t) as time seriesF n andηn. In addition to the centered
time difference operator, as defined in (11b) (and now applied not
to a grid function but a time series), an averaging operator is also
useful. To this end, define the operatorµt·, as applied to a time
seriesη as

µt·η
n =

1

2

(
ηn+1 + ηn−1

)

A semi-implicit discretization of (8a) is then

Fc = −ω2
0µt·η − ω4

1ηµt·η − 2σ×δt·η F ∗

c = −M1/2Fc

Though nonlinear, this update may be solved uniquely for theun-
known value ofη at time stepn + 1, in terms of previously com-
puted values ofF andη (i.e., up through time stepn):

ηn+1 = pnF n
c + rnηn−1 (16)
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where

pn =
−2

2σx/k + ω2
0 + ω4

1(ηn)2
(17a)

rn =
2σx/k − ω2

0 − ω4
1(ηn)2

2σx/k + ω2
0 + ω4

1(ηn)2
(17b)

The discrete definition ofη corresponding to (9) is postponed until
the next section, after matrix representations have been introduced.

The above system of difference equations, combined with up-
dates for the individual elements, as described in the preding sec-
tions, is stable, as long as the stability conditions (13) and (15) are
respected—a full proof is impossible here, but is carried out for
systems of this type in [16]. In short, the system may be shownto
be strictly dissipative under transient conditions, and when excita-
tions are present, the size of the state of the system may be bounded
in terms of supplied energy. What is more, as will be seen shortly,
it also admits a unique solution update, which is something of a
rarity for stable methods for nonlinear systems.

3.4. Matrix Representations

Looking towards implementation, it is useful to rewrite theabove
schemes in a vector-matrix form. For the scheme (12), one may
define the column vector stateun as

u
n = [un

0 , . . . , un
N ]T

and for scheme (14), the 2D grid functionun
l,m may be “flattened"

to a vectorun, by concatenating consecutive vertical strips as

u
n = [un

0,0, . . . , u
n
0,Ny

, . . . , un
Nx,0, . . . , u

n
Nx,Ny

]T

Assuming, for the moment, that no couplings or excitations are
present, the schemes (12) and (14), then, may be written in the
same general two-step update form as

u
n+1 = Bu

n + Cu
n−1 (18)

Here, the matricesB andC are defined as

B =
1

1 + σ0k

(

2I − κ2k2
D

(4) + 2σ1kD
(2)

)

C = − 1

1 + σ0k

(

(1 − σ0k)I + 2σ1kD
(2)

)

where here,D(2) andD(4) are square matrices corresponding to
the operatorsδxx (or δ∆) andδxxδxx (or δ∆δ∆), with appropriate
boundary conditions taken into account, andI is an identity matrix
of the appropriate size. For a bar, the matricesB andC will be of
size(N +1)× (N +1), and for the plate, of size(Nx +1)(Ny +
1)×(Nx +1)(Ny +1). They are very sparse, and possess a nearly
Toeplitz form (nearly block Toeplitz in the case of the plate), with
perturbations due to the particular choice of boundary condition.

In preparation for the introduction of connections and excita-
tion, it is useful to consider the case ofQ such systems, of bar or
plate type. Supposing that the states and corresponding matrices
areuq , Bq, andCq, for q = 1, . . . , Q, then a combined update
may be written as

ū
n+1 = B̄ū

n + C̄ū
n−1

whereū = [uT
1 , . . . ,uT

Q]T , and where the block diagonal matrices
B̄ andC̄ are formed as the direct sums of the individual matrices
Bq andCq, q = 1, . . . , Q. If the sizes of the individual vectorsuq

areNq , then the total size of the stateu will be N̄ =
∑Q

q=1 Nq .

3.5. A Complete Network

WhenQc connections andQe excitations are present, the above
update may be generalized as

ū
n+1 = B̄ū

n + C̄ū
n−1 + J̄Fc + K̄Fe (19)

Here,Fc = [Fc,1, . . . , Fc,Qc ]
T andFe = [Fe,1, . . . , Fe,Qe ]T are

vectors representing the connection and excitations forces, respec-
tively.

The matrixJ̄ = [̄j1| . . . |̄jQc ] describes the ensemble of con-
nections, and is of sizēN × Qc—there is a column̄jr, r =
1, . . . , Qc describing each connection. Each such column is a con-
catenation ofQ sub-columns, as̄jr = [jT1,r, . . . , j

T
Q,r]

T ; each such
sub-columnjq,r is of sizeNq , q = 1, . . . , Q, and corresponds to
a separate element in the network. If therth connection associates
elementsα(r) andβ(r), then the elements of̄J may be set as

jα(r),r =
k2Ec,(α(r),r)

1 + σ0,α(r)k
jβ(r),r = −Mα(r)/β(r)k

2Ec,(β(r),r)

1 + σ0,β(r)k

and otherwise are zero. Here,Ec,(α(r),r) andEc,(β(r),r) are the
two distributions associated with connectionr and elementsα(r)
andβ(r), andσ0,α(r) andσ0,β(r) are the two loss paramameters
associated with elementsα(r) andβ(r), respectively. Each such
assignment above is none other than connection rule (8b), with
additional factors appearing due to discretization.

Similarly, the matrixK̄ = [k̄1| . . . |k̄Qe ] describes the ensem-
ble of excitations, and is of sizēN × Qe; each such column̄km,
m = 1, . . . , Qe is similarly partitioned as̄km = [kT

1,m, . . . ,kT
Q,m]T .

If the mth excitation is associated with elementα(m), through an
excitation distributionEe,(α(m),m), then the elements of̄K may
be set as

kα(m),m =
k2Ee,(α(m),m)

1 + σ0,α(m)k

and are otherwise zero.
Associated with the vector of forcesFc is a set of relative

displacementsη = [η1, . . . , ηQc ]
T ; these will be related, from

(16), at time stepn, as

η
n+1 = P

n
F

n
c + R

n
η

n−1

︸ ︷︷ ︸

,an

(20)

wherePn andRn are diagonal matrices containing values ofpn

andrn, as given in (17) on the diagonal. The vectoran consists of
previously computed values of the state.

It remains to writeη in terms of the statēu; this can be done
by applying a discrete version of the inner products given in(9).
In order to determineηn

r , the relative displacement associated with
connectionr, one may write

ηn
r = σc,(α(r),r)E

T
c,(α(r),r)u

n
α(r) − σc,(β(r),r)E

T
c,(β(r),r)u

n
β(r)

(21)
whereσc,(α(r),r) and σc,(β(r),r) are constants equal to the grid
spacing, in the case of a bar element, and the square of the grid
spacing, for a plate element. In matrix form, then, one has

η
n = L̄ū

n (22)

or, employing (19),

η
n+1 =

(
L̄B̄ū

n + L̄C̄ū
n−1 + L̄K̄F

n
e

)

︸ ︷︷ ︸

,bn

+L̄J̄F
n
c (23)
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Plate 1
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Excitation
���

Figure 2: Snapshots of the time evolution of a network composed of two bars and two plates, all under clamped boundary conditions.
Energy supplied by a strike applied to bar 1 is transmitted toplate 1 and bar 2, then subsequently to plate 2 via both bar 2 and plate 1.

wherebn consists of previously computed values of the state, as
well as known values of the excitations. Finally, (20) and (23) may
be combined to give a unique solution forFc:

(
L̄J̄ −P

)
Fc = a

n − b
n (24)

Despite the rather complicated formalism here, this linearsystem
to be solved will be of the order of the number of connections in the
network, and thus, in most cases, relatively small—furthermore,
if the various distributions that describe the connectionsare non-
overlapping (this is often the case for percussive excitations, which
are highly localized), the system to be solved is diagonal. Once the
connection forcesFc are known, scheme (19) may then be updated
explicitly.

Referring to Section 2.5,Qo-channel outputyn may be de-
rived from the statēun in a feedforward step, as

y
n = Sδt−ū

n

where here,yn is a Qo × 1 vector, and whereS is a Qo × N̄
matrices, the rows of which consist of discrete output distributions
Eo, generally peaked about some set of output locations, andδt−

is a first time difference, as defined in (11c). Note that in a time
domain fomulation, it is quite straightforward to allow theoutput
locations to be time-varying—such is not the case in a modal im-
plementation.

4. SIMULATION RESULTS AND SOUND SYNTHESIS
EXAMPLES

This structure has been implemented in the Matlab prototyping
language. Memory requirements, for a bar element with stiffness
parameterκ, scale with

√

fs/κ, and for a plate, withfs/κ units
of storage, wherefs is the sample rate, and are thus not extreme,
given thatκ usually lies in the range between 5 and 200 for musi-
cal systems. The operation count/second scales with the memory
times the sample ratefs, due to the sparseness of the finite differ-
ence update. An illustration of simulation results for a simple sys-
tem is as shown in Figure 2—sound examples, drawn from much
more complex configurations involving 20–50 individual compo-
nents, and as many connections, are provided on the author’sweb-
site, athttp://ccrma.stanford.edu/˜bilbao/soundex/bpnet/
Given that the space of possible timbres becomes very large,even
for a modest number of elements and connections, it is usefulto
explore some of the most basic features with reference to simple
networks consisting of two elements and a single connection.

4.1. A Bar/Bar Connection

Considering first the case of two bars. Supposing first that the
bars are lossless, and that the connection consists of a single linear
spring, then plots of output spectra are informative. The modal
frequencies of the combination, and especially the lowest such
frequencies, which serve as strong pitch cues, depend in a com-
plicated way on the stiffness parameter, and also on the location
of the connection, as well as the mass ratio between the bars—see
Figure 3, illustrating some such variations. In general, such a con-
nection can lead to highly dissonant sound output, far beyond that
inherent to individual bars.

Further variations of this basic structure involve the linear damper,
and nonlinear spring mechanism—spectrograms of sound output
are shown in Figure 4. The linear damper leads, obviously, to
to a shorter over-all decay time, but there are pronounced vari-
ations in the rates of decay of various components, as in Figure
4(a). When a nonlinear spring is employed, in conjunction with a
damper, there can be a dramatic noise-like burst in the attack por-
tion of a strike, accompanied by a downward pitch glide, as illus-
trated in Figure 4(b); pitch glides are typical perceptual features of
plucked string and percussion instruments, under high amplitude
excitation.

4.2. A Bar/Plate Connection

An interesting configuration of a bar/plate connection is one for
which the bar behaves as the primary vibrating element, and the
plate as an auxiliary resonator—such a configuration is similar to
a string/soundboard connection, or a plate reverberation system, if
the stiffness parameterκ of the plate is chosen very small (on the
order approximatelyκ = 2 or lower).

One set of output spectra is as shown in Figure 5, for differ-
ent choices of the bar/plate mass ratio, with output drawn from
the bar—notice that such results are considerably more general
than those obtained using commuted synthesis techniques [23], in
that the coloration of the resulting timbre (i.e., the positions and
strengths of the various partials in the output) will be dependent
on not just this mass ratio, but also the location and parameters
defining the connection itself. It is, of course, possible for the bar
and plate to switch roles, with the plate behaving as the primary
vibrating element, and the bar as a resonator.
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Figure 3:Output magnitude spectra|U(f)|, in dB, as a function of
frequencyf in Hz, for a combination of two lossless bars, of stiff-
ness parametersκ = 100 andκ = 50, under pivoting end condi-
tions, connected with a linear spring. In all cases, input isapplied
and output read at locations0.3 and0.7 of the way from the left
end of the bar. In (a), and (b) output spectra for uncoupled bars. In
the following panels are shown, in grey the output spectrum from
the first bar, under a reference connection withω = 1000, and at
locationx = 0.8 (first bar) andx = 0.3 (second bar), and where
the mass ratio of the second bar to the first is1. In (c), in black,
the output spectrum when the mass ratio is 4, in (d), in black,the
output spectrum whenω0 = 4000, and in (e), in black, the out-
put spectrum when the position of coupling to the second bar is
changed tox = 0.8.

4.3. A Plate/Plate Connection

The modal frequencies of a plate are highly inharmonic though the
modal density is uniform, and when a nonlinearity is presentin a
connection between two such plates, new perceptual phenomena,
beyond pitch glides are possible, and in particular, the generation
of noise-like outputs which resemble cymbal crashes under high
amplitude excitations. See Figure 6.

5. CONCLUSION

The model presented here is made up of abstract distributed com-
ponents, and a set of nonlinear connections—the main point here is
that an appeal to elaborate network theory constructions, and the
introduction of wave variables, as is seen in scattering-based ap-
proaches to modular sound synthesis is not really necessary—the
sum total of network theory principles necessary to manage pos-
sibly many inter-element connections is summarized in the equa-
tions (8) and (9); there are no data flow or computability issues,

(a) (b)
t t

f f

Figure 4: Spectrograms of sound output, as a function of timet,
in seconds, and frequencyf in Hz, for a conection of two bars,
of parameters as described in the caption to Figure 3, under (a) a
linear damper connection, and (b) a nonlinear spring connection,
accompanied by a damper.
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−50
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f f f
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Figure 5: Output magnitude spectra|U(f)|, in dB, as a function
of frequencyf in Hz, for output of a combination of a bar, with
κ = 50, and a plate, withκ = 10, and aspect ratioα = 1.3; both
are under clamped boundary conditions. There is a connection,
via a linear spring of stiffness parameterω0 = 1000, connected to
the bar at positionx = 0.8, and to the plate at positionx = 0.4,
y = 0.3. Variations in the output spectrum are shown, for different
choices of the plate/bar mass ratio: (a)10000, (b) 1000 and (c)
100, where output is drawn from the bar atx = 0.9.

as all nonlinearities are handled simultaneously in a single (small)
linear system solution, as given in (24). Precomputation consists
mainly of forming the updating arrays, which, while not trivial, is
not intensive in terms of memory or operation counts, unlikethe
procedure necessary for determining modal data. Stabilityfollows
definitively for the network as presented here—this property is in
part due to the special form of the nonlinearities (cubic) which
appear here, and is no longer strictly true when other types of non-
linearity are employed—among the forms that would be of interest
are one-sided forms, allowing for rattling and collisions among el-
ements.

This model may be extended to incorporate elements of string
and membrane type very easily; this will affect the internalstruc-
ture of the matrices̄B and C̄ only, and not the connection ma-
chinery. Higher computational costs will result, however,for these
systems—this is a fundamental concern for such systems across all
physical modeling methodologies, except for the case of strings,
where waveguide solutions are more efficient. The finite difference
model, unlike other types of synthesis strategies, may be extended
to the case of fully nonlinear bar and plate vibration, though ex-
tra work at the level of algorithm design is necessary in order to
maintain a stability property [24, 25].
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Figure 6: Output spectrograms, as a function of frequencyf , in
Hz, and timet in seconds, for output from a connection between
two lossless plates, of stiffness parametersκ = 50 andκ = 40,
and aspect ratiosα = 1.3 and1.4, under clamped boundary con-
ditions. The connection is of the form of a damper, combined with
a nonlinear spring, attached at the plate centers. Responses of the
second plate to a strike on the first are shown for (a) low-amplitude
excitation, and (b) high-amplitude excitation.
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