
Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009 

 DAFX-1 

ADAPTIVE PHASE DISTORTION SYNTHESIS 

Victor Lazzarini, Joseph Timoney Jussi Pekonen, Vesa Välimäki 
Sound and Music Technology Group 

National University of Ireland, Maynooth 
Ireland 

Dept. of Signal Processing and Acoustics 
TKK Helsinki University of Technology 

Espoo, Finland 
Victor.Lazzarini@nuim.ie 

JTimoney@cs.nuim.ie 
Jussi.Pekonen@tkk.fi 
Vesa.Valimaki@tkk.fi 

 
 

ABSTRACT 

This article discusses Phase Distortion synthesis and its applica-
tion to arbitrary input signals. The main elements that compose 
the technique are presented. Its similarities to Phase Modulation 
are discussed and the equivalence between the two techniques is 
explored. Two alternative methods of distorting the phase of an 
arbitrary signal are presented. The first is based on the audio-rate 
modulation of a first-order allpass filter coefficient. The other 
method relies on a re-casting of the Phase Modulation equation, 
which leads to a heterodyned form of waveshaping. The relation-
ship of these implementations to the original technique is ex-
plored in detail. Complementing the article, a number of exam-
ples are discussed, demonstrating the application of the tech-
nique as an interesting digital audio effect. 

1. INTRODUCTION 

Phase Distortion (PD) [1] is a synthesis technique based on the 
table lookup of a sinusoidal function using a non-linear mapping 
of a modulo counter (also called a phasor). It was first introduced 
in the Casio CZ-series of synthesisers [2], where it was used to 
emulate a typical subtractive synthesis signal flow composed of 
source-filter controls. This was actually a clever way of disguis-
ing what otherwise might have been a less intuitive method of 
synthesis. In fact, as we will see, PD is effectively a subset of 
Phase Modulation (PM) synthesis, the usual implementation 
method of Frequency Modulation (FM) [3] in hardware synthe-
sisers [4] such as the Yamaha DX-series [5]. FM was admitedly 
a non-intuitive synthesis method for musicians, although it was 
very powerful computationally.  

PD has not been extensively explored in the signal process-
ing literature. However, it remains possibly an interesting 
method for many applications, including the design of Virtual 
Analogue (VA) oscillators. In the present work, we will try to 
explore its possibilities for adaptive signal processing, in the vein 
of Adaptive FM (AdFM) [6] and Adaptive SpSB [7]. This paper 
is organised as follows. We will first sketch out the basic ele-
ments of PD and its theoretical foundations. This will be fol-
lowed by two proposed methods of phase distortion of arbitrary 
signals, employing audio-rate coefficient-modulated allpass fil-
ters [8][9] and using a heterodyne arrangement [10]. The paper 
concludes with a discussion of a number of examples using dif-
ferent inputs and parameters. 

2. PHASE DISTORTION SYNTHESIS 

The principles of PD synthesis as described in its original formu-
lation [1] can be formalised as follows. A sinusoidal function 
with modulo phase φ(t) defined as 
 

))(2cos()( ttx πφ−=                          (1) 
 
can produce a complex harmonic spectrum if its phase is shaped 
by a non-linear function f(x) as in  
 

)))((2cos()( tftx φπ−=                        (2) 
 

Depending on the shape of f(x), different spectra can be pro-
duced. If f(x) is linear, no distortion is effected and we have a 
pure sinusoidal tone. Thus, PD can be seen as form of phase-
shaping, in analogy to the non-linear amplitude distortion 
method of waveshaping [11]. In its original implementation, PD 
synthesis used piecewise linear functions of two or more seg-
ments to implement the non-linear mapping. Fig. 1 shows one 
such function, plotted against a linear phase increment. The re-
sulting distorted waveshape is depicted in Fig. 2. 

 

 
Figure 1. Phase distortion function (continuous line), 

plotted against linear phase (dots), with d = 0.1. 
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Figure 2. Phase distortion waveform (continuous line) 

plotted against an inverted cosine wave (dots). 

However, we can demonstrate that PD is no more than a dis-
guised way of implementing PM, albeit only a subset of it. We 
can decompose the phaseshaping function f(x) into a linear phase 
and a modulation term: 

 
                                   )()( xxgxf +=                                (3) 
 

Now eq. 2 becomes the more familiar PM expression: 
 

))])(()([2cos()( tgttx φ+φπ−=                    (4) 
 
So what is the phase modulation function g(x)? This can be 

found by subtracting the linear phase term from the phase distor-
tion function. The piecewise linear function of fig.1 is defined 
as: 
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where d is the point at which the two pieces of the function join 
together. We can then extract g(x) using eq. 3, which yields: 
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i.e. a sawtooth wave inflected at d with an amplitude of (0.5 – d). 

PD is then characterised as a form of phase-synchronous 
complex PM. The ratio between carrier and modulator funda-
mental frequency is always integral (in this particular case 1) and 
the modulation index, controlling spectral energy is 2π(0.5 – d), 
reaching a maximum of π in the limit of d → 0 (100% sawtooth). 

 
Figure 3. PD spectrum,  using sawtooth-shape distortion 

of fig.1 (d = 0.1).  

 Moving the point d (to the left) not only increases the modu-
lation index, but also increases the number of significant compo-
nents in the modulating wave. At the limit, this type of Complex 
PM can be expanded as [12]: 
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As it can be seen, there is scope for producing a very wideband 
spectrum with the technique, possibly with aliasing issues at high 
fundamentals. However, in a straightforward implementation of 
PD, d typically will not be too small. The resulting spectrum for 
d = 0.1 is plotted on fig.3, up to the fiftieth harmonic (this corre-
sponds to the waveform and distortion functions of figs.2 and 1, 
respectively). Of course, when implementing PD in terms of PM, 
we can use a sawtooth wave liberally, and raise the modulation 
index above the π threshold, if needed. 

Other distortion shapes can be used. For instance, a function 
with two inflections, instead of one, can produce spectra without 
even harmonics, similar to a square wave. This is equivalent to 
implementing PM with a carrier to modulator fundamental fre-
quency ratio of 2, since the two inflections are equivalent to 
halving the period of the modulating function. Other distortion 
shapes can also be produced by concatenating simpler functions. 

Typically, PD can be implemented by using a simple flow-
control logic to shape the phase increment of a sinusoidal table 
lookup oscillator. It is also possible to implement the non-linear 
phase function by using a table lookup, in manner similar to 
waveshaping. However, possibly the most efficient method is to 
use the PM equivalence discussed above. In order to generate 
time-varying spectra, we can, depending on the implementation 
method, change the position of the inflection point or points, in-
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terpolate between a linearly and non-linearly shaped phase or 
vary the modulation index.  

In any case, all of these methods require the use of a pre-
calculated lookup table, which will hold the signal whose phase 
is distorted (generally a single wave period). In order to apply 
phase distortion to arbitrary input signals, in analogous fashion to 
AdFM and related techniques, we will need to find alternative 
methods of implementation. 

3. GENERAL-PURPOSE PHASE DISTORTION 
METHODS 

We will now investigate two methods for distorting the phase of 
arbitrary signals. The first of these employs a first-order allpass 
filter, which is a well-known method for imparting small delays 
and phase corrections to signals. The second takes advantage of 
the PD-PM equivalence demonstrated above and a rearrange-
ment of the PM equation. Both methods will be shown to be 
comparable to the original PD formulation, whilst allowing for-
more general-purpose applications. 

3.1. Allpass filter-based phase distortion 

A first-order allpass with the correct properties for a phase dis-
tortion application can be implemented by any one of the follow-
ing expressions [9]: 
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where a is the filter coefficient and its transfer function is 
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For our present purpose, we will be using the implementation 

of eq.8, as this will be shown to provide better results when the 
coefficient a is time-varying. The output phase delay for this all-
pass filter can be defined as a function of an input frequency ω as 
[13]: 
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We can vary the coefficient a at an audio-range rate with a 

modulating function m(t). This will yield a time-varying phase 
shift, which can now be put in terms of two variables (frequency 
and time): 
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One of the notable aspects of eq.13 is that it shows that the 

relationship between the time-varying phase and the modulation 
function is non-linear. In addition, it has been shown that the 
modulating signal needs to be placed in the range of zero to one 
to avoid dispersive effects associated with allpass filters, as well 
as to keep the filter stable [8].  

As we are interested in phase distortion, we need to find a 
suitable modulation function for the allpass filter coefficient that 
will induce desired phase deviations in its input. To determine an 
expression for the modulation m(t) from the phase devia-
tion φ(ω,t) it is possible to rearrange eq.11 and use a simplifying 
approximation for the tan(x) function (for small x) [14]:  
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Experiments have indicated that the approximation in eq.14 

does not lead to significant differences in the output signal. This 
will now provide an expression for the time-varying modulation 
function given a time-varying phase shift 
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Using eq.15, it is then possible to emulate the Phase Distor-

tion technique by modulating an allpass filter coefficient. To ap-
ply the modulation function g(x) defined in eq.6 to eq.15 some 
preliminary processing must be first carried out. The modulation 
function, when applied in eq.4, lies between 0 and 2π(0.5 − d), 
while the phase deviation for the allpass filter lies between −ω 
and −π. We will shift and scale it to bring it to the appropriate 
range: 
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Figure 4 shows the coefficient modulation function obtained 

using eq.16, with d = 0.1. The figure also shows that there are a 
number of significant dips in the modulation waveform. These 
correspond to the points of maximum phase distortion. In [9] an 
expression was used to smooth these dips as they caused unde-
sired spikes in the output signal. However, by using a different 
filter implementation, namely that of eq.8, we are able to avoid 
these spikes almost completely. In fig.5, we plot the PD wave-
form generated from a sinusoidal input to coefficient-modulated 
allpass filters implemented using eqs.9 and 10. The latter is iden-
tified as the one used in [8] and [9].  

A plot of the output of the allpass filter PD implementation 
using eq. 8 is given on fig.6, which shows a close approximation 
of the original PD waveform (shown in a dashed line). It will not 
match it exactly because the instantaneous frequency of the all-
pass filter output must be dynamic unlike that of PD signal, as 
explained in [9]. As it can be clearly noted, the spikes of fig.5 are 
completely removed.  
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Figure 4. Coefficient modulation function for PD. 

 
Figure 5. Plots of PD waveforms corresponding to filters 
implemented with eqs. 9 (solid line) and 10 (dashed 
line). 

The actual shape of the phase distorted waveform at the out-
put of the allpass filter depends on the phase of the input signal. 
In fig.6, in order to match the shape of a PD waveform based on 
a cosine wave, we adjust the input phase by (0.5 – d)2π. The 
main reason for the difference between the original PD and all-
pass PD appears to be related to transient effects related to the 
use of time-varying coefficients, which are not accounted in the 
fixed-coefficient transfer function of eq.11. Moreover, these ef-
fects clearly depend on the implementation used (eqs. 8, 9 or 10).  

In fig.7, a spectral plot of the smoother allpass PD waveform 
from fig.6 is compared to the one generated by the original PD 
method with the same parameters (d = 0.1). It can be seen that 
the output of the allpass filter is quite close to the original PD 
method up to harmonic 11. However, it has a richer high-
frequency content in contrast to the spectrum of the original PD 
waveform which is much sparser in the higher frequencies, with 
some missing components, as previously noted in [1]. In the fol-
lowing section, in place of the cosine input we will be employing 
input signals with richer spectra, such as instrumental tones of 
various instruments, as will be discussed later in this article. 

 
Figure 6. Allpass PD implemented according to eq.8 
(solid line), plotted against the original PD waveform 
(dashed line). 

 
Figure 7. Spectral plot of allpass PD (star markers) and 

original PD (dot markers).  

3.2. Heterodyne phase distortion 

A second alternative method for general-purpose phase distortion 
is provided by a heterodyne formula for PM or FM, as already 
noted in [7] and [11]. Starting with the PD-equivalent PM for-
mula of eq.4, we can use the relevant trigonometric identity to 
re-cast it into a sum of ring-modulated signals, as in: 
 

))((2cos())(2cos(
))((2sin())(2sin(
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φππφ
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=
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The advantage of this formulation is that we can separate the 

carrier signal cleanly from the modulator, thus allowing us to 
substitute the former by any arbitrary input. PD becomes a het-
erodyned form of waveshaping (using sinusoidal transfer func-
tions). In order to achieve the correct result, it is essential that 
both carrier and modulator in the two terms have the correct 
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phase offsets (relative to each other). With that in place, we can 
reproduce the original PD waveforms faithfully. Fig. 8 plots the 
output of eq. 17 using the same parameters employed to produce 
eq. 2. 

Now, turning our attention to substituting the carrier signal 
with an arbitrary input, we will only need to preserve the 90 de-
gree offset between the carriers in the two terms of eq. 17. As 
these actually make up an analytic signal, we can perform a Hil-
bert Transform [15] in an input signal to place it in quadrature. A 
flowchart for the complete algorithm is provided in fig.9.  
It is clear from the present discussion that the heterodyne method 
presents a faithful realisation of the original PD algorithm, 
whereas the allpass implementation of the previous section does 
not. This also indicates that the latter method will produce a 
spectrally richer output than the former for the same parameters. 
Thus both techniques offer advantages and disadvantages, as 
well as different timbral characteristics that can be harnessed for 
the designed digital audio effects. 
 
 
 
 

 
Figure 10. Bassoon C2 tone, steady-state spectrum. 

4. ADAPTIVE PHASE DISTORTION 

The methods present in section 3 above are the central element in 
our technique of Adaptive Phase Distortion. In addition to them, 
we will control the modulation rate by tracking the pitch of the 
input signal. This ensures that PD is applied correctly according 
to the principles outlined above. The present technique uses the 
principles already outlined in other forms of adaptive distortion 
synthesis [6][7][10]. We will presently discuss some applications 
of Adaptive PD to musical signals.  

4.1. Allpass filtering method 

The allpass PD method can be used to enrich the spectra of in-
strumental sounds. We will examine three different inputs and 
the effect of this technique on them. Fig. 10 shows the steady-
state spectrum of a bassoon C2 tone, which is dominated by a 
strong formant around 800 Hz. Applying PD to this input, using 
a distorting function shaped as in fig.1 (sawtooth-like), with the 
inflection point at d = 0.1, we obtain the spectra plotted in fig.11. 

Upon close examination, it is clear to see that the method 
adds several low-energy partials to the mid-high spectral range. 
The overall shape of the spectrum is preserved, but the secondary 
peak seen in the original tone at around 2 kHz is now blended 
into the overall spectral decay. The perceptual result is that of a 
sharper, raspier, tone, as a result of the added harmonics.  

The effect can be used to generate dynamic spectra, by time-
varying the amount of modulation from 0 to the maximum. This 
is shown on fig.12, which shows the spectrogram of a flute C4 
tone processed by allpass PD. Here we vary the modulation 
amount, from 0 at the start to the maximum at 1 sec. It can be 
seen that as the distortion increases, extra partials are added at 
the higher end of the spectrum. Further modulating this parame-
ter can generate interesting sweeping effects.  

 

 
Figure 8. Heterodyne PD signal. 

 

 
 

Figure 9. General-purpose PD using the heterodyne 
method. 
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Figure 11. Allpass phase-distorted Bassoon tone. 

 
Figure 12. Allpass PD flute tone, with varying modula-

tion amount (amplitudes in dB). 

 
Finally, we can use a more pronounced phase distortion for 

an increased effect. We can do this by moving the inflection po-
sition d in the phase distortion function. The next example dem-
onstrates this for d = 0.1 and d = 0.05. The first plot in fig.13 
shows the steady-state spectrum of the original sound, a clarinet 
C3 tone. In fig.14, we plot the result of allpass PD with d = 0.1, 
which only imparts small changes to the spectrum. The most sig-
nificant of these are in the increase of lower-order even harmonic 
energy. 

To make more substantial modifications to the spectrum, we 
set d = 0.05, which as discussed previously, will not only in-
crease the effective modulation index, but also add energy to 
higher harmonics of the modulating function. This result is plot-
ted on fig.15. A side-effect of this is the increased possibility of 
noticeable aliasing, which, in this particular case, is not signifi-
cant. 

4.2. Heterodyne method 

As discussed above, the heterodyne PD method reproduces the 
original technique more faithfully. As a result, it will impart less 
distortion if compared to the allpass implementation with similar 
parameters. 

 
Figure 13. Clarinet C3 tone, steady-state spectrum. 

 
Figure 14. Allpass PD of clarinet tone, with moderate 

distortion. 

 
Figure 15. Allpass PD of clarinet tone, with increased 

distortion. 
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Figure 16. Spectrum of heterodyne PD of bassoon tone,  

d = 0.1. 

 
Figure 17. Spectrum of heterodyne PD of bassoon tone 

with a higher equivalent modulation index. 

 
Fig.16 illustrates this point, where we plot the resulting spec-

trum of heterodyne PD applied to the same bassoon tone of 
fig.10, using d = 0.1. By comparing both plots, it can be seen 
that not too much change has been effected by the technique. 

There are two ways of improving the effect to make it more 
noticeable. The first one was already discussed in the previous 
section, namely, moving the inflection point d in the distortion 
function to the left (i.e. decreasing it). The other is basically to 
take advantage of the fact that we are actually implementing PM, 
so the limit on the distortion amount, ie. the modulation index, is 
removed. The next example, shown in fig.17 demonstrates the 
result of multiplying the modulation function by a factor of 5 (so 
that the equivalent modulation index is now 4π). In this particu-
lar case, not only extra partials are added to the spectrum, but the 
secondary formant region in the original sound is enhanced. 

 
Figure 18. Double-inflection PD function. 

 

 
Figure 19. Steady-state PD spectrum using a flute tone as 

input (single-inflection). 

 
Complementing this discussion, we would like to examine 

the use of a different distortion function. In this case, we will 
select a function such as shown in fig.18. This generates, in the 
original method with a sinusoidal input, a signal with odd har-
monics only. The effect it has on a complex input such as flute 
tone is shown on figs.19 and 20. The former shows the resulting 
spectrum PD using the single-inflection distortion function (d = 
0.2) and while the latter uses the double-inflection one (d1 = 0.1 
and d2 = 0.6). 

The richer spectrum of fig.20 can be explained by the fact 
that the double inflection distortion function is equivalent to sin-
gle inflection modulation at twice the frequency. Hence the in-
flection points d1 and d2 are relatively smaller (i.e. towards the 
left of the function), resulting in more distortion. In addition, the 
spectrum is also different because of the use of an equivalent c:m 
ratio of 2. In fact, as an extension of both of the general-purpose 
PD techniques discussed here, we can possibly set this ratio to 
other values, something that is not directly possible with the 
original method as described in [1]. 
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Figure 20. Steady-state PD spectrum of flute-tone (dou-

ble-inflection). 

5. CONCLUSION 

In this article we have explored the technique of PD synthesis, 
including two alternative implementations for it. We have shown 
the equivalence of PD and PM, and discussed the specific char-
acteristics of the original technique. The two novel implementa-
tions were shown to be general-purpose and with possible appli-
cations in adaptive digital audio effects. We have then presented 
several examples of PD as applied to arbitrary input signals, dis-
cussing the qualities of the resulting tones. It is our belief that the 
technique of Adaptive PD is a useful addition to its sister meth-
ods of AdFM and Adaptive SpSB. 
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