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ABSTRACT 

This paper reviews the derivative method and explores its capac-

ity for estimating time-varying sinusoids of complicated parame-

ter variations. The method is reformulated on a generalized sig-

nal model. We show that under certain arrangements the estima-

tion task becomes solving a linear system, whose coefficients can 

be computed from discrete samples using an integration-by-parts 

technique. Previous derivative and reassignment methods are 

shown to be special cases of this generic method. We include a 

discussion on the continuity criterion of window design for the 

derivative method. The effectiveness of the method and the win-

dow design criterion are confirmed by test results. We also show 

that, thanks to the generalization, off-model sinusoids can be ap-

proximated by the derivative method with a sufficiently flexible 

model setting. 

1. INTRODUCTION 

Estimation of parameters of slow-varying sinusoids has received 

much attention in the digital audio researches, and especially in 

the area of sinusoid modelling of audio and speech [1]. A slow-

varying sinusoid is described by its instantaneous phase and am-

plitude functions, i.e. 

 )(
)()(

tj
etats

ϕ= . (1) 

Unlike the case of constant sinusoids, which only have three pa-

rameters, for slow-varying sinusoids the parameter set has a 

higher degree of freedom than the signal itself. Extra information 

regarding the behaviour of parameters is therefore necessary to 

reach at any unique set of parameters from the signal. 

One widely adopted way to handle this issue is to assume 

that the sinusoid parameters obey certain parametric model 

within a short interval from which they are estimated. Early 

methods assumes short-time parameter stationarity and estimate 

three basic sinusoid parameters, i.e. frequency, amplitude and 

phase angle, as if they are constant [1][2]. Later methods devel-

oped this assumption by involving extra parameters that describe 

parameter variations. For example, [3] and [4] assume linear fre-

quency and amplitude, [5] and [6] assume linear frequency and 

log-amplitude, while [7] assumes linear frequency and constant 

amplitude. Although not all sinusoids obey these models, the 

methods are generally helpful in reducing estimation errors. 

Several parameter estimation methods involve taking deriva-

tives or differences regarding time. For example, in [7] the de-

rivatives of the window function are used for calculating spectra, 

in [8] the instantaneous frequency is estimated by taking the dif-

ference of phase angles, while in [9] it is estimated by comparing 

the spectra of the signal and its derivative. If we look at the sim-

plest case tj
aes 00 ωϕ += , then 

 sjs 0ω=′  (2a) 

By taking the short-time Fourier transform (STFT) of (2a) we get 

 ),(),( 0 ωωω tSjtS ww =′ ,  (2b) 

where the STFT is defined as ω  

 τττω ωτdewtstS j

w

−∫ += )()(),(  (3) 

The key feature of (2a) is that by taking the derivative, the pa-

rameter ω is singled out as a coefficient that applies to s, and re-

mains at a similar position in the frequency-domain equivalent 

(2b). Once ),( ωtSw
′  and ),( ωtSw

 are computed for a proper pair 

of t and ω, the angular frequency ω0 can be solved from (2b). 

This is the derivative method for constant sinusoids [9]. The 

conversion into frequency domain serves to keep wide-band or 

distant-frequency noises from partaking in the calculation. 

In this paper we explore the possibilities of the derivative 

framework in a more general sense, including the existing non-

stationary derivative and reassignment methods as special cases. 

A systematic approach is taken that allows highly complicated 

signal models, while examples are given to illustrate technical 

details as appear in various special cases. Section 2 formulates 

the derivative method for a general signal model as well as sev-

eral specific ones; section 3 discusses the numeric solution of the 

general model along with window continuity considerations; sec-

tion 4 tests both the effectiveness of the method and the continu-

ity criterion regarding window design. 

2. THE DERIVATIVE METHOD 

We give the generalized signal model of the derivative method as 

 )()( tRets = , ∑
−

=
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m
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where hm(t), m=0, 1, …, M-1, are fixed real functions of t with 

sufficient order of continuity, and rm is a flexible complex coeffi-

cient of hm. If we separate the real and imaginary parts of R as  
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i.e. P(t) and Q(t) respectively define the amplitude and frequency 

variation laws of s. We always let h0(t)=1, so that r0 is interpreted 

as a global amplification and phase-shift factor. Once the func-

tions hm(t) are selected, the signal is parameterized by the coeffi-

cients rm, m=0, …, M-1. In practice the real and imaginary parts 

of rm are often treated separately. For convenience we write 

pm=Re rm and qm=Im rm. 

Examples 1. Constant sinusoids are modelled by M=2, h0=1, 

h1(t)=t, p1=0; exponentially enveloped constant sinusoids are 

modelled by M=2, h0=1, h1(t)=t; linear chirps are modelled by 

M=3, h0=1, h1(t)=t, h2(t)=0.5t2, p1=p2=0; exponentially envel-

oped linear chirps are modelled by M=3, h0=1, h1(t)=t, h2(t)=0.5t2, 

p2=0; a constant sinusoid frequency-modulated by a sinusoidal 

modulator of angular frequency ωM is modelled by M=4, h0=1, 

h1(t)=t, h2(t)=cos ωMt, h3(t)=sin ωMt, p1=p2=p3=0.■ 

The choice of M, hm and constraints on pm, qm, such as in the 

examples above, determine the nature of a signal model. We call 

this a model setting. Given signal s and a model setting, the de-

rivative method evaluates rm from the spectra of s and its deriva-

tives against t. The number of derivatives to take depends on the 

number of unknown values in the model. As will be shown later, 

by taking each derivative we obtain one complex equation, which 

reduces the degree of freedom by 2 in terms of real unknown 

values. 

2.1. First derivative 

Taking the derivative of (4) we get 

 ∑ ′=′=′
m

mm thtsrtRtsts )()()()()(  (6a) 

Applying STFT on (6a) we get 

 ∫∑ −+′+=′ ττττω ωτ dewthtsrtS j

m

m
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(6b) is a linear equation of the coefficients rm, m=1, …, M-1. No-

tice that r0 is not covered by this equation, since 00 =′h . When 

evaluated for t=0 (6b) is simplified as 

 ∫∑ −′=′ ττττω ωτ dewhsrS j

m

m

mw
)()()()( , (6c) 

in which case the coefficient of rm can be regarded as the STFT 

of s calculated with the window function whm
′ . By (6c) alone we 

can solve models with up to 2 real parameters apart from r0.  

Example 2. Applying the exponentially enveloped constant sinu-

soid model (M=2, h0=1, h1(t)=t) in (6c) we get 

 )()()()(
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w
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w
SrdewsrS ==′ ∫ −  (7a) 

(7a) is the “damped” version of (2b). The parameters p1 (decay 

rate) and q1 (angular frequency) can be estimated as 
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Example 3. Applying the linear chirp model (M=3, h0=1, h1(t)=t, 

h2(t)=t2, p1=p2=0) in (6c) we get 
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where Stw(ω) is the STFT of s(t) calculated with window tw(t). 

(8a) is the “chirped” version of (2b). The parameters q1 (angular 

frequency) and q2 (angular chirp rate) can be estimated as 
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Unlike the reassignment method in [7], by (8b) we are able to 

jointly estimate the frequency and frequency slope without taking 

any 2nd-order derivative.■ 

2.2. Second derivative: direct form 

Taking the derivative of (6a) we get 
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Applying STFT on (9a) we get 
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which, when evaluated at t=0, becomes 
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(9c) is a quadratic equation of the coefficients rm, m=1, …, M-1. 

Again r0 is not covered. Using (9c) in conjunction with (6c) we 

can solve models with up to 4 real parameters apart from r0. 

Example 4. Applying the exponentially enveloped linear chirp 

model (M=3, h0=1, h1(t)=t, h2(t)=0.5t2, p2=0) in (6c) and (9c) we 

get 

 )()()( 21 ωωω twww SjqSrS +=′  (10a) 
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The parameters are solved by 
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where )()()( 2

2 ωωω wwttw SSSA −= , 2)(ωwjSB= , and )()()( 2 ωωω www SSSC ′′−′= . 

Notice that (10c) yields two values of q2. To choose the right one 

we test that  

 0ImImIm
2

2

2
=++ CBqAq .■ (10e) 

We notice that in the direct form of the derivative method, high-

order differentiations introduce high powers to the coefficients, 

so that the problem quickly becomes overcomplicated with the 

expansion of signal model. Fortunately, by deriving derivatives 



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009 

 DAFX-3 

recursively, we are able to maintain the coefficients within a lin-

ear system. This we describe as follows. 

2.3. Second derivative: recursive form 

We reconsider the derivative of (6a) in the arrangement of 
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which leads to 
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(11b) is the linear version of (9c). Compared to the latter, it not 

only avoids quadratic terms, but also has fewer summands. 

Example 5. Applying the exponentially enveloped linear chirp 

model (M=3, h0=1, h1(t)=t, h2(t)=0.5t2, p2=0) in (11b) we get 

 ( ))()()()( 21 ωωωω twwww SSjqSrS ′++′=′′ , (12a) 

then q2 can be solved from (10a) and (12a) as 
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With (12b) there is no need to test against extraneous roots. Once 

q2 is evaluated r1 can be calculated by (10d).■ 

Example 6. Applying the frequency modulated sinusoid model 

(M=4, h0=1, h1(t)=t, h2(t)=cos ωMt, h3(t)=sin ωMt, p1=p2=p3=0) in 

(6c) and (11b) we get 

 )()()()( M3M21 ωωωωωω wcwsww SqSqSqSj +−=′−  (13a) 

 
( )

( ))()(

)()()()(

M

2

M3

M

2

M21

ωωωω

ωωωωωω

wcws

wswctww

SSq

SSqSqSj

′−−

′+−′=′′−
 (13b) 

where Swc/Sws ( wc
S ′ /

ws
S ′ ) are the STFT of s ( s′ ) calculated with 

window functions w(t)cos ωMt / w(t)sin ωMt, respectively. (13a) 

and (13b) provide 4 real linear equations, from which parameters 

q1~q3 can be easily solved.■ 

2.4. Higher-order derivatives 

For signal models with more than 4 real parameters apart from r0 

we need to take derivatives of orders higher than 2. For an arbi-

trary order k, we write 

 ( ) ( ) )1()1()( )()()()()(
−− ′=′= ∑ k

m
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kk thtsrtRtsts , k≥1, (14a) 

by taking the STFT of which we arrive at  
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which, when evaluated at t=0, is reduced to 
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(14c) is the order-k version of (6c) and (11b). Obviously it is a 

linear equation of the coefficients rm, or equivalently, two linear 

equations of pm and qm. (14b) and (14c) are also the general for-

mulations of the (recursive) derivative method. By substituting 

k=1, 2, …, K in (14c) we obtain a system of K complex (2K real) 

linear equations, from which up to 2K real parameters can be 

solved.  

3. COMPUTATION ISSUES 

In this section we explain the numerical implementation of the 

derivative method proposed in section 2, which can not be ap-

plied directly due to the general non-availability of s and its de-

rivatives in their continuous form. In practice we only have the 

signal s in its sampled form 

 sn=s(n), n∈Z, (15) 

from which we need to calculate the coefficients of rm in (14b) or 

(14c). All these coefficients have the form of  

 τττ ωτ dewxX jkk

w

−∫= )()()()( . (16a) 

where x(τ) is known at τ∈Z, and x(k) stands for (dk/dtk)⋅x. In 

equation (14b) x(τ) corresponds to )()( ττ +′+ thts m
, in (14c) to 

)()( ττ mhs ′ . For numerical computation we assume that w is 

compactly supported on [-T, T], T∈Z+.  

3.1. Derivatives 

In the literature of derivative methods attempts have been re-

ported to calculate signal derivatives by interpolating s, e.g. [6]. 

This, however, risks breaching the signal model, and may require 

extra data outside the duration of the window function. In this 

paper we take the approach of integration by parts, which trans-

fers the differentiation operators from the signal s to the window 

function w. We extend (16a) by allowing differentiation of the 

window function w: 

 τττ ωτ dewxX jlkk
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Integrating the right side of (16b) by parts we get 
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If we let w(l)(-T)= w(l)(T)=0 then (17a) is simplified as 
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(17b) reduces the differentiation order of x by 1. By repeating 

(17b) recursively we are able to, eventually, calculate (16a) with-

out differentiating x.  

Example 7. Using (17b) in (8a) for linear chirps we get 

 ( ))()()()( 21 ωωωωω twwww SqSqjSjS +=+− ′ , (18a) 

from which we have 
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(18b) can be regarded as a reassignment equation [10], where 

( ))()(Re ωω wtw SS  and ( ))()(Im ωω ww SS ′−  are the amounts of 

time and frequency reassignments, respectively. It provides an 

alternative proof that reassignment is perfect for linear chirps.■ 

Example 8. Using (17b) in (10a) and (12a) for exponentially en-

veloped linear chirps we get 
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From which we eliminate r1 and get 
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(19c) is the reassignment method [7] for calculating linear chirp 

rates, which requires 1st and 2nd derivatives. By this example we 

have shown that the same method applies to linear chirps with 

exponential amplitudes too. However, the methods in [7] for cal-

culating instantaneous frequency can not be directly applied. One 

solves (19a) instead.■ 

To implement (14c) for k=1, …, K we need to calculate 

)()( ωk

w
S  for k=1, …, K and )(

)( ωk

wm
X  for k=0, …, K-1, m=0, …, 

M-1, where xm=
mhs ′⋅ . These are evaluated at the same ω, which 

can be selected at the DFT peak corresponding to the sinusoid. 

The following chart gives the data flow for calculating )(k

w
S , 

k=1, …, K: 

w
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Figure 1: Data flow for calculating )(k

w
S , k=1, …, K. 

The first row of the chart is evaluated directly by Fourier 

transform (see 3.2). The second row can be evaluated either by 

(17a) or (17b). The rest K-1 rows can only be evaluated by (17b). 

w and its derivatives must be 0 at –T and T up to order K-2 (or K-

1 if (17a) is to be avoided). The computation of 
)(k

wm
X  is very 

similar to the above, with one less differentiation.  

3.2. Discrete Fourier transform 

The first row in Figure 1 contains Fourier transforms in the form 

of  

 ττω ωτ dexX j

T

T

c −

−
∫= )()(  (20a) 

where x has the form )(ksw  or )(k

m
whs ′ . Here the superscript “c” 

stands for “continuous”. x is only known in its sampled form 

xn=x(n), n∈Z. We approximately calculate (20a) by 

 ∑
−=

−=
T

Tn

nj

n
exX ωω)(  (20b) 

(20b) is evaluated only at the selected angular frequency ω. The 

relation between Xc(ω) and X(ω) is given by the sampling theo-

rem as 
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According to (21), for X(ω) to be a good approximation of Xc(ω), 

Xc must decay fast enough to be absolutely integrable. We re-

write (17b) as 

 )1()1()(
)()1()(

−− =+ +
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w

k

w
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w
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(22) shows that the decay rate of )(
)(

k

w
lX  is roughly outlined by l+k. 

With each increase in l+k, the decay becomes slower by order of 

1. To guarantee that )(
)(

k

w
lX  is absolutely integrable, 

w
X needs to 

have a decay rate faster than ω-(l+k+1). Accordingly xw (and there-

fore w) needs to be l+k times continuously differentiable. In the 

context of Figure 1, w and its derivatives up to order K are re-

quired to remain zero at –T and T. 

Apart from global integrability, we also require that Xc has 

significant decay at ω±2π. For slow-varying complex sinusoids 

this is automatically satisfied if ω is selected near the instantane-

ous frequency, so that ω±2π are about twice the Nyquist fre-

quency from the sinusoid. For real sinusoids it is desirable that ω 

be not too close to 0 or π to avoid the conjugate partial being 

picked up in (21). 

3.3. More on window functions 

Both in 3.1 and 3.2 we have raised the continuity issue of the 

window function w, requiring w be continuously differentiable 

up to a certain order. While in 3.1 it appears as a technical con-

venience for adopting the integration-by-parts method, in 3.2 it 

concerns the accuracy of numerical computation. The require-

ment raised in 3.2 applies to the derivative methods in general as 

long as the spectrum is calculated from discrete samples, no mat-

ter how the differentiation is implemented. Since a lower level of 

continuity is demanded in 3.1 than in 3.2, we see that the integra-

tion by parts does not introduce extra constraint to w. 

When the order of differentiation is high the continuity re-

quirement of w rules out all the commonly used window func-

tions. Rectangular, Hamming, Bartlett, Gaussian and Kaiser win-

dows are either discontinuous or C0 functions, therefore should 

not be used in the derivative method. Hann and Blackman win-

dows are C1 functions, so that they should not be used in deriva-

tive methods involving 2nd-order derivatives. Window functions 

of higher continuity level are rarely seen in the literature. 

Highly continuous window functions can be constructed by 

multiplying or convolving less continuous windows. The multi-

plication method aims at directly eliminating discontinuity at the 

vanishing ends of w, i.e. –T and T. In fact, if w1 and w2 are win-
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dow functions that vanish at –T+ with vanishing moments k1 and 

k2, i.e. 

)()( 1

11
11 ++=+− kk OaTw τττ , )()( 1

22
22 ++=+− kk OaTw τττ ,(23a) 

then for w=w1w2 we have 

 )()( 1

21
2121 +++ +=+− kkkk OaaTw τττ , (23b) 

i.e. w vanishes at –T+ with vanishing moment k1+k2. The multi-

plication method does not improve continuity inside (-T, T), so 

both w1 and w2 ought to have sufficient interior continuity de-

sired of w. This method preserves window length and increases 

time concentration, at the cost of a wider bandwidth. On the 

other hand, the convolution method aims at accelerating decay of 

the window spectrum as ω→±∞. If the spectra of w1 and w2 de-

cay like 1|| k−ω and 2|| k−ω , respectively, then the convolution 

theorem states that the spectrum of  w=w1*w2 decays like 
)( 21|| kk +−ω . The convolution method improves continuity on the 

whole window support. It yields a longer window but increases 

frequency concentration. 

Example 9. Multiplying a window function on [-1, 1] with the 

half cosine window (a C0 function) 
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increases the order of continuity by 1. Multiplying wcos with itself 

yields the Hann window, which is a C1 function. By repetitively 

multiplying the Hann window with itself we get a series of win-

dow functions we denote as Hannk, k=0, 1, …, Hann0 being the 

rectangular window. This {Hannk}k series make up the basis of 

the cosine window family on [-1, 1], in which Hannk is the sim-

plest function to offer C2k-1 continuity.■ 

Example 10. Convolving a window function with the rectangular 

window (a discontinuous but bounded function) increases the 

order of continuity by 1. Convolving the rectangular window on 

[-1, 1] with itself yields the triangular window on [-2, 2], which 

is a C0 function. Convolving the latter with the same rectangular 

window yields a piecewise parabolic C1 function 
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3.4. Extra equations 

Given the general derivative method in (14b) or (14c), we notice 

that the number of real equations is always even. Therefore if the 

number of real unknown parameters to solve is odd, we need to 

drop one equation from the system. In this paper we only drop 

from the two real equations obtained by the highest order of de-

rivative taken, and of these two we always choose to drop the one 

that yields the smaller determinant of the coefficient matrix of the 

linear system. This can be conveniently incorporated into the 

Gaussian elimination or LU factorization method for solving the 

linear system without significantly adding to the computation 

load.  

An alternative to dropping extra equation is solving the linear 

system in the least square sense: i.e. instead of the overdeter-

mined linear system Ar=b, we solve ATAr=ATb. In the ideal case 

that the signal strictly obeys (4) and the numerical computation 

incurs no error, the least square solution is accurate (i.e. the 

square error is 0), and is equivalent to the solution obtained by 

dropping the extra equation.  

3.5. Amplitude and phase angle 

The coefficient r0, which represents global amplification and 

phase shift, is not involved in the linear system derived from 

(14b) or (14c). Once r1, …, rM-1 have been estimated, various 

methods can be engaged in evaluating r0, one of which is by 

comparing the spectra of s with and without the contribution 

from r0: 
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Again the integral is evaluated from discrete data with ω selected 

near the instantaneous angular frequency. 

3.6. Extension to multiple frames 

The derivative method discussed above focuses on one data 

frame only. If the signal model can be assumed to be stable over 

the span of more than one frame, then it is possible to avoid tak-

ing high-order derivatives by applying (14b) to multiple frames 

with the same unknown parameters.  

4. TEST RESULTS 

We test the model-based derivative method on synthesized real 

sinusoids. In the first part of the tests the sinusoids are synthe-

sized on signal model (4), and the derivative method evaluates 

the parameters using the true model setting. In the second part 

the parameter variations are not known to the estimator, in which 

case the derivative method yields an approximate result from 

within the modelled signal space. For all tests the window length 

of 1024 is used. 

4.1. Estimation with the correct model setting 

The performance of sinusoid estimation is evaluated by signal-to-

residue ratio (SRR), where the residue is calculated by subtract-

ing a sinusoid frame constructed from the estimated signal model 

from the original sinusoid. The SRR is formulated as 
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where 
m

r̂ , m=0, …, M-1, are the model parameter estimates, and 

w is a Hann window used to emphasize the contributions of both 

signal and residue at the frame centre. 

The first test set contains exponentially enveloped linear 

chirps (signal model M=3, h0=1, h1(t)=t, h2(t)=0.5t2, p2=0). A 

total number of 3000 frames are included in this set, with p0=0, 

10 q0 values uniformly selected between 0 and 0.45π, 10 p1 val-

ues between 0 and 0.0045, 10 q1 values between 255 and 255.9 

bins (1 bin=π/29) , and 10 q2 values between 0 and 27 bin/frame 

(1bin/frame=π/219). To limit the number of frames, p1 and q2 do 
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not vary independently, but appear in three groups: an AM-only 

group in which q2=0, an FM-only group in which p1=0, and an 

AM-FM group in which p1 and q2 are paired up in order. This 

test set is summarized in Table 1. 0dB Gaussian white noise is 

applied to test performance under noisy environment. 

Table 1: Test set 1 

Group i0, i1=0~9 p0= 0, q0=0.05π⋅i0, q1=255+0.1⋅i1(bin) 

1 p1=0.0005i, q2=0 

2 p1=0, q2=3i (bin/frame) 

3 

i=0~9 

p1=0.0005i, q2=3i (bin/frame) 
(M=3, h0=1, h1(t)=t, h2(t)=0.5t2, p2=0.) 

The result (marked “D”) is compared against the Abe-Smith 

QIFFT (quadratically interpolated fast Fourier transform) method 

[5] which was designed for the same signal model. In this paper 

the QIFFT method is implemented in both its original version in 

[5] ( “QI”) and an enhanced version in [11] (“EQI”). A Gaussian 

window is required for both QIFFT methods. Theoretically the 

derivative method yields very accurate result if the proper win-

dow is used, while the QIFFT methods may suffer moderately 

from the truncation of the Gaussian window at both ends. In the 

test we use Hann2 window in the derivative method. Test results 

for test set 1 are given in Figure 2. For clean signals both the de-

rivative and enhanced QIFFT methods work very well, with the 

worst SRR above 70dB. There is a gap between 70~100dB be-

tween the two methods, which can be attributed to the truncation 

of Gaussian window in the QIFFT method. Both methods appear 

to be susceptible to noise. The derivative and original QIFFT 

methods show similar results with 0dB noise, while the enhanced 

QIFFT method does not yield consistent results, partially due to 

random errors of p1 being accumulated in the enhancement step. 

 

Figure 2: Results for test set 1. 

We run a separate test on the same test set to illustrate the 

importance of window continuity to the derivative method. We 

apply the method on clean and noisy data with 4 window func-

tions with different order of continuity, namely Hamming win-

dow the discontinuous, Hann window of C1, Hann1.5 window of 

C2, and Hann2 window of C3. Results on clean data are given in 

Figures 3 (a)~(c), which show Hann2>Hann1.5>Hann>Hamming 

consistently. Results on noisy data are given in (d)~(f), showing 

very close performance for all window functions (so much so that 

we are not always able to mark them out in the figures). This in-

dicates that the difference between window functions, as a cause 

of bias, is overridden by the noise.  

 

Figure 3: Comparing windows for test set 1. 

The second test set contains sinusoids frequency-modulated 

by a sinusoidal modulator with frequency ωM (signal model M=4, 

h0=1, h1(t)=t, h2(t)=cos ωMt, h3(t)=sin ωMt, p1=p2=p3=0). A total 

number of 6000 frames are included in this set, with ωM=0.001,  

p0=0, 10 q0 values uniformly selected between 0 and 0.45π, 5 q1 

values between 255 and 255.8 bins (1 bin=π/29), 10 modulator 

angular frequency ωM between 0.333×10-3 and 6.333×10-3, 10 

modulator amplitudes aM from 0 to 27 bins (1bin=π/29), and 6 

modulator phase angles φM between 0 and π/2, q2=aMcosφM, q3= 

aMsinφM. To limit the number of frames, ωM and aM do not vary 

independently, but appear in two groups: in the first group ωM is 

fixed at 10-3, in the second group aM is fixed at 9 bins. This test 

set is summarized in Table 2. 

Table 2: Test set 2 

i0=0~9, i1=0~4 p0= 0, q0=0.05π⋅i0, q1=255+0.3⋅i1(bin) 

group 1 ωM=10-3, aM=3⋅i2 (bin) 
i2=1~10 

group 2 ωM=10-3⋅(2⋅i2-1)/3, aM=9 (bin) 

i3=0~5 φM=0.1π⋅i3, q2=aMcosφM, q3=aMsinφM 

(M=4, h0=1, h1(t)=t, h2(t)=cos10-3t, h3(t)=sin10-3t, p1=p2=p3=0.) 

Results for the second test set are not compared against an-

other estimator, as there has been none reported to support this 

signal model. Figure 4 compares test results obtained using the 

four window functions listed above, with the modulation extent 

and angular rate as the x axes, respectively. Again we have accu-

rate result when the window function has sufficient order of con-

tinuity. 

 

Figure 4: Comparing windows for test set 2. 
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4.2. Approximation of unknown model settings 

In the second part of the test we show how the derivative method 

behaves when applied to sinusoids whose R(t) model is not 

known to the estimator. In this case it is generally impossible to 

select a limited number M of functions h0, …, hM-1 so that R is 

their linear combination. However, if R is close enough to the 

linear space with basis {h0, …, hM-1}, then it is possible to ap-

proximate R(t) by a linear combination of the basis functions. In 

the following we use a simple example to illustrate this. 

In this example we let hm(t)=tm, so that the afore-mentioned 

function space is that of polynomials of orders up to M-1. The 

ability of polynomials to locally approximate arbitrary smooth 

functions is proved by Taylor’s theorem. For test signals we use a 

frequency modulated sinusoid with optional accompanying am-

plitude modulation: 

 )sincoscos()( 01 tttts MsMc ωδωδω ++=  (28a) 

 ( ) )sincoscos()1cos(5.1)( 02 ttttts MsMcM ωδωδωω ++++= (28b) 

where ωM=0.005, ω0=255 bin, δc=6 bin and δs=8 bin. In (28a) 

and (28b) both frequency and amplitude modulators are sinu-

soids with angular frequency ωM. Obviously neither signal fits 

into any polynomial frequency-and-log-amplitude model. 

With the above settings we run the derivative method with 

M=2, …, 7. A Hann2 window is used in this test. To avoid taking 

derivatives above 3rd order, we apply the derivative method at 

two frames (see 3.6), with the second frame being 256 point (i.e. 

25%) shifted from the first, therefore 1280 data points are needed 

here instead of 1024. Equal numbers of derivatives are taken 

from both frames. Possible extra equations are handled by the 

least square approach (see 3.4). For s1 we solve the system as-

suming pm=0, ∀m; for s2 no such restriction is applied. 

Figure 5 shows progressively the approximation of the in-

stantaneous frequency of s1 by polynomials, achieved by the de-

rivative method. The dotted curve (R) is the true frequency, 

while the solid curves (Rx) are the estimated approximations. 

The value x in “Rx” is the degree of the polynomial used for ap-

proximating the instantaneous frequency. The time span in these 

figures is -512~512. In general, the more polynomials we use, the 

closer the frequency estimate is to the true frequency. We ob-

served that the approximation is better in right half. This can be 

attributed to the use of a second frame centred at 256. 

 

Figure 5: Approximating frequency modulation 

Figure 6 shows the approximation progress of the instantane-

ous frequency (a~f) and amplitude (g~l) of signal s2. For ampli-

tude results the x in “Rx” is the degree of polynomial, used for 

approximating the logarithmic amplitude, minus 1. The results 

are similar to those observed in Figure 5, with moderately higher 

bias due to the doubling of the number of unknown variables. 

 

 

Figure 6: Approximating amplitude and frequency modula-

tion 

We run a numerical experiment on frequency-modulated si-

nusoids to test the approximation performance using the polyno-

mial basis. A test set 3, based on test set 2 but with a higher 

modulation rate in group 1, is used for this purpose. Again the 

derivative method is implemented to take 2 frames with 25% 

overlap, and the least-square approach in 3.4 is used to handle 

possible extra equations. The Hann2 window is used for all val-

ues of M. Results are given in SRR, calculated from the first 

frames (1024 samples) only. 

The approximation results are depicted in Figure 7, where we 

have marked the curves by the different values of M, from 2 to 7. 

For comparison we also run the enhanced Abe-Smith method, 

whose results we plot in dotted curves, and the derivative method 

using the exact model setting, whose results we mark by “*”. For 

both test groups the SRR improves consistently as M becomes 

larger. The performance of Abe-Smith method is very close to 

the derivative method with M=3, which is very reasonable as for 

M=3 the two methods actually have the same signal model. The 

derivative method with exact model setting, unsurprisingly, has 

the best performance on both test groups. 
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Table 3: Test set 3 

i0=0~9, i1=0~4 p0= 0, q0=0.05π⋅i0, q1=255+0.3⋅i1(bin) 

group 1 ωM=3⋅10-3, aM=3⋅i2 (bin) 
i2=1~10 

group 2 ωM=10-3⋅(2⋅i2-1)/3, aM=9 (bin) 

i3=0~5 φM=0.1π⋅i3, q2=aMcosφM, q3=aMsinφM 

(M=4, h0=1, h1(t)=t, h2(t)=cos10-3t, h3(t)=sin10-3t, p1=p2=p3=0.) 

 

Figure 7: Results for approximating vibratos 

5. CONCLUSIONS 

In this paper we have reviewed the derivative method for non-

stationary sinusoid estimation in a generalized signal model (4). 

We have shown that by modelling the complex logarithm of the 

signal s as the linear combination of a limited number of basis 

functions, it is possible to obtain a linear system of the combina-

tion weights by taking derivatives. The coefficients of the linear 

system are short-time Fourier transforms involving s, the basis 

functions and their derivatives. For the evaluation of these coef-

ficients an integration-by-parts method is applied to transfer the 

differentiation from s to the window function, whose derivatives 

are known by design. The derivative method requires the window 

function be continuously differentiable up to a certain order, for 

which we have discussed various ways to obtain highly continu-

ous windows. Tests show that the derivative method yields accu-

rate results for clean sinusoids with the correct model setting, and 

is able to approximate sinusoids of unknown model type with a 

sufficiently large polynomial basis. 

On the other hand, despite the improved flexibility of (4), the 

derivative method is still model-based, and therefore suffers from 

deficiencies typical to all model-based estimators, such as poten-

tial overfitting for sinusoids outside the modelled signal space. 

Modelling error due to these deficiencies can be compensated by 

engaging non-parametric error control methods, such as the one 

in [11], which is designed to work with arbitrary estimators. 
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