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ABSTRACT

A recently introduced structure to implement a continuously smooth
spectral delay, based on a cascade of first-order allpass filters and
an equalizing filter, is described and the properties of this spectral
delay filter are reviewed. A new amplitude envelope equalizing
filter for the spectral delay filter is proposed and the properties of
structures utilizing feedback and/or time-varying filter coefficients
are discussed. In addition, the stability conditions for the feed-
back and the time-varying structures are derived. A spectral delay
filter can be used for synthesizing chirp-like sounds or for modify-
ing the timbre of arbitrary audio signals. Sound examples on the
use of the spectral delay filters utilizing the structures discussed
in this paper can be found at http://www.acoustics.hut.
fi/publications/papers/dafx09-sdf/.

1. INTRODUCTION

Spectral delay filtering (SDF) is an audio processing method in
which different frequencies of a signal are delayed by different
amounts. For example, an impulse can be transformed to a ”chirp”
by such a filter. SDFs can be implemented by delaying the de-
sired frequencies of the short-time Fourier transform (STFT) of
each signal frame to one or more frames [1, 2]. However, such a
frequency-domain approach does not easily provide a delay that is
continuously variable as a function of frequency when the delay is
not introduced as an integer multiple of the STFT hop size. Ob-
viously, interpolation between successive STFT frames could be
performed, but this would increase the number of required oper-
ations. In addition, when a large delay is desired, the frequency
resolution of the STFT should be high, which trades off with in-
creased memory requirements of the algorithm. Recently, an al-
ternative implementation utilizing a cascade of first-order allpass
filters was proposed [3], and in that approach the delay produced
by the filters is inherently smoothly continuous as a function of the
frequency. This paper discusses extensions to this approach by in-
troducing a spectral delay filter structure with a feedback path and
time-varying filter coefficients.

Usually, filtering an audio signal with a time-invariant allpass
filter does not have a major effect on the timbre because it does not
change the magnitude response of the signal. Yet, if a high-order
allpass filter is constructed by cascading several low-order allpass
filters, each introducing a mild phase shift, the overall filter has
a phase shift that is the sum of the phase shifts of the individual
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low-order filters. When the number of low-order allpass filters
is high enough their cascade can have a long, chirp-like impulse
response. Now, when audio and music signals are processed with
such a filter impressive changes maybe obtained that are similar to
the STFT SDF methods of [1, 2].

Allpass filters are commonly used in audio and music pro-
cessing, and their applications range from effects processing to
the simulation of physical phenomena in musical instruments and
physical environments. In effects processing, the allpass filter has
been used in the simulation of reverberation [4] and a spring rever-
berator [5], in digital phasers [6], in shelving filters and equaliz-
ers [7], and recently also as a distortion effect [8]. The allpass fil-
ters can be used as a fractional delay, which is often needed in au-
dio processing to fine-tune the length of a delay-line [9, 10] or in a
frequency-warped filter aimed at imitating human hearing or mod-
eling acoustic responses at low frequencies [11, 12, 13, 14]. Kautz
filters, which practically produce the same result as warped fil-
ters but with a smaller model order, use a cascade of non-identical
second-order allpass filters [15].

Due to the highly dispersive, i.e. frequency-dependent, delay
introduced by an allpass filter, they have been used in the inhar-
monic waveguide synthesis of piano tones [16, 17, 18, 19], in the
simulation of inharmonic responses of spherical resonators [20],
and the synthesis carillons [21]. Interesting effects are obtained
when the the allpass filter is modulated at audio rate [22]. Ad-
ditionally, high-order allpass filters can be used to implement the
accurate time delay needed in a multi-notch filter, which cancels
harmonics of a musical signal [23, 24].

The remainder of this paper is organized as follows. In Sec-
tion 2, the properties of a cascade of first-order allpass filters and
its relation to the chirp-like impulse response of the spectral delay
filter are reviewed. In addition, a new IIR filter design for the am-
plitude envelope equalization of the impulse response is presented.
Section 3 discusses the SDF structure utilizing feedback, and Sec-
tion 4 presents the properties of a time-varying SDF. The stability
conditions for both structures are also derived. Finally, Section 5
concludes this paper.

2. CASCADED FIRST-ORDER ALLPASS FILTERS

The transfer function of a first-order allpass filter is given by

A(z) =
a1 + z−1

1 + a1z−1
, (1)

where a1 is the allpass filter coefficient. Filter stability requires
that |a1| < 1. The transfer function of a cascade of M identical
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first-order allpass filters can be expressed as

H(z) = AM (z) =

„
a1 + z−1

1 + a1z−1

«M

. (2)

It can be shown that the cascade of allpass filters is also allpass.
The authors call the cascade of many identical allpass filters and
an optional equalizing filter a spectral delay filter (SDF). Figure 1
shows the block diagram of a such filter.

2.1. Group Delay and Chirp-Like Impulse Response

The group delay of a filter is defined as the negative derivative of
the filter’s phase response φ(ω) with respect to frequency, i.e.

τg(ω) = −dφ(ω)

dω
. (3)

For the first-order allpass filter the phase response is given by

φ(ω) = −ω + 2arctan

„
a1 sin(ω)

1 + a1 cos(ω)

«
. (4)

Now, the group delay of the first-order allpass filter can be ex-
pressed in closed form, as

τg(ω) =
1− a2

1

1 + 2a1 cos(ω) + a2
1

. (5)

Figure 2 shows the group delay with various values for the co-
efficient a1. The plot is unconventional in that the horizontal and
vertical axes have been interchanged. That is, frequency lies along
the vertical axis while group delay is plotted along the horizontal
axis, instead of the other way around as is typical. For mono-
tonic group-delay functions, as occurring in Figure 2, such a plot
can be interpreted as a plot of the inverse function. This type of
group-delay plot facilitates visualization of the SDF output signal
spectrum and will be used in what follows. As will be seen, the
plot can be interpreted as an idealized spectrogram of the impulse
response of an allpass filter having that group delay.

It can be seen that the group delay of first-order allpass filters
is quite small at all frequencies. For instance, when a1 = −0.6
the delay at low frequencies is only four samples. This would cor-
respond to about 0.1 ms when a sampling frequency of 44.1 kHz is
used. Filtering with this filter would produce typically no audible
effect. Even when the same allpass filtering is applied a second
time, the effect is still inaudible. However, when this filtering is
repeated very many times, such as 100 times, the low and high
frequencies in the output signal become separated in time and a
chirp-like effect is heard. One can observe this by listening to the
impulse response of the filter itself.

This phenomenon is illustrated in Figure 3, where the impulse
response and the spectrogram of a cascade of 64 first-order allpass
filters with a1 = 0.6 are plotted. Now, the impulse response is
quite long, about 6 ms. This due to the fact that cascading M
identical allpass filters produces a high-order allpass filter having
phase and group delay M times the original. When an impulse, a
broadband signal, is input to a such filter, it is smeared into a chirp
with frequencies appearing at times specified by the group delay.

The chirps that can be generated with a cascade of M identical
allpass filters can be understood by recalling the group delay plots
of Figure 2 and multiplying the time axis by M . When a great
many impulse responses are convolved, a chirp going downwards

x(n) - A1(z) - A2(z) - . . . -AM (z) -Heq(z) - y(n)

Figure 1: Block diagram of the basic spectral delay filter consisting
of M allpass filters and an equalization filter [3].
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Figure 2: Group delay of the first-order allpass filter with (a) non-
positive (a1 ≤ 0) and (b) non-negative (a1 ≥ 0) coefficient values
plotted against frequency. The sampling rate is fs = 44.1 kHz.

in frequency is heard when the filter coefficient a1 is negative (see
Figure 2(a)). When the coefficient a1 is positive (see Figure 2(b)),
a chirp going up is produced. The most useful allpass filter designs
bring about a large time delay difference between bass frequencies
(100 Hz or so) and high treble (well below 10 kHz). This is not
effectively obtained using allpass filters with poles close to the unit
circle. For instance, when coefficient a1 is positive and close to
1.0, such as a1 = 0.9, it is seen that the largest delay occurs at very
high frequencies, which will be inaudible to humans at a standard
sampling rate of 44.1 kHz.

It is helpful to be able to estimate the impulse response length
of first-order allpass filters, because this tells how long the chirp
will be. The maximum value of the group delay is related to the
length of the chirp. It can be obtained by evaluating the group
delay (5) at ω = 0 for non-positive a1 and at ω = π for positive
a1, i.e.

τg,max =

8><>:
τg(0) =

1− a1

1 + a1
, a1 ≤ 0,

τg(π) =
1 + a1

1− a1
, a1 > 0.

(6)

Alternatively, it is possible to estimate the length of the all-
pass chirp from theory for the impulse-response length of IIR fil-
ters [25]. The sufficient length of the impulse response of a first-
order allpass filter that contains P% of the total energy is given
by

NP =
log(1− P/100)− log(1− a2

1)

log(a2
1)

− 1, (7)

where P is the percentage of energy, e.g., 99.9. Notice that here the
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Figure 3: (a) Impulse response of the cascade of 64 first-order
allpass filters (a1 = 0.6) and (b) its spectrogram (linear magnitude
of a 64-point sliding FFT, hop size 1 sample, Hamming window),
which shows an upwards chirp. The dashed line is the group delay
of one allpass filter multiplied by 64.

ceiling operation used in [25] is skipped to avoid rounding errors
when many allpass filters are cascaded.

The maximum of the group delay according to (6) together
with the number of impulse response samples that contain 99%
and 99.9% of the total energy are plotted in Figure 4. It can be
seen that the maximum value of the group delay is very close to
the N99 value when 0.2 < |a1| < 0.7. It approaches N99.9 as |a1|
is increased.

For M cascaded allpass filters the effective length is MNP .
Equation (6) gives for the example of Figure 3 (M = 64, a1 =
0.6) the length estimate of 256 samples (4.00 samples for one
allpass section), which corresponds to 5.8 ms. This estimate is
slightly too small in comparison to what is seen in Figure 3. Using
the energy-based formula with P = 99.9%, the estimated impulse
response length is 261 samples (NP = 4.07 samples), which cor-
responds to 5.9 ms. N99.9 gives a conservative estimate of 404
samples (9.2 ms, 6.32 samples per allpass filter), which seems too
large in this case.

2.2. Allpass Chirp Envelope

The envelope of the allpass chirp is not constant over time. This
is clearly seen in Figure 3(a). The resulting amplitude envelope is
due to the fact that the impulse response contains an equal amount
of energy at all frequencies, and therefore the amplitude is neces-
sarily smaller at frequencies where the chirp lingers. Next, the en-
velope α(ω) of an allpass chirp is derived. Previously, this deriva-
tion has appeared in [26].

Denote by ω+ and ω− two nearby frequencies having differ-
ence ∆ and mean ω, i.e.

∆ = ω+ − ω−, and (8)
ω = (ω+ + ω−)/2. (9)
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Figure 4: Three different estimates for the effective length of a
first-order allpass filter impulse response as a function of coeffi-
cient a1: energy-based effective length for 99.0% and 99.9% of
the total energy and the group delay maximum.

In the frequency interval [ω+, ω−] the allpass chirp has energy
∆/π. This energy is approximately equal to the signal energy in
the time interval [τg(ω+), τg(ω−)] determined by the group delay
of the allpass filter,

∆/π ≈ |τg(ω−)− τg(ω+)|α2(ω)/2. (10)

Taking the limit ∆ → 0 gives

α(ω) =

»
π

2

˛̨̨̨
dτg(ω)

dω

˛̨̨̨–− 1
2

. (11)

Now, an allpass chirp may be filtered by an invertible normaliza-
tion ν(ω) with a magnitude chosen to approximate the inverse of
its envelope α(ω):

ν(ω) ≈ 1

α(ω)
=

s
π

2

˛̨̨̨
dτg(ω)

dω

˛̨̨̨
. (12)

Provided the equalizing filter does not smear the phase of the sig-
nal too much, the resulting sequence will have a nearly constant
envelope.

In the case of a first-order allpass, the inverse envelope ν(ω)
can be expressed in closed form as

1

α(ω)
=

s
π

2

˛̨̨̨
dτg(ω)

dω

˛̨̨̨
=

p
π|a1(1− a2

1) sin(ω)|
1 + 2a1 cos(ω) + a2

1

. (13)

2.3. Allpass Chirp Equalization

An accurate equalization (EQ) filter for a cascade of first-order
allpass filters can be designed based on (13). The design can be
decomposed into three parts as

Heq(z) =
q

Mπ|a1(1− a2
1)| ·Heq,d(z) ·Heq,n(z), (14)

corresponding to a scale factor, an all-pole ”denominator” section
Heq,d(z), and a ”numerator” section Heq,n(z). The scale factor
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contains M because the cascading of M indentical allpass filters
multiplies the group delay of one filter by M , see Section 2.1.

It can be seen in (13) that the denominator can be implemented
directly as a cascade of two one-pole filters having the pole at−a1,
i.e.

Heq,d(z) =

„
1

1 + a1z−1

«2

=
1

1 + 2a1z−1 + a2
1z
−2

. (15)

The magnitude response of this filter matches the denominator part
of the amplitude envelope.

In addition, it can be seen that the numerator has a functionp
| sin(ω)| that is symmetric with respect to π/2, i.e. one-fourth

of the sampling frequency. Thus, it makes sense to model the first
half of the function and replace z−1 by z−2 in the resulting filter.
The warped Prony design is used here to concentrate on matching
the desired low-frequency magnitude of the square root of the sine.
This yields the fourth-order IIR filter given by

Heq,n(z) = g
(1− beq,1z

−2)(1− beq,2z
−2)

(1− aeq,1z−2)(1− aeq,2z−2)

· (1− beq,3z
−2)(1− beq,4z

−2)

(1− aeq,3z−2)(1− aeq,4z−2)
,

(16)

where g = 0.7079 and the rest of the coefficient values are given
in Table 1.

Figure 5 shows an example where the allpass filter chain’s im-
pulse response obtained with the same parameters as in Figure 3 is
equalized using the filters above. It is seen in Figure 5(a) that the
magnitude response of the target and model for a chain containing
one allpass filter (M = 1) match quite well. In order to make a
difference between the EQ filter magnitude response and the in-
verse envelope the scaling has been omitted. If it is included, no
difference between the responses can be seen. Figure 5(b) shows
the equalized impulse response, which has a practically constant
level. Figure 5(c) presents the group delay of the EQ filter. It can
be seen that the EQ filter adds only a small delay to the signal.
Especially at low and middle frequencies, where human hearing
is most sensitive, the EQ filter adds practically no additional de-
lay. Therefore, the frequency-dependent delay of the SDF can be
understood to be set by the allpass filter chain.

2.4. Stretched Spectral Delay Filter

A multirate method was also introduced in [3] to obtain a more
dramatic spectral delay effect with a small number of allpass fil-
ters. By replacing the unit delay in each allpass filter with two
or more delay elements, the chirp becomes slower. We call this
the stretched SDF. At the same time, image chirps are generated,
which can be filtered out or used as part of the effect.

Figure 6(a) shows the impulse response of a stretched SDF
having 64 allpass sections in which each allpass section contains
three unit delays instead of one. The impulse response is three
times as long as in Figure 3(a), but two samples out of three are
zero. This method produces image chirps at high frequencies. Ev-
ery second chirp propagates in the opposite direction as compared
to the original one. This is seen in the spectrogram display in Fig-
ure 6(b). Since one of the chirps now occurs in the lower third of
the audio band (between 0 Hz and about 7 kHz at 44.1 kHz), it is
heard more easily than in the case of a single full-band chirp.

For the amplitude envelope equalization of a stretched SDF,
an interpolated version of the EQ filter of (16) suffices, i.e.

Heqi(z) = Heq(z
K), (17)

Table 1: Coefficients of the fourth-order numerator equalizing fil-
ter.

k beq,k aeq,k

1 0.3525 0.9797
2 0.9979 0.1103
3 0.9425 0.8750
4 0.7628 0.5892

where K is the number of unit delays in each allpass filter.

3. SPECTRAL DELAY FILTERS WITH FEEDBACK

As originally suggested by Kim-Boyle [1], the spectral delay pro-
cessing could be extended by feeding some of the filter output back
to its input. This approach could generate a series of chirps mod-
ified by the possible filtering in the feedback path. Here, this ap-
proach is considered and the condition for the system stability is
derived.

If the output of a basic SDF H(z) is fed back to its input via
a unit delay and filter B(z), the system illustrated in Figure 7 is
obtained. Both filters are assumed to be causal. Therefore, their
impulse responses may be denoted h(n) and b(n), respectively,
nonzero for n = 0, 1, . . .. The unit delay is needed in the feedback
path when b(0)h(0) 6= 0 to avoid a delay-free loop.

This system can be described with a set of equations given by

w(n) = x(n) + b(n) ∗ y(n− 1) and (18)
y(n) = h(n) ∗ w(n), (19)

where w(n) is the signal after the first summation and ∗ denotes
convolution. Now, by applying the z-transform to the equation set
above, the system can be expressed as

W (z) = X(z) + z−1B(z)Y (z) and (20)
Y (z) = H(z)W (z), (21)

from which the system transfer function is obtained,

G(z) =
Y (z)

X(z)
=

H(z)

1− z−1B(z)H(z)
. (22)

Now, the stability condition for the modified SDF utilizing
feedback can be derived. First of all, the basic SDF H(z) and
the feedback filter B(z) are assumed to be stable. Since

H(z)

1− z−1B(z)H(z)
= H(z)

∞X
k=1

z−kBk(z)Hk(z), (23)

a sufficient condition for stability is that B(z) and H(z) be causal
and stable (as assumed), and that |B(ejω)H(ejω)| < 1 for all
ω. These conditions provide that G(ejω) is both causal and con-
vergent everywhere on the unit circle. The loop gain condition
|B(ejω)H(ejω)| < 1 is also necessary at all frequencies for which
H(ejω) 6= 0. Since the magnitude response of the basic SDF de-
pends solely on the magnitude response of the EQ filter, which can
be larger than one for some frequencies (see Figure 5), the feed-
back filter should apply attenuation that makes the feedback gain
less than one, i.e.

|B(ejω)Heq(e
jω)| < 1 ⇒ |B(ejω)| < 1

|Heq(ejω)| ∀ω. (24)
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Figure 5: (a) Inverse envelope of a one-stage allpass chirp and an
EQ filter’s magnitude response with the scaling omitted. (b) The
equalized impulse response (cf. Figure 3(a)). (c) The group delay
of the equalizing filter used in this example.

Otherwise the signal fed back to the input of the basic SDF will be
amplified over and over again as it travels through the loop.

Now, if the feedback filter is designed to approximate the am-
plitude envelope of the chirp and to satisfy the stability condition
given above, maximum amplification of the feedback is then ob-
tained. However, this leads to quite sophisticated design criteria
(cf. the design of the EQ filter) and unsophisticated first-order or
second-order filters cannot produce clearly different results due to
the attenuation required for the stability. Yet, if the EQ filter is
omitted, the feedback filter can be more freely designed, as long
as the stability criterion holds.

An example of the use of a SDF with feedback is given in
Figure 8, where the impulse response and the spectrogram of a
basic SDF having 64 first-order allpass filters with coefficient a1 =
0.6, an EQ filter, and a feedback filter

B(z) =
1

23

`
1 + z−1´

(25)

are plotted. As can be seen, the impulse response (Figure 8(a)) has
now small amplitude variations not present in the impulse response
of a basic SDF without feedback (cf. Figure 3). These variations
are due to an additional low-amplitude chirp at high frequencies,
which can be observed from the spectrogram (Figure 8(b)). Since
the low frequencies are passed by the basic SDF almost instantly
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Figure 6: (a) Impulse response of a cascade of 64 first-order allpass
filters (a1 = 0.6) having the unit delay replaced with three unit
delays (K = 3) and (b) its spectrogram computed with the same
parameters as in Figure 3. Now three long chirps are seen instead
of one. The interpolated EQ filter has been applied to the impulse
response.

x(n) - i - H(z) r - y(n)

�z−1�B(z)

6

Figure 7: A modified spectral delay filter utilizing a basic SDF
H(z) and a time-invariant filter B(z) in the feedback path.

and the feedback filter is a highpass filter, they are attenuated as
can be seen in the spectrogram. In addition, for this reason they
are not present in the additional chirp.

4. TIME-VARYING SPECTRAL DELAY FILTER
STRUCTURES

If the coefficients of the allpass filters in the allpass chain are al-
lowed to be time-varying, more lively effects are obtained. Now,
the spectral delay generated by the chain varies over time, and the
output will no longer be a pure chirp. With an appropriate choice
of the coefficient modulation, the desired dynamic effect can be
obtained.

However, when the coefficients of the allpass filters are time-
varying, the stability of the system becomes a more crucial design
criterion. It is easily proved that if two filters are stable, their cas-
cade is also stable. Now, if all filters in the allpass filter chain
are first-order, the same stability condition as for a time-invariant
first-order allpass filter holds, i.e. the filter coefficient must be in
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Figure 8: (a) Impulse response of a SDF having 64 first-order all-
pass filters with coefficient a1 = 0.6, an EQ filter, and a feedback
filter B(z) = 1

23

`
1 + z−1

´
, and (b) its spectrogram (obtained

with the same parameters as in Figure 3).

the range [−1, 1], end points included [8]. Here, the stability con-
dition for a time-varying stretched allpass filter is derived.

A stretched allpass filter, i.e., a first-order allpass filter where
the unit delay is replaced with two or more unit delays, having
a stretching factor K = 2, 3, . . ., and a time-varying coefficient
m(n), can be described by the following relations:

w1(n + 1) = m(n)y(n) + x(n) (26)
wk(n + 1) = wk−1(n), k = 2, . . . , K, (27)

y(n) = wK(n)−m(n)x(n), (28)

where wk(n) is the signal exiting the kth delay of the filter. This
system can be given in matrix form

Xn+1 = PnXn + Qnx(n), (29)
y(n) = RnXn + Snx(n), (30)

where Xn = [w1(n), w2(n), . . . , wK(n)]t, Sn = −m(n), Qn =
1−m2(n), Rn is a vector containing the value one at index K and
zero elsewhere, and Pn is a K ×K matrix given by

Pn(i, j) =

8><>:
m(n), i = 1, and j = K

1, i = 2, . . . , K, and j = i− 1

0, elsewhere,
(31)

where Pn(i, j) denotes the element in row i and in column j. In
other words, the matrix Pn has ones in the first diagonal below the
main diagonal and m(n) in the last element of the first row, i.e.

Pn =

2666664
0 0 · · · 0 m(n)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

3777775 . (32)

Now, the stability condition can be given as [27]

G = |Sn|+
∞X

i=n−1

˛̨̨̨
˛Rn

nY
k=i+1

Pk Qi

˛̨̨̨
˛ < ∞ ∀n. (33)

Applying the Cauchy-Schwartz inequality gives

G ≤ |Sn|+
∞X

i=n−1

||Rn||
nY

k=i+1

||Pk|| |Qi|. (34)

Now, the norm of vector Rn is one, and the absolute values of
scalars Sn and Qi are |m(n)| and |1 −m2(i)|, respectively. The
norm of matrix Pk is defined as ||Pk|| = max||x||=1 ||Pkx||,
where x ∈ RK , and it can be shown to be the positive square
root of the largest eigenvalue of matrix P t

kPk. In this case,

P t
kPk(i, j) = Pk(:, i)tPk(:, j) =

8><>:
1, i = j 6= K,

m2(k), i = j = K,

0, i 6= j,

(35)

where Pk(:, i) denotes the ith column of the matrix Pk. In other
words, the matrix P t

kPk is an identity matrix with the last diag-
onal value replaced with m2(k). The eigenvalues of this matrix
are now easily obtained, and the positive square root of its largest
eigenvalue is max(1, |m(k)|).

The stability condition is now expressed as

G ≤ |m(n)|+
∞X

i=n−1

nY
k=i−1

max(1, |m(k)|)|1−m2(i)|. (36)

Now, if m(n) = 0 ∀n, the filter is stable as it then reduces to a
pure delay of K samples. If 0 < |m(n)| ≤ 1, max(1, |m(k)|) =
1 and |1−m2(i)| < 1, and thus the sum term becomes

nY
k=i−1

1k|1−m2(i)| = |1−m2(i)| < 1, (37)

which makes sum term of the condition convergent, i.e the fil-
ter is stable. If |m(n)| > 1, then max(1, |m(k)|) = |m(k)|
, and the sum term increases continuously as i decreases, effec-
tively making the sum term infinite contradicting the stability con-
dition. Therefore, the stretched allpass filter is stable if and only if
|m(n)| ≤ 1 ∀n.

In the case of a time-varying SDF, the equalizing filter must
then also be time-varying. Now, the scaling and the denomina-
tor filter depend on the time-varying coefficient, and the stabil-
ity is determined by the stability of the denominator filter. Since
the denominator filter can be composed of two one-pole filters, it
suffices to analyze the stability of one of its stages. For a time-
varying one-pole filter modulated by the signal m(n), the parame-
ters for (33) are Sn = Rn = Qn = 1 and Pn = m(n). Substitut-
ing these in (33) leads to the condition |m(n)| < 1. However, if
|m(n)| = 1, the scaling of the EQ filter makes the output become
zero, so the EQ filter is also stable when |m(n)| ≤ 1 ∀n.

If a time-varying SDF includes a feedback path, the observa-
tions given in Section 3 hold. However, since in such cases the
magnitude response of the time-varying SDF depends on both the
modulation and the input signal (via filter states), it is not well de-
fined. Therefore, it is recommended that only feedback filters with
a quite large attenuation at all frequencies should be used. Again,
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this would lead to a filter structure that does not differ much from
a basic time-varying SDF. If the EQ filter is omitted, the feedback
filter can be more freely designed and more interesting effects are
obtained, as illustrated next.

In Figure 9, the impulse response and the spectrogram of a
SDF having 64 first-order allpass filter with the coefficients mod-
ulated by an 8 Hz sine having amplitude 0.9 and a feedback path
with a constant multiplier B(z) = 0.99 are plotted. Now, the SDF
does not contain an EQ filter. The impulse response (Figure 9(a))
is noise like and more dynamic than the impulse response of the
time-invariant spectral delay filter utilizing feedback (cf. Figure 8).
When looking at the spectrogram (Figure 9(b)), the dynamic char-
acteristics of this filter are more clearly visible. Now, there are sev-
eral simultaneous chirps going up and down in a sine-like fashion
with a period corresponding to the modulation period. An audio-
rate coefficient modulation of the SDFs has some interesting prac-
tical applications and some of them are presented in [28].

Figure 10 plots the impulse response and the spectrogram of
a SDF having 64 stretched allpass filter with K = 3 and with
the coefficients modulated by the output of an envelope-following
filter given by y(n) = 0.1|w(n)|+0.9y(n−1), where w(n) is the
sum of the input and feedback signals, and a feedback path with a
constant multiplier B(z) = 0.99. Again, the SDF does not contain
an equalizing filter. The impulse response (Figure 10(a)) is again
more dynamic than the impulse response of the time-invariant SDF
utilizing feedback (see Figure 8) and it contains a series of chirps
with decaying amplitudes. The spectrogram (Figure 10(b)) now
shows more clearly that the chirp durations increase as they travel
through the system.

5. CONCLUSIONS

The properties of the recently introduced spectral delay filter (SDF)
were reviewed. The SDF, which consists of a cascade of many
first-order allpass filters and an equalizing filter, produce unusual
effects on an audio signal. The SDF has a long, chirp-like impulse
response, which effectively makes the various frequency compo-
nents in an audio signal travel through the filter at different speeds.
Since the amplitude envelope of the allpass chirp is inversely pro-
portional to the square root of the frequency derivative of the filter
group delay, the slowest portions of the chirp are also the softest.
In order to equalize the variations in the chirp amplitude, a new
equalizing filter, which approximates the inverse chirp amplitude
envelope, was presented. In addition, properties of SDFs utiliz-
ing feedback and/or time-varying coefficients were discussed. The
stability conditions for both cases were derived and examples of
their use were also presented.

The SDF can be used to process arbitrary audio signals to
transform their timbre. This is computationally more efficient than
convolution, since the length of the impulse response of the SDF
can be very long. Alternatively, the impulse responses produced
with SDFs can be used as sound effects or synthetic percussion
samples. In general, the SDF can be used to bring electronic or
synthesizer-like characteristics to arbitrary audio signals. In this
sense it is related to previous extended synthesis methods that can
process arbitrary audio signals, such as the audio signal driven
sound synthesis methods proposed by Poepel and Dannenberg [29]
or the adaptive FM synthesis and adaptive split sideband synthesis
methods introduced by Lazzarini et al. [30, 31].

Sound examples on the use of the spectral delay filters utiliz-
ing the structures discussed in this paper can be found at http://
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Figure 9: (a) Impulse response of a SDF having 64 first-order all-
pass filters with the coefficients modulated by an 8 Hz sine hav-
ing amplitude 0.9 and a feedback path with a constant multiplier
B(z) = 0.99. (b) The spectrogram of the impulse response (ob-
tained with the same parameters as in Figure 3). The SDF does not
contain an equalizing filter.

www.acoustics.hut.fi/publications/papers/dafx09-sdf/.

6. REFERENCES

[1] D. Kim-Boyle, “Spectral delays with frequency domain pro-
cessing,” in Proc. DAFx-04, Naples, Italy, Oct. 2004, pp.
42–45.

[2] X. Amatriain, An Object Oriented Metamodel for Digital
Signal Processing with a Focus on Audio and Music, Ph.D.
thesis, Universitat Pompeu Fabra, Barcelona, Spain, 2004,
pp. 184–188. See also: http://www.create.ucsb.
edu/~xavier/Thesis/html/node127.html.

[3] V. Välimäki, J. S. Abel, and J. O. Smith, “Spectral delay
filters,” J. Audio Eng. Soc., vol. 57, no. 7/8, July/Aug. 2009.

[4] M. R. Schroeder, “Natural sounding artificial reverberation,”
J. Audio Eng. Soc., vol. 10, no. 3, pp. 219–223, July 1962.

[5] J. S. Abel, D. P. Berners, S. Costello, and J. O. Smith,
“Spring reverb emulation using dispersive allpass filters in
a waveguide structure,” presented at the AES 121st Conven-
tion, San Francisco, CA, Oct. 2006, paper no. 6954.

[6] J. O. Smith, “An allpass approach to digital phasing and
flanging,” Report STAN-M-21, CCRMA, Dept. of Music,
Stanford University, Stanford, CA, 1984.

[7] P. A. Regalia and S. K. Mitra, “Tunable digital frequency
response equalization filters,” IEEE Trans. Acoust. Speech
Signal Process., vol. 35, no. 1, pp. 118–120, Jan. 1987.

[8] J. Pekonen, “Coefficient-modulated first-order allpass filter
as distortion effect,” in Proc. DAFx-08, Espoo, Finland, Sep.
2008, pp. 83–87.

DAFX-7

http://www.acoustics.hut.fi/publications/papers/dafx09-sdf/
http://www.acoustics.hut.fi/publications/papers/dafx09-sdf/
http://www.create.ucsb.edu/~xavier/Thesis/html/node127.html
http://www.create.ucsb.edu/~xavier/Thesis/html/node127.html


Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009
L
ev

el

−0.8

0

0.8

Time (ms)
0 20 40 60 80 100 120

(a)

F
re

qu
en

cy
(k

H
z)

0

10

Time (ms)
0

20

20 40 60 80 100 120

(b)

Figure 10: (a) Impulse response of a SDF having 64 stretched
allpass filters with K = 3 and with the coefficients modulated
by the output of an envelope following filter given by y(n) =
0.1|w(n)|+ 0.9y(n− 1) where w(n) is the sum of the input and
feedback signals, and a feedback path with a constant multiplier
B(z) = 0.99. (b) The spectrogram of the impulse response (ob-
tained with the same parameters as in Figure 3). The SDF does not
contain an equalizing filter.

[9] D. A. Jaffe and J. O. Smith, “Extensions of the Karplus-
Strong plucked-string algorithm,” Computer Music J., vol.
7, no. 2, pp. 76–87, Summer 1983.

[10] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine,
“Splitting the unit delay — tools for fractional delay filter
design,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 30–
60, Jan. 1996.

[11] M. Karjalainen and J. O. Smith, “Body modeling techniques
for string instrument synthesis,” in Proc. ICMC’96, Hong
Kong, Aug. 1996, pp. 232–239.

[12] J. O. Smith and J. S. Abel, “Bark and ERB bilinear trans-
forms,” IEEE Trans. Speech Audio Process,, vol. 7, no. 6,
pp. 697–708, Nov. 1999.

[13] A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. K.
Laine, and J. Huopaniemi, “Frequency-warped signal pro-
cessing for audio applications,” J. Audio Eng. Soc., vol. 48,
no. 11, pp. 1011–1031, Nov. 2000.

[14] G. Evangelista, “Time and frequency warping musical sig-
nals,” in DAFX: Digital Audio Effects, U. Zölzer, Ed., chap-
ter 11, pp. 439–464. Wiley & Sons, Ltd., Chichester, UK,
2002.

[15] T. Paatero and M. Karjalainen, “Kautz filters and general-
ized frequency resolution: Theory and audio applications,”
J. Audio Eng. Soc., vol. 51, no. 1, pp. 27–44, Jan. 2003.

[16] S. A. Van Duyne and J. O. Smith, “A simplified ap-
proach modeling dispersion caused by stiffness in strings and
plates,” in Proc. ICMC’94, Aarhus, Denmark, Sep. 1994, pp.
407–410.

[17] B. Bank, F. Avanzini, G. Borin, G. De Poli, F. Fontana,
and D. Rocchesso, “Physically informed signal processing
methods for piano sound synthesis: A research overview,”
EURASIP J. Applied Signal Process., vol. 2003, no. 10, Sep.
2003.

[18] I. Testa, G. Evangelista, and S. Cavaliere, “Physically in-
spired models for the synthesis of stiff strings with disper-
sive waveguides,” EURASIP J. Applied Signal Process., vol.
2004, no. 7, pp. 964–977, 2004.

[19] J. Rauhala and V. Välimäki, “Tunable dispersion filter design
for piano synthesis,” IEEE Signal Process. Lett., vol. 13, no.
5, pp. 253–256, May 2006.

[20] D. Rocchesso and P. Dutilleux, “Generalization of a 3-D
acoustic resonator model for the simulation of spherical en-
closures,” EURASIP J. Applied Signal Process., vol. 2001,
no. 1, pp. 15–26, 2001.

[21] M. Karjalainen, V. Välimäki, and P. A. A. Esquef, “Efficient
modeling and synthesis of bell-like sounds,” in Proc. DAFx-
02, Hamburg, Germany, Sep. 2002, pp. 181–186.

[22] J. Kleimola, “Dispersion modulation using allpass filters,” in
Proc. DAFx-08, Espoo, Finland, Sep. 2008, pp. 193–197.

[23] V. Välimäki, M. Ilmoniemi, and M. Huotilainen, “Decompo-
sition and modification of musical instrument sounds using a
fractional delay allpass filter,” in Proc. NORSIG2004, Espoo,
Finland, June 2004, pp. 208–211.

[24] H.-M. Lehtonen, V. Välimäki, and T. I. Laakso, “Cancelling
and selecting partials from musical tones using fractional-
delay filters,” Computer Music J., vol. 32, no. 2, pp. 43–56,
Summer 2008.

[25] T. I. Laakso and V. Välimäki, “Energy-based effective length
of the impulse response of a recursive filter,” IEEE Trans.
Instrum. Meas., vol. 48, no. 1, pp. 7–17, Feb. 1999.

[26] J. S. Abel and D. P. Berners, “MUS424/EE367D: Signal
processing techniques for digital audio effects,” Unpublished
Course Notes, CCRMA, Stanford University, Stanford, CA,
Apr. 2005.

[27] J. Laroche, “On the stability of time-varying recursive fil-
ters,” J. Audio Eng. Soc., vol. 55, no. 6, pp. 460–471, June
2007.

[28] J. Kleimola, J. Pekonen, H. Penttinen, V. Välimäki, and
J. S. Abel, “Sound synthesis using an allpass filter chain
with audio-rate coefficient modulation,” in Proc. DAFx-09,
Como, Italy, Sep. 2009.

[29] C. Poepel and R. Dannenberg, “Audio signal driven sound
synthesis,” in Proc. ICMC’05, Barcelona, Spain, Sep. 2005,
pp. 391–394.

[30] V. Lazzarini, J. Timoney, and T. Lysaght, “The generation
of natural-synthetic spectra by means of adaptive frequency
modulation,” Computer Music J., vol. 32, no. 2, pp. 9–22,
Summer 2008.

[31] V. Lazzarini, J. Timoney, and T. Lysaght, “Non-linear distor-
tion synthesis using the split sideband method, with applica-
tions to adaptive signal processing,” J. Audio Eng. Soc., vol.
56, no. 9, pp. 684–695, Sep. 2008.

DAFX-8


	1  Introduction
	2  Cascaded First-Order Allpass Filters
	2.1  Group Delay and Chirp-Like Impulse Response
	2.2  Allpass Chirp Envelope
	2.3  Allpass Chirp Equalization
	2.4  Stretched Spectral Delay Filter

	3  Spectral Delay Filters with Feedback
	4  Time-Varying Spectral Delay Filter Structures
	5  Conclusions
	6  References

