
Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

 DAFX-1

 RE-TARGETING EXPRESSIVE MUSICAL STYLE USING A MACHINE LEARNING
METHOD

TEMPLATES FOR DAFX-09, COMO, ITALY TEMPLATES FOR DAFX04, NAPLES, ITALY

Simon Lui Andrew Horner
Department of Computer Science and

Engineering, Hong Kong Univeristy of Science
and Technology, Hong Kong

Department of Computer Science and
Engineering, Hong Kong Univeristy of Science

and Technology, Hong Kong
virtuoso@cse.ust.hk horner@cse.ust.hk

ABSTRACT

Expressive musical performing style involves more than what is
simply represented on the score. Performers imprint their per-
sonal style on each performances based on their musical under-
standing. Expressive musical performing style makes the music
come alive by shaping the music through continuous variation. It
is observed that the musical style can be represented by appropri-
ate numerical parameters, where most parameters are related to
the dynamics. It is also observed that performers tends to perform
music sections and motives of similar shape in similar ways,
where music sections and motives can be identified by an auto-
matic phrasing algorithm. An experiment is proposed for produc-
ing expressive music from raw quantized music files using ma-
chine-learning methods like Support Vector Machines. Experi-
mental results show that it is possible to induce some of a per-
former’s style by using the music parameters extracted from the
audio recordings of their real performance.

1. INTRODUCTION

It has been a hot topic recently to develop computational meth-
ods for expressive music performance. Expressive musical per-
formance is more than just a simple variation in tempo and dy-
namic. The performing artist is an indispensable part of the
music, deriving information from their understanding and musi-
cal knowledge. Not every expressive performance feature can be
represented in music notation – something composers are well
aware of. Hence, to understand expressive performance, we must
study the musical behaviour of performers. Typically, researchers
have built formal models of expressive performance based on
real musical performance. In order to build models with strong
empirical foundations, inductive methods must be introduced,
such that a large amount of real-world performance data is used
as the basis for the model. To deal with the complexity of such a
large amount of data, we make use of machine learning and data
mining.

There are a large variety of musical descriptors that can
be investigated. These descriptors range from low-level features,
such as RMS envelope and spectral shape, to high-level descrip-
tors such as terms like “delightful” and “sad” music. High-level
terms can also be described by a combination of low-level audio
descriptors. A common question of interest is, whether it is pos-
sible to represent expressive styles in terms of these descriptors
in a digital format. Previous research has shown that music styles
can be represented, to certain extent, as the deviation of three
fundamental parameters: dynamics, tempo and articulation [1].
Previous research suggests that different musicians usually per-

form the same piece in a similar way in aspects like dynamics,
due to music context, structure, common musical sense, and so
on. However there are also slight differences between different
musicians [2]. Each musician has a unique performing style,
where some particular performing features will uniquely and fre-
quently appear in different pieces played by the same performer
[3].

Experimental results also show that by collecting sev-
eral pieces performed by the same musician, it is possible to train
a set of performance style parameters from the performance data,
where the trained data can be used to distinguish the performance
style of that particular performer from others [4]. Successful
learning from even extremely limited training data can still be
achieved by making use of ensemble learning. Once learned, the
extracted “performance style” can be applied to a raw note list to
make it expressive.

We propose an experiment where musical style is in-
duced by multiple Support Vector Machines and applied to MIDI
note lists in order to produce expressive musical performances.
We first describe some musical facts observed from several ex-
pressive performance excerpts. We then discuss the implementa-
tion of our proposed experiment. Finally we conclude with the
listening and statistical test results, as well as our future plans.

2. OBSERVATIONS

Our program has been developed on the basis of the following
observations, which have been carefully tested, supported with
strong reasons, and prolific examples. This is an essential step in
our program development.

2.1. Global dynamic trend

Figure 1 shows a smoothed dynamic graph and a smoothed pitch
graph of the Sonata No.1 in G minor BWV 1001, second move-
ment (Fuga), by J.S. Bach, performed by Jascha Heifetz. The
complete piece of music is smoothed by a sliding window of 8
bars (32 beats). The trends of the two graphs are very similar.
This is not an isolated case. We sampled 6 different performers
as well as different movements of the Bach Sonata and Partita,
finding that they all return similar trends for the two graphs. Four
of the results are shown in Figure 10. The global dynamic trend
closely follows the global pitch trend. In most cases, the higher
the pitch, the higher the dynamics. The only difference between
different performers and different music is the trend ratio.

Figure 1. A smoothed graph from the Sonata No.1 in G
minor BWV 1001, second movement (Fuga) by J.S. Bach,
performed by Jascha Heifetz. Top: The smoothed pitch
graph. Bottom: The smoothed dynamic graph.

2.2. Local dynamic change

We performed careful observations on every position for several
movements of the Bach Sonata and Partita. We first magnified a
small portion of two bars into a full screen on our computer. We
compared local dynamic changes with corresponding local pitch
changes, using several preprocessing methods including loga-
rithmic, smoothing, standard score, deviation chart and so on. We
eventually found that the standard score (Z-score) reflects the
relationship between local dynamics and pitch changes well. Fig-
ure 2 shows two examples. The pitch trend in (a) is similar to (b),
and the trend of Z-score of their relative dynamic levels looks
very similar.

a)

b)

Figure 2. Two excerpts from the Partita No.2 in D minor,
BWV 1004 4th movement (Giga) performed by Itzhak
Perlman.

Next, we found that phrases with similar pitch patterns
but different scales also had similar dynamic patterns in their
own scales as shown in Figure 3.

To conclude, we believe it is possible to describe a per-
former's dynamic style by combining his/her global and local
dynamic trends. As a violinist, this assumption well-matches my
behaviour as a performer: imagine when we first look at a piece
of music, we initially picture the whole piece from a global point
of view, planning for the roles of different sections. However for
each small motive we customize it to a personal performance
style. We are very likely to perform with similar dynamic pat-
terns for phrases with similar fingering patterns, hence it is rea-
sonable for similar local pitch trends to have similar local dy-
namic trends.

a)

b)

Figure 3. Two excerpts from the Partita No.2 in D minor,
BWV 1004 4th movement (Giga), performed by Itzhak
Perlman.

2.3. Feature vectors

It is possible to use a few fundamental features to fully describe a
performance style. Gerhard Widmer showed that dynamics,
tempo, and articulation are adequate in representing the perform-
ance style of a piano solo. He successfully classified performance
style of different pianists by using dynamic and tempo relation-
ships.

 From our point of view, dynamics and articulations are
essential features for describing an expressive performance style.
Moreover, for vocal, wind, brass, bowed string instruments and
vocal, performing techniques like vibrato and glissando are also
essential features for describing their performing style. We de-
scribe these features as pitch bend. Tempo is also essential for
piano solos and perhaps for most other solo performances such as
harp and guitar. However, much other type of music is performed
in ensemble form. These are as important as solo performances,
and probably there are more ensemble recordings than solo re-
cordings in existence. If the ensemble music is classical music,
the performers usually have to follow the tempo of the conductor
or the quartet leader; for pop music, the lead instrument or singer
usually has to follow a metronome or the tempo of the drummer,
as most drummers are actually following a metronome beat
through a headset. We measured the tempo of a number of pop
pieces, symphonies and solo concertos, using the beat tracking
program by Dixon [5]. Dixon’s algorithm ranks the 1st in the
Audio Beat Tracking task in Music Information Retrieval
Evaluation eXchange (MIREX) 2006, which is very accurate and
efficient. We found that the global tempo was steady most of the
time. So, we believe global tempo is a good style indicator for
solo performances, but not for music performed by more than
one player. Although there is still a little local deviation in
tempo, but the deviation is limited within a small range of the
global tempo, where the performer cannot go ahead too much
and he has to return to the original tempo in a bar or two. Since
the global tempo is almost steady, we interpret this tempo devia-
tion as lengthening and shortening of notes, which is the scope of
articulation.
 It is observed that the dynamic feature can describe the
articulation feature. Articulation refers to the length of music
note and it can be described by its note-end position: it is a note-
end when the dynamic value drops below certain threshold. To
conclude, we believe that dynamics, sometimes together with
pitch bend, can fully represent music performance style. In this
paper, we first focus on dynamics, since it applies to all musical
instruments.

3. EXPERIMENTAL SETTING

3.1. Music data

Expressive performance recordings were extracted from an audio
CD. Wave audio files in simple PCM format (44 kHz, 16 bit)
were used. The input music data were assumed to be in MIDI
format 1, following the GM (General MIDI) standard in order to
standardize the velocity and channel parameters.
 We chose the unaccompanied Sonata and Partita for
the violin solo BWV1001-1006 by J.S. Bach, since it is a large
set of accompanied works that can provide many clean samples
for training. It is also one of the most famous violin masterpieces,
hence it is easy to find many different versions by different per-
formers. The reason for choosing Bach’s music is because his
music has dense and conscientious musical structures, for exam-
ple, fugue and counterpoint. We believe that it is relatively easy
to find re-occurring patterns in Bach’s music, hence it should be
a good starting point. For each piece, we prepared certain ver-
sions performed by different famous violinists including Itzhak
Perlman, Jascha Heifetz, Midori Goto and Gil Shaham. The
author, Simon Lui, also included performances for some excerpts
as well, since we can record the same piece for an unlimited

number of times, which can help us find the differences and simi-
larity of a sample piece performed by the same performer. The
MIDI data were downloaded from the Classical MIDI archive.
All MIDI files were quantized and tidied for ready use. We used
the Vienna Symphonic Library Strings Pro edition as an output
sound sampler, and we used Logic Pro 8 as a sequencer to proc-
ess the string instrument library.

3.2. Support Vector Machine

For the SVM machine, our experiments used LIBSVM Version
2.88 developed by the National Taiwan University, which was
implemented by Chih-Chung Chang and Chih-Jen Lin [6].
Since SVMs require each data instance to be represented in nu-
merical format, we used the GM (General MIDI) digital value to
represent the vector value. Each support vector contained 64
frames, and each data represented the pitch value (1-127, in the
GM standard) at a certain time.
 In this support vector design, both rhythmic and pitch
changes were included. 64-frame-level data was considered since
most pieces rarely have notes durations shorter then a 128th
notes. One support vector represents the features within 8 beats
(i.e., 2 bars), so 8 / (1/128) = 64-frame-level data is considered. If
the 256th note is present, then probably an 8th note instead of a
4th note could be tracked as a beat, so 128th notes could be iden-
tified by the program relatively as a 64th notes. Also, the inex-
pressive MIDI score files used were quantized and non-
expressive, so there were no grace notes or acciaccatura. Hence
the support vector of the 64-dimensions has fine enough resolu-
tion.

4. IMPLEMENTATION

4.1. Note identification

First, we identify musical notes from an audio file by pitch ex-
traction. We used a modified pitch extraction algorithm sug-
gested by Peeters [7] which is a very fast and accurate. Assume
the fundamental frequency of a harmonic tone is f. The FFT of
this note should peak at f and its multiples. On the other hand, the
cepstrum of this note should peaks at f and its divisors, because
cepstrum shows the repeat rate of the peaks and crests in the cor-
responding FFT graph, while the highest repeat rate of peaks in
the FFT graph are probably the fundamental frequency and its
divisors.
 Hence to conclude, the cross product of a FFT and cep-
strum should produce a graph that peaks at the fundamental fre-
quency. Peeters suggested that the cross product of the autocorre-
lation of a Discrete Fourier Transform and cepstrum can reach
the highest accuracy of 97%, while the cross product of a FFT
and cepstrum has the second highest accuracy of 91.4%.
 We further increase the accuracy of the pitch estima-
tion by a low-pass filter of 20Hz and doing a natural logarithm in
order to sharpen the peak of the FFT and cepstrum. Moreover,
since we extract pitch data for every frame, and each note actu-
ally lasts for at least 8 frames, an error correction technique can
be applied to fix almost all the errors: firstly, discard discontinu-
ous frames with lengths less than a 32nd note; secondly, for gaps
shorter than a 32nd note, are filled in with the next/previous
pitch.
 We tested the accuracy for an excerpt from the Partita
No.2 in D minor, BWV 1004 4th movement (Giga) performed by

Itzhak Perlman. The final pitch estimation was improved to 96%
with this simple error correction technique. The remaining 4%
error was mostly due to the performer’s slightly off-key perform-
ance. We carefully looked into some miscalculated cases, and all
of them were actually off-key. In conclusion, there is almost no
room for further improvement to the pitch estimation accuracy
for monophonic audio.
 Sometimes we still got a dirty cepstrum graph even
though the music was monophonic. This was mainly the reverb
from the previous note. This error was solved by sharpening the
graph by a prior natural logarithm. After obtaining the fundamen-
tal frequency for each note, we converted them to the nearest
pitches, and then to the General MIDI parameters.

4.2. Beat Tracking

The audio file data was then compared with the MIDI file. How-
ever, before doing the comparison, the audio file data has to be
mapped to the corresponding notes in the MIDI file. To do this,
the beat position of each note has to be calculated by beat track-
ing.
 First, we calculate the IOI (inter onset interval) for all
note-on times, and then perform clustering for the IOI values.
IOIs of difference less than 25% were joined together. When all
the IOIs were merged, clusters were merged with a 25% thresh-
old. Finally, the cluster with the most number of members was
taken as the beat of the piece.
 Beat tracking was performed for both audio data and
source MIDI. The beat tracking result was not 100% accurate,
sometimes it over- or under-estimated the beat by a scale of two
or one half. However it did not affect the accuracy of our ma-
chine, since we are only looking for reference points in the same
piece of music, while the reference points between MIDI and
audio data always match perfectly.

Since we only target the largest final cluster, it is a
waste of time to merge clusters after we processed each IOI. In-
stead, we can merge the clusters once only after all the IOI are
merged, and the result is exactly the same as our last implemen-
tation.

4.3. Note Mapping

After beat tracking, we locate a set of reference points in the
MIDI and audio files, hence we can perform note mapping be-
tween the audio and MIDI data. We map every MIDI note to its
corresponding audio note instead of the reverse. This is because
the pitch data in the audio files, which are extracted by the pitch
extraction algorithm, might not be 100% correct even though the
error rate is small. On the other hand, the MIDI file is a source
reference file and hence its pitch data is 100% correct. Hence we
should do the mapping from the MIDI notes to audio notes.
 We use a 96-frame window for mapping notes in a 64-
frame vector, which is 150% of the target size. We search for the
correct mapping pattern in a binary string format. The binary
string with the largest sum of values is the best-matched se-
quence. The pseudocode of the note-mapping algorithm is as fol-
lows:

for trial = 1 to 2^windowSize-1,
for bit = 1 to windowSize,

 bitString(windowSize-bit+1)
= floor(mod(trial/(2^(bit-1)),2));

 end

 match midiString with bitString,
producing matchedString composed of 1 and 0.

 count how many 1 are there in matchedSting,
break if at least 90% match.

end

 Finally we prepare data in the SVM vector format. We
use the pitch as a vector feature, and the dynamic cluster code as
the class. Since the note mapping results are mostly 100% full
mapping, it is more efficient to try from an all ‘1’ sequence in
order to save computation time.

4.4. Segmentation

After note mapping is done, we segment the music into phrases.
At an early stage of development, no segmentation was done, and
we considered each note by a sliding window with a fixed size of
8 beats. However the learned performing style was not accurate.
This implementation did not match how a performer thinks: a
performer makes judgment about their own performing styles by
motif, not by phrases of fixed length.
 Hence in the second stage, we processed the input
phrase-by-phrase, where the phrase segmentation was done
manually. The whole piece was first divided into a few (four to
eight) musical forms, and then within each form similar musical
phrases were identified and motives of a half-bar to 4-bars were
identified.
 However, in order to build up an accurate SVM ma-
chine, we needed a large amount of segmented music samples. It
was too slow to do the segmentation manually and we needed an
automatic solution. Hence a modified version of the Phrase Steal-
ing Algorithm by Lui [8] was used to perform auto segmentation.
The originally Phrase Stealing Algorithm identifies music
phrases by tying individual music notes together according to a
voice leading table. In this experiment, we tie music notes to-
gether according to harmony progression. First, we segmented
the music by long notes and rests, resulting in sets of music
chunks. Music chunks shorter than 64 frames could be readily
used as phrases. We did further segmentation for those music
chunks which were longer than 64 frames. Within each chunk,
for each note, a list of expected chord was calculated, resulting in
an 2D “expected chord matrix”. The elements in the expected
chord matrix were tied according to a self-made “chord progres-
sion table”. Finally all the tied phrases were viewed as motives.
 Motives of different lengths were normalized to a fixed
length of 64-frames. This process is based on the observation
quoted in section 5.3.2 that similar pitch trends of different scales
also have similar dynamic trends. As a result, we get a set of note
vectors, all of length 64-frames.

The FFT process is actually the most serious bottleneck
of the whole program. However, the FFT process for different
portions of music is independent and can actually be done in par-
allel. The FFT process can be speeded up by dividing the piece of
music into several chunks, and performing FFT calculations si-
multaneously in different threads. Originally, we used Matlab
2006a which is a single thread application. However, we can still
perform multitasking with limited power by making use of Basic
Linear Algebra Subroutines. We have to do these environment
variable settings outside Matlab:

 BLAS_VERSION mkl.dll
 OMP_NUM_THREADS (number of threads)

 Finally, we switched to Matlab 2008a which supports
multi-threading. Setting can easily be done within the Matlab
code, and the performance was greatly improved.

4.5. Absolute dynamic data

To calculate absolute dynamic levels, the root mean square
(RMS) value of the signal amplitude was taken and only the
RMS peak of each frame was used. The dynamic value of the
whole piece of music was generalized to the MIDI scale of a
range of 0-127, where the quietest note in the whole piece is in-
dicated as volume 0 and the loudest note is indicated as volume
127. We choose a relative dynamic measure rather than an abso-
lute measure because of human perception. Most people cannot
tell if a certain single tone is loud or quiet, but everyone finds a
60db voice louder than a 30db voice. Hence we do not describe
the dynamics in absolute values such as p, mp, mf and f.
 In order to represent the articulation information in the
dynamic vector, we set the dynamic threshold of defining music
note-ends. We first measure the ratio of silent period within the
whole MIDI score. Then, we plot an accumulative histogram of
the dynamic value of the whole audio recording. The dynamic
value at the index of the silent-period-ratio is the dynamic
threshold of defining note-end. For audio frame with dynamic
value below this threshold, the dynamic value is set to be 0.

4.6. Global dynamic ratio

To calculate the global dynamic ratio, the whole list of dynamics
and pitch was first smoothed by a window of 8 bars, which is
around the size of two to four motives. The global trend ratio is
in a linear form as follows:

 (1)

This global trend ratio can represent the global dynamic of each
musical section.

4.7. Local dynamic vector

To calculate the local dynamic vector, the RMS value of the dy-
namic data was not used directly, but we further reduced the
global factor by using a standard score (Z-Score). The Z-Score
calculates the local change of a note compared with the local
mean, regardless of the standard deviation of the population. The
Z-score can be calculated as follows:

 (2)

Each dynamic vector is smoothed by a window of one beat. We
can borrow notes from the next / previous window when smooth-
ing the beginning and end of each vector. For the beginning and
end of the piece, we simply decrease the length of the window.
 The smoothing process helps in representing the gen-
eral trend of the relative dynamic change within a vector. It actu-
ally sounds more natural to express the general intention of the

performer rather than reproducing each digit from the data
source. To clarify this, we played a short excerpt from the same
movement of the Bach Partita three times, all with the same dy-
namic intention of a crescendo and then diminuendo. The three
dynamic graphs look a bit different but the smoothed versions
looks almost the same. Here we conclude that with the same ex-
pressive intention, the resulting original data can be different,
while the smoothed data will look very similar. Further, we sel-
dom find more than 2 global peaks in each dynamic vector. Per-
haps it is possible to generalize the vector by a formula. We will
try this at the next stage of development.
 Next, all elements in each pitch and dynamic vector are
subtracted by the value of the first element in the corresponding
vector. Hence, the vector represents the relative pitch and dy-
namic change compared with the first note.
 After smoothing and scaling, we perform clustering on
the set of dynamic vectors. Each vector joins a cluster if the dif-
ference between the cluster value and the squared sum of its fea-
ture components is the minimum among all clusters and is less
than 300. We choose 300 as a threshold based on the observation
that the z-scores mostly range from -4 to +4. The difference be-
tween the absolute crescendo and absolute diminuendo vector is
1430. In this case, the two vectors should never be in the same
cluster:

 = 1430 (3)

The difference between two almost parallel vectors which have
linear average values of +1 and -1 is around 2 x 2 x 64 = 256. In
this case, the two vectors should be in the same cluster, while this
should be the upper bound threshold for a vector to join a certain
cluster. Since we aim at re-targeting individual and expressive
performing styles, it is fine to over-fit the clustering process since
the style can still be preserved in different clusters. However, we
have to avoid loose clustering which alter the shape of the per-
forming styles too much. Hence a threshold of 300 will be 4
times away from 1430 and just fit the squared sum difference of
256. Clustering values can be fine tuned in the future, which only
alters the number of clusters produced and the precision of the
style data.

Instead of the brute force cluster merging approach, we
speeded up the merging process by only considering clusters that
have just been changed. However, we cannot leave all the cluster
merging work to the end as we did in beat tracking (see session
6.2.3), since we need to assign the cluster number to each dy-
namic vector after it is clustered. Hence we need to update the
cluster list for every vector calculation run.

4.8. SVM training and prediction

We use SVM for training because we do not want to over-fit the
data. In a real world example, there are always inseparable fea-
ture vectors. An over-computed separation formula will waste a
lot of computation time. The trade-off between using a less com-
plicated method is perhaps a few incorrectly classified points.
Actually it is more practical and accurate to give up a few scat-
tered feature vectors.
 We estimate the SVM Kernel parameters by using a
systematical optimal model parameter search. The best way is to
start with n-fold cross validation. We first divide the training set
into n subsets of equal size, sequentially one subset is tested us-

ing the classifier trained on the remaining n-1 subsets. The most
suitable parameters should give the best results in cross valida-
tion tests.
 We chose the radial basis function (RBF) kernel [9]
among the four existing kernels (linear, polynomial, RBF, and
sigmoid). The linear kernel is too rough and should not be used.
The polynomial kernel has too many hyper-parameters, which
increases the complexity and hence the running time of the pa-
rameter search. The sigmoid kernel behaves like the RBF kernel
in many cases, but with no real advantages over it. For some pa-
rameters the sigmoid kernel is not valid. To avoid unnecessary
failure of the program, we choose RBF kernel which is proved to
be the best kernel of all for our purposes.
 Originally, we developed a graphical version of
LIBSVM, where the user only needed very little input, and the
remaining textboxes were automatically filled with suggested
parameters. However, we finally achieved an automatic estima-
tion of all parameters so we revised the skeleton and embed the
code into the Matlab structure as a one-click design.

4.9. Re-targeting music

Lastly, the selected expressive performance style is re-targeted to
a raw note list of MIDI. The global dynamic data is first calcu-
lated with the global trend ratio of the selected performer. Then
the local dynamic data is predicted with the SVM machine. The
local dynamic data is then merged with the global dynamic data
in order to produce the actual dynamic level of the performance.
The resulting dynamic data is then converted to the MIDI GM1
data format which produces an expressive MIDI performance
file. The expressive MIDI file is finally rendered with a software
sampler to produce an expressive audio performance file. An
overview of the whole process is shown in Appendix I.

5. TESTS

5.1. Listening test setting

First of all, we decided not to compare the machine’s output with
the original wave file. Comparison is fair if and only if it is per-
formed under the same environment. It would be unfair if the
files to be compared were produced from different sound
sources. Hence by comparing audio file output from the same
source, the following tests reflect the performance of our ma-
chine rather than the quality of the original audio or the sound
sampler.

Twelve listeners were invited to do the test. Eight of
them were musically trained while seven of them could play the
violin and knew the Bach Partita very well. Four of them were
not musically trained but all of them enjoyed listening to music.
The listeners were required to sit in a quiet room using head-
phones. After the following sequences were played: original file,
predicted output file, original file, they had to rate on the per-
formance of predicted output file: 7 being the best, and 1 being
the worst, as shown in Table 1.
 All clips were music excerpts of 6 seconds, each lis-
tener performed 4 sessions for each of the three tests. The tests
were very short since the tests were intensive in nature where
fatigues highly affect the accuracy of the test.

5.1.1. Test 1: basic accuracy

First, the expressive performance data of an audio file was ex-
tracted. The expressive data was directly applied to its MIDI
source file, producing an expressive MIDI file A. Then the ex-
pressive data was used to build an SVM machine. Using the
SVM machine, performance parameters are predicted using the
MIDI source file as input, producing an expressive MIDI file B.
Both MIDI files A and B were passed through the sound module
to produces two audio files, then the listeners judged their per-
formances.

5.1.2. Test 2: influence of extra feature vectors

Similar to test 1, the expressive performances from four audio
files were extracted. The SVM machine was built with these four
different pieces of music, producing four pairs of audio files. Lis-
teners judged the performance between different pairs of output
files.

5.1.3. Test 3: ability of predicting unseen data

Similar to test 2, the expressive performances from four audio
files were extracted. However, the SVM machine was built with
three of them only, in order to predict the performance of the re-
maining unseen piece of music. Listener judged the performance
between different pairs of audio output files.

5.2. Listening test result

The test results are shown in Table 1. Listeners found all the mu-
sic very natural in tests 1a, 2a and 3a, because the style data were
extracted from real performances, and the design of describing
dynamics as a combination of global and local portion was suc-
cessful.

For classification between styles, both tests 1b and 2b
obtained good results, while test 3b was just fine, because test 1b
and 2b include the original wave file in the training set. The re-
sult of 3b could be improved after the implementation of articula-
tion learning.

Table 1. The listening test result.

Test 1a 1b 2a 2b 3a 3b
Rate 6.52 6.21 6.67 6.25 6.33 5.71

5.3. Statistical test setting

The tests in section 5.1 were performed again but evaluated in a
statistical way. It is actually difficult to perform a statistical test.
This is that our machine re-target a performance trend rather than
directly copying each dynamic level, by smoothing every vector
before training. Therefore the original performance will not be
reproduced even though the training data and predicted data are
the same, and hence it is difficult to do a statistical test to fully
evaluate the performance of the machine. However, it is still pos-
sible to evaluate the machine’s performance in a statistical way
by comparing the cluster code between the output files. Moreo-
ver, we can calculate the run time to evaluate the efficiency.

5.4. Statistical test result

The result of the statistical test is shown in Table 2.

Table 2. The statistical test result.

 Test 1 Test 2 Test 3
Accuracy 93.2% 91.7% 68.2%
Run Time 42.43s 67.21s 58.05s
 First of all, the run time of the machine is as expected
and very efficient. Test 2 has the longest run time because it has
a larger training set. We will keep working to shorten the run
time.
 Both tests 1 and 2 show excellent results, proving that
the SVM feature vector design is appropriate, where test 2 shows
that excess training data will not affect the accuracy, and nearly
no input vector will run into an unseen situation.

The result of test 3 is also as expected and does not
mean the experiment was unsuccessful. There are a lot of limita-
tions in performing statistical tests for test 3. The most important
reason is that many similar dynamic trends will not merge into
the same cluster. As described in section 6.26, we have tight cri-
teria for cluster merging. A loose threshold will result in very
few clusters, where all will being plain, uninteresting and unex-
pressive. When we carefully looked into some incorrectly classi-
fied vectors, we found that they were actually very similar but
belonged to different clusters. For example, some of them only
had different ending dynamics, while some had a sudden raise or
drop of dynamics in the middle. However, the rest of the clusters
were almost the same. Actually the performance of this machine
is difficult to describe in a mathematical comparison. However, it
does reflect the machine’s ability to certain content.

6. FUTURE WORK

Here is a list of the proposed future work.

6.1. Feature vector with more parameters

Research on articulation parameters is the first priority to be set-
tled among all the future work. It will be used to build up a 2-D
performance trend with the z-score dynamic trend. One of the
main problems needed to be solved is how to measure note ends.
More research on human perception will be done.

6.2. Global trend ratio

The global trend ratio is currently just a single number. It should
be possible to describe it as a formula, for example, in the form
of a regression or polyphonic equation.

6.3. Work on Polyphonic music

The current machine is actually optimized for a polyphonic ap-
proach already. The only remaining problem needed to be solved
is melody extraction. This topic is highly problematic and needs
another full paper to discuss it. However, we will try to find a
robust and efficient approach which extracts pitch only. We will
discard the MFCC and tone features. This should be adequate
and feasible for this machine.

7. CONCLUSION

Building computers that can learn musical performance style has
been a hot topic in the field of artificial intelligence. In the past
few years, research in AI and music has been creating systems
that mimic human perception in order to recognize musical struc-
tures like a trained musician. Previous experiments show that it is
possible to classify music into genre by learning; hence there ex-
ists some common style in music of the same genre. The next
question is whether it is possible to extract music performance
style parameters and reproduce expressive musical performance
through a black box.
 For completely automatic conversion of expressive
music, while there has been some success in specialized prob-
lems such as beat tracking, most truly complex musical capabili-
ties are still well outside of the range of computers, for example,
identifying form and motif structure. From a practical point of
view, the current technology is not advanced enough for the
computer to understand music as a professional musician does,
but it is intelligent enough to help and support musical applica-
tions. The automatic production of expressive music at present
still requires human intervention in some form.
 In the future, we will continue to work on increasing
the accuracy and enhancing the run time of the program. For ac-
curacy, more research on human perception and more observa-
tions of articulation parameters from real recordings will be
done. For the run time, the workflow will be further optimized
and we will find a more simplified approach which does not af-
fect the accuracy. Our experiment already shows that it is possi-
ble to induce some of a performer’s style. This is a stepping-
stone for the next stage of our research.

8. ACKNOWLEDGEMENT

This work was supported by the RGC grant 613508 and the RTG
Travel Grant.

9. REFERENCES

[1] P. Zanon, G. Widmer. Recognition of Famous Pianists Us-
ing Machine Learning Algorithms. XIV Colloquium on Mu-
sical Informatics (XIV CIM), Firenze, Italy, 2003.

[2] G. Widmer, S. Dixon, W. Goebl, E. Pampalk, A. Tobudic.
In search of the Horowitz Factor. AI Magazine, 2003

[3] S. Dixon, W. Goebl, G. Widmer. The Performance Worm:
Real Time Visualisation of Expression based on Langner’s
Tempo-Loudness Animation. International Computer Music
Conference, Göteborg, Sweden, pp 361-364, 2002.

[4] G. Widmer. Using AI and Machine Learning to Study Ex-
pressive Music Performance: Project Survey and First Re-
port. AI Communications 14(3), 149-162, 2001.

[5] S. Dixon. Automatic Extraction of Tempo and Beat from
Expressive Performances. Journal of New Music Research,
30 (1), pp 39-58, 2001.

[6] C.-W. Hsu, C.-C. Chang, C.-J. Lin. LIBSVM: a library for
support vector machines. National Taiwan University. 2004.

[7] G. Peeters. Music Pitch Representation by Periodicity
Measures Based on Combined Temporal and Spectral Rep-
resentations. IEEE International Conference on Acoustics,
Speech and Signal Processing, 2006.

[8] S. Lui, A. Horner, L. Ayers. An Intelligent SP-MIDI Poly-
phonic Reduction Algorithm. IEEE Transactions on Multi-
media, Volume 13, Issue 2, pp.52-59, 2006.

[9] C.-W. Hsu, C.-C. Chang, C.-J. Lin. A practical guide to
support vector classification. National Taiwan University,
2004.

10. APPENDIX I: AN OVERVIEW OF OUR IMPLEMENTATION

