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ABSTRACT

This paper presents empirical and theoretical results foelay
line cascaded with a second-order allpass filter in a feddioap.

Additionally, extremely accurate results were reportefllj for
simulating the note F1 on a piano using an order 128 allpass in
a delay loop (designed directly as a cascade of 64 secord-ord

Though such a structure has been used for years to model stifftiquad sections).

vibrating strings, the complete range of behavior of suctrics
ture has not been fully described and analyzed. As shownsn th
paper, in addition to the desired behavior of providing gtiency-
dependent delay line length, other phenomena may occur,asic
“beating” or “mode splitting.” Associated analysis simtida re-
sults are presented.

1. INTRODUCTION

In physical-modeling synthesis, the audible inharmonigibduced
from stiff-stringed instruments such as the guitar and piaeed
to be reproduced. L] 2], formulae for coefficients of irha
monicity perceived by test subjects were presented. Inviosik,

it was established that high-fidelity physical models oatigkly
stiff strings require some stiffness simulation in the lreguency
range, certainly for most piano strings, and even for theekiw
notes of an acoustic guitar. Inl[3], the parameters of thesichy
model of wave propagation along a string are related to trempa
eters of a digital waveguide (ie., the inharmonicity coédiit is
related to the desired phase response of the waveguide)asty
a complementary mathematical formulation[b [3] and extehe
digital waveguide model to account for a point source ekioita
of a portion of the modeled string.

In the literature, there are various solutions for desigran
allpass filter to simulate the dispersive wave propagatfansiiff
string. In [8], convincing stiff-string tones were obtathasing
Yegnanarana’s methofll [6] for designing rather high-ordlpass
filters with a prescribed group delay. Inl[7], a computatibna
simpler method was introduced based on cascading reatidgekn
first-order allpass filters, and a physical interpretatiovoiving
masses and springs was given. [lih [8], a weighted-leastragjua
formulation adapted froni]9] was used to fit the coefficieritaro
allpass filter to a desired phase response over a Bark-wémped
quency scale, yielding accurate tuning of the first sevenas of
piano-string overtones using an allpass order of 20 or la4&0],
an optimization procedure proposed by M. Lang [11] was &ppli
to obtain the optimal Chebyshev allpass filter, where thavggit
ity was with respect to the phase response weighted by iavers
frequency; due to numerical difficulties, it was necessarylit
vide the desired phase By, find the optimal allpass for that case,
and use a cascade df identical allpass filters for the final model.
An elementary and robust method for designing allpass dilbér
very high order was presented [n]12], and a more complete sum
mary of numerical difficulties with prior methods is givereth.
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In [@3, [12], closed-form Thiran allpass filters were used to
model a desired phase-delay by minimizing the differenceden
the theoretical prediction of a stiff string’s harmonicdtencies
and those of an allpass-interpolated delay loop. SimilarlfL5],
the residual signal of an inverse-FIR-filtered inharmorignp tone
was minimized with respect to phase delay, thereby matdthieg
partials of the recorded tone. In_]16], a delay line cascadiéua
second-order allpass filter in a feedback loop was investibjior
modeling inharmonic bell-sounds.

In view of the above-cited literature, we know how to de-
sign very high-order allpass filters that model dispersivangs
with great accuracy (e.g[lL2]), and we have several metiiad
lower order allpass design that yield perceptually good etgd
but which require significant computation, and/or presemeri-
cal difficulties.

This paper addressésw-order dispersion allpass design by
means of docal perturbation in the tuning of a partial overtone
using a second-order allpass section. The basic idea ini¢othe
allpass pole close to the string overtone in order to “pal§harp,
as needed for string stiffness simulation. In other wordsuse a
second-order allpass filter with real coefficients in a déday to
adjust the tuning of a single overtone. Theoretical and kited
results are presented. In particular, a graphical solugohnique
and root-locus analyses are presented, and a physicalrietation
is noted.

2. PHASE, PHASE DELAY, OR GROUP DELAY?

In the above-cited literature, allpass design techniquee \pro-
posed that explicitly optimize (1) the unwrapped phaseaesp
[B. [1d], (2) the group delay16.12], or (3) the phase delayhef t
allpass [[IB[C14[15]. These three functions of the allpass@h
response are related but not equivalent. The specific ciotygp-
ically dictated by the mathematics of the design methodfitse
this section, we present a derivation to show that thase delay
to be directly optimized when designing dispersion alljdkess.

z(t)

Figure 1: Diagram of Allpass Delay Loop to be Analyzed.
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Figured shows a basic diagram of a delay line with an a
pass filter in the feedback loop. For simplicity, we consither
continuous-time case. The frequency response of any alfjas
ter may be expressed asp(j©(w)), where©(w) denotes the
phase response (since the magnitude frequency responsat is
all frequencies for an allpass filter). The frequency respaof a
delay-line D seconds long isxp(—jwD), wherew denotes ra-
dian frequency. Thus, the frequency response of the syst&tig i
[is given by Mason’s rule (or direct derivation) by
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where P(w) denotes thehase delayf the allpass filter, defined
by

Thus, the phase delay effectively adds to the delay linetteng
giving it a frequency-dependent length+ P(w) as desired.

The poles of the system are all on tle frequency axis at
radian frequenciesy, for which

wg - [D 4 Plwg)] = k- 2m, (6)
fork =0,1,2,.... Thus, we have
wo = 0
w . 2
! D + P(wr)
- 9 2w
v2 D + P(ws)
2
- .
W D + P(wn)

and so on. An exact solution is nontrivial sincg appears in
two places, andP(wy) is nonlinear, in general. One solution is
to reformulate the problem in discrete time and factor tosetl-
loop transfer-function denominator polynomi&{z) — 2=~ A(z),
whereN is the delay-line length and the (finite-order) allpassgran
fer function is A(z)/A(z). However, polynomial factoring is a
nonlinear, iterative algorithm, and for larg€, numerical root-
finders can run into trouble. A general graphical solutiochte
nigue is to plot the left- and right-hand sides of the equmatad
find all points of intersection to find all solutions.

2.1. Graphical Solution

H(z) = 0> —2pcos(0)z + 272
1 —2pcos(0)z—! + p2z—2
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Figure 2: Use of the graphical method to determine the frecjes

of the poles of the allpass interpolated delay loop. In tkaeple,

D = (100Hz)"*. The pole of the allpass filter has frequency
100Hz and radiug).9.

To illustrate the graphical solution technique for dely—=
(100H 2)~*, we used a second-order allpass with real coefficients.
The form of the allpass filter is shown in Equatidn 7. Note that
there are two parameters: the pole radius and pole frequency

In Figurel2, the pole frequency 190Hz, and the pole radius is
0.9. The single bold curve in the figure plots| D+ P( f)], and the
horizontal lines plot for £ = 1,2, ..., 13. From the intersection
points (crosses), we can determine the pole locations dltpass
interpolated delay loop.

Figure[3 shows solution valueg; for £ = 1,2,...,5. As
shown, the peak at the fundamentad@Hz) has been split into
a lower and higher frequency, while all higher partials hagen
shifted higher (“stretched”). As interpreted in Figlile.3, and
w2, computed using the graphical solution technique, cooedp
to a split of the first mode as the allpass filter introducespales
(one at positive and one at negative frequencies). Thusléor
ity, frequencies corresponding to the intersection @nd?2 with
f - [D + P(f)] in Figurel2 are plotted as two peaks for the first
modeof the system in FigurEl 3 and the frequencies of the higher
modesare pulled sharp.

3. SSIMULATION RESULTS

To verify the graphical solution, we simulated the allpagsfpolated
delay loop to obtair30 seconds of the impulse response wfith=
10kHz.

We then performed an FFT of leng#i°, and measured the
spectral magnitude peaks using quadratic interpolatidvese in-
terpolated peak locations are thus estimates of the sygitnirp-
quencies, and are compared with the frequencies deternbiyed
the graphical solution method of Sectigh 2. As Figikre 4 shows
the error for the first3 harmonics is less thatD~* Hz. The av-
erage error for the first9 harmonics is3.45 x 1075 Hz.
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Figure 3: Values off, for k = 1,2, ..., 5 determined from use of
the graphical method for the example in Figlre 2. Figure 5: Varyingp, the allpass pole’s radius, from0 to 1.0.
The diamonds show pole locations of the system whea 0.0

and the pentagrams show pole locations of the system when
0.99. Circled points show trajectories of system pole locatimns
intermediate values gf. Square points show pole locations when
p = 1.0, meaning the pole and zeros of the allpass filter cancel.
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Figure 4: Error between theoretical values and simulategegeof Normalized Frequency ( XM rad/sample)

frfork=1,2,...,13in Hz.
Figure 6: The phase delay of the allpass filter when=

0.0,0.01, ..., 1.0
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4. ROOT LOCUS

Using the same second-order allpass filter as describeddn Se
tion[Z1, we will present how the poles of the allpass delaplo
change corresponding to different values of the pole radilee
specifically, we changg from 0.0 to 1.0 with a step-size 00.01.

In our system, we have a total b6 poles from the delay line and
we fix the pole location of our allpass filter to occurmaf8, cor-
responding to the location of the first pole of the delay lioep
with non-zero frequency. Figufg 5 plots the poles of theaaip
interpolated delay loop with varying from0.0 to 1.0.

The diamond points correspond to the locations of the pdles o
the system whep = 0.0. The pentagram points correspond to the
locations of the poles when= 0.99. Asp increases in value from
0.0t00.99, the poles are pulled towards'8 as denoted by circles
between the diamond and pentagram points, showing the paths
each pole’s movements, thus sketching a kintbof locusfor the
system poles. Lastly, the square points correspond to tagitms
of the poles whem = 1.0, when the poles and zeros of the allpass
filter cancel.

“beat”, or in the “wolf note” of a cello.

6. CONCLUSIONS

In this paper we explored aspects of a delay loop interpdlate
ing second-order allpass sections to pull the tuning ofviddal
modes. We presented arplane derivation showing that phase-
delay error, suitably weighted psychoacoustically, isdinect met-
ric for stiff string modeling. We investigated the effecttbé phase
delay on the poles of the overall system, and introduced phira
cal technique for finding all the poles. Finally, a physicaéipre-
tation was noted that makes the observed results predictadul
understood.
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