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ABSTRACT

This paper presents empirical and theoretical results for adelay
line cascaded with a second-order allpass filter in a feedback loop.
Though such a structure has been used for years to model stiff
vibrating strings, the complete range of behavior of such a struc-
ture has not been fully described and analyzed. As shown in this
paper, in addition to the desired behavior of providing a frequency-
dependent delay line length, other phenomena may occur, such as
“beating” or “mode splitting.” Associated analysis simulation re-
sults are presented.

1. INTRODUCTION

In physical-modeling synthesis, the audible inharmonicity produced
from stiff-stringed instruments such as the guitar and piano need
to be reproduced. In [1, 2], formulae for coefficients of inhar-
monicity perceived by test subjects were presented. In thatwork,
it was established that high-fidelity physical models of relatively
stiff strings require some stiffness simulation in the low-frequency
range, certainly for most piano strings, and even for the lowest
notes of an acoustic guitar. In [3], the parameters of the physical-
model of wave propagation along a string are related to the param-
eters of a digital waveguide (ie., the inharmonicity coefficient is
related to the desired phase response of the waveguide). [4]casts
a complementary mathematical formulation to [3] and extends the
digital waveguide model to account for a point source excitation
of a portion of the modeled string.

In the literature, there are various solutions for designing an
allpass filter to simulate the dispersive wave propagation of a stiff
string. In [5], convincing stiff-string tones were obtained using
Yegnanarana’s method [6] for designing rather high-order allpass
filters with a prescribed group delay. In [7], a computationally
simpler method was introduced based on cascading real, identical,
first-order allpass filters, and a physical interpretation involving
masses and springs was given. In [8], a weighted-least-squares
formulation adapted from [9] was used to fit the coefficients of an
allpass filter to a desired phase response over a Bark-warpedfre-
quency scale, yielding accurate tuning of the first several tens of
piano-string overtones using an allpass order of 20 or less.In [10],
an optimization procedure proposed by M. Lang [11] was applied
to obtain the optimal Chebyshev allpass filter, where the optimal-
ity was with respect to the phase response weighted by inverse
frequency; due to numerical difficulties, it was necessary to di-
vide the desired phase byN , find the optimal allpass for that case,
and use a cascade ofN identical allpass filters for the final model.
An elementary and robust method for designing allpass filters of
very high order was presented in [12], and a more complete sum-
mary of numerical difficulties with prior methods is given there.

Additionally, extremely accurate results were reported in[12] for
simulating the note F1 on a piano using an order 128 allpass in
a delay loop (designed directly as a cascade of 64 second-order
biquad sections).

In [13, 14], closed-form Thiran allpass filters were used to
model a desired phase-delay by minimizing the difference between
the theoretical prediction of a stiff string’s harmonic frequencies
and those of an allpass-interpolated delay loop. Similarly, in [15],
the residual signal of an inverse-FIR-filtered inharmonic piano tone
was minimized with respect to phase delay, thereby matchingthe
partials of the recorded tone. In [16], a delay line cascadedwith a
second-order allpass filter in a feedback loop was investigated for
modeling inharmonic bell-sounds.

In view of the above-cited literature, we know how to de-
sign very high-order allpass filters that model dispersive strings
with great accuracy (e.g., [12]), and we have several methods for
lower order allpass design that yield perceptually good models,
but which require significant computation, and/or present numeri-
cal difficulties.

This paper addresseslow-order dispersion allpass design by
means of alocal perturbation in the tuning of a partial overtone
using a second-order allpass section. The basic idea is to tune the
allpass pole close to the string overtone in order to “pull” it sharp,
as needed for string stiffness simulation. In other words, we use a
second-order allpass filter with real coefficients in a delayloop to
adjust the tuning of a single overtone. Theoretical and simulated
results are presented. In particular, a graphical solutiontechnique
and root-locus analyses are presented, and a physical interpretation
is noted.

2. PHASE, PHASE DELAY, OR GROUP DELAY?

In the above-cited literature, allpass design techniques were pro-
posed that explicitly optimize (1) the unwrapped phase response
[9, 10], (2) the group delay [6, 12], or (3) the phase delay of the
allpass [13, 14, 15]. These three functions of the allpass phase
response are related but not equivalent. The specific choiceis typ-
ically dictated by the mathematics of the design method itself. In
this section, we present a derivation to show that it isphase delay
to be directly optimized when designing dispersion allpassfilters.
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Figure 1: Diagram of Allpass Delay Loop to be Analyzed.
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Figure 1 shows a basic diagram of a delay line with an all-
pass filter in the feedback loop. For simplicity, we considerthe
continuous-time case. The frequency response of any allpass fil-
ter may be expressed asexp(jΘ(ω)), whereΘ(ω) denotes the
phase response (since the magnitude frequency response is 1at
all frequencies for an allpass filter). The frequency response of a
delay-lineD seconds long isexp(−jωD), whereω denotes ra-
dian frequency. Thus, the frequency response of the system in Fig.
1 is given by Mason’s rule (or direct derivation) by

H(jω) =
Y (jω)

X(jω)
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e−jωD
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whereP (ω) denotes thephase delayof the allpass filter, defined
by

P (ω) = −
Θ(ω)

ω
. (5)

Thus, the phase delay effectively adds to the delay line length,
giving it a frequency-dependent lengthD + P (ω) as desired.

The poles of the system are all on thejω frequency axis at
radian frequenciesωk for which

ωk · [D + P (ωk)] = k · 2π, (6)

for k = 0, 1, 2, . . . . Thus, we have

ω0 = 0

ω1 =
2π

D + P (ω1)

ω2 = 2 ·
2π

D + P (ω2)

· · ·

ωk = k ·
2π

D + P (ωk)

· · ·

and so on. An exact solution is nontrivial sinceωk appears in
two places, andP (ωk) is nonlinear, in general. One solution is
to reformulate the problem in discrete time and factor the closed-
loop transfer-function denominator polynomialÃ(z)−z−NA(z),
whereN is the delay-line length and the (finite-order) allpass trans-
fer function isÃ(z)/A(z). However, polynomial factoring is a
nonlinear, iterative algorithm, and for largeN , numerical root-
finders can run into trouble. A general graphical solution tech-
nique is to plot the left- and right-hand sides of the equation and
find all points of intersection to find all solutions.

2.1. Graphical Solution

H(z) =
ρ2

− 2ρ cos(θ)z−1 + z−2

1 − 2ρ cos(θ)z−1 + ρ2z−2
(7)
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Figure 2: Use of the graphical method to determine the frequencies
of the poles of the allpass interpolated delay loop. In this example,
D = (100Hz)−1. The pole of the allpass filter has frequency
100Hz and radius0.9.

To illustrate the graphical solution technique for delayD =
(100Hz)−1, we used a second-order allpass with real coefficients.
The form of the allpass filter is shown in Equation 7. Note that
there are two parameters: the pole radius and pole frequency.

In Figure 2, the pole frequency is100Hz, and the pole radius is
0.9. The single bold curve in the figure plotsf ·[D+P (f)], and the
horizontal lines plotk for k = 1, 2, ..., 13. From the intersection
points (crosses), we can determine the pole locations of ourallpass
interpolated delay loop.

Figure 3 shows solution valuesfk for k = 1, 2, ..., 5. As
shown, the peak at the fundamental (100Hz) has been split into
a lower and higher frequency, while all higher partials havebeen
shifted higher (“stretched”). As interpreted in Figure 3,ω1 and
ω2, computed using the graphical solution technique, correspond
to a split of the first mode as the allpass filter introduces twopoles
(one at positive and one at negative frequencies). Thus, forclar-
ity, frequencies corresponding to the intersection of1 and2 with
f · [D + P (f)] in Figure 2 are plotted as two peaks for the first
modeof the system in Figure 3 and the frequencies of the higher
modesare pulled sharp.

3. SIMULATION RESULTS

To verify the graphical solution, we simulated the allpass-interpolated
delay loop to obtain30 seconds of the impulse response withfs =
10kHz.

We then performed an FFT of length220, and measured the
spectral magnitude peaks using quadratic interpolation. These in-
terpolated peak locations are thus estimates of the system pole fre-
quencies, and are compared with the frequencies determinedby
the graphical solution method of Section 2. As Figure 4 shows,
the error for the first13 harmonics is less than10−4 Hz. The av-
erage error for the first49 harmonics is3.45 × 10−5 Hz.
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Figure 3: Values offk for k = 1, 2, ..., 5 determined from use of
the graphical method for the example in Figure 2.

0 5 10
−1

−0.5

0

0.5

1
x 10

−4

k[index]

f k 
si

m
−f

k 
th

eo
ry

[H
z]

Figure 4: Error between theoretical values and simulated values of
fk for k = 1, 2, ..., 13 in Hz.
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Figure 5: Varyingρ, the allpass pole’s radius, from0.0 to 1.0.
The diamonds show pole locations of the system whenρ = 0.0
and the pentagrams show pole locations of the system whenρ =
0.99. Circled points show trajectories of system pole locationsfor
intermediate values ofρ. Square points show pole locations when
ρ = 1.0, meaning the pole and zeros of the allpass filter cancel.
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Figure 6: The phase delay of the allpass filter whenρ =
0.0, 0.01, ..., 1.0
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4. ROOT LOCUS

Using the same second-order allpass filter as described in Sec-
tion 2.1, we will present how the poles of the allpass delay loop
change corresponding to different values of the pole radius. More
specifically, we changeρ from 0.0 to 1.0 with a step-size of0.01.
In our system, we have a total of16 poles from the delay line and
we fix the pole location of our allpass filter to occur atπ/8, cor-
responding to the location of the first pole of the delay line loop
with non-zero frequency. Figure 5 plots the poles of the allpass
interpolated delay loop withρ varying from0.0 to 1.0.

The diamond points correspond to the locations of the poles of
the system whenρ = 0.0. The pentagram points correspond to the
locations of the poles whenρ = 0.99. Asρ increases in value from
0.0 to 0.99, the poles are pulled towardsπ/8 as denoted by circles
between the diamond and pentagram points, showing the pathsof
each pole’s movements, thus sketching a kind ofroot locusfor the
system poles. Lastly, the square points correspond to the locations
of the poles whenρ = 1.0, when the poles and zeros of the allpass
filter cancel.

To understand the delay effects of the second-order allpass,
we need examine its phase delay, as discussed in Section 2. Fig-
ure 6 shows the phase delay of a second-order allpass filter having
poles at frequenciesωT = ±π/8, and common pole radius vary-
ing from ρ = 0.0 to ρ = 1.0. As shown, whenρ is close to1,
the phase delay is small forωT ≪ π/8 radians per sample, peaks
(at around 16 samples of delay) nearωT = π/8, and decreases
toward two samples delay forωT > π/8.

In particular, whenρ = 0.0, the allpass filter acts as a pure
delay of two samples. Asρ increases, the poles at frequencies
greater than the allpass’s pole location shift down in frequency.
This results from the increasing phase delay at these frequencies as
ρ increases (see Fig. 6). Whenρ is nearly1.0, as Fig. 6 shows, the
phase delay remains flat at frequencies from dc up to the allpass’s
pole’s location, where it peaks. The phase delay then decreases
towards two samples at higher frequencies. The observations are
consistent with the root locus plot of Fig. 5. Qualitatively, the
second-order allpass filter introduces two poles into the system for
ρ not equal to1.0. Thus, the system examined has16 poles total
whenρ = 1.0 and18 poles otherwise.

5. PHYSICAL INTERPRETATION

As shown in [7], a first-order allpass filter in a delay loop canbe
interpreted physically as a spring termination at one end ofan ideal
string (with the other end being rigidly terminated). Similarly, sev-
eral cascaded first-order allpasses can be interpreted physically as
a terminating mass-spring chain in which all poles are real (and
equal in the case of that paper). In our use of second-order all-
pass filters withcomplex poles, we have the physical interpretation
of an ideal string terminated byresonantmass-spring systems. In
the case of a single second-order allpass used to retune onlythe
fundamental frequency, say, we have an ideal string terminated by
a mass-spring resonator, where the resonance is tuned very close
to the fundamental frequency of the ideal string. In this situation,
we should not be surprised to encountercoupled resonator effects,
such as have been clearly mapped out (with regard to coupled pi-
ano strings) by Weinreich [17]. In particular, when the coupling
impedance is purely reactive, as it is in our situation (no damping),
we can expect mode splitting and beating, as occurs, for example,
when coupled piano strings are tuned too far apart such that they

“beat”, or in the “wolf note” of a cello.

6. CONCLUSIONS

In this paper we explored aspects of a delay loop interpolated us-
ing second-order allpass sections to pull the tuning of individual
modes. We presented ans-plane derivation showing that phase-
delay error, suitably weighted psychoacoustically, is thedirect met-
ric for stiff string modeling. We investigated the effect ofthe phase
delay on the poles of the overall system, and introduced a graphi-
cal technique for finding all the poles. Finally, a physical interpre-
tation was noted that makes the observed results predictable and
understood.
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