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ABSTRACT limitations arise from a lack of the model’s expressiven@&sfin-
We present an approach to model the temporal evolution agbaud 1Ng sub-units would lead to more expressive models, justtile -
descriptors using Segmental Models (SMs). This methodlyial ~ US€ of a limited set of phonemes allow the modeling of a high
signal segmentation into a sequence of primitives, carstitby a number of words. Moreover from a statistical learning sz,
set of user-defined trajectories . This allows one to consige- ~ COmbining sub-units would allow to add new classes whilekwor
cific primitive shapes, model their duration and to take atcount  Ing With a limited number of elementary mode[$ [9)].
the time dependence between successive signal framesaryoiot ~ Inthe proposed approach, we implement this idea by propos-
standard Hidden Markov Models. We applied this approach to a ing @ statistical framework to explicitly model audio deptor
database of violin playing. Various types of glissando aymagh-  trajectories. As such, we do not strictly apply Schaeffgpok

ics variations were specifically recorded. The results sthavour 09y, but rather concentrate on the underlying concept opeeat
approach using Segmental Models provides a segmentatin th profiles. The mode!lng philosophy consists in taklng maximu
can be easily interpreted. Quantitatively, the Segmentadéls advantage of our prior knowledge that data can be viewedaas tr

performed better than standard implementation of Hidderkma ~ Jectories, so that subsequents observations are stroogliated.
Models. This segmental approach, already used for handwriting fimage

in [LO] has proven to be a good solution when only little tiagn
data is available. Furthermore, explicitly modeling theadion
has shown to increase robustness to noisy conditiors [1hg T
statistical framework is based on Segmental Models (SM)s S
are a generalization of Hidden Markov Models (HMNI)J12] that
address three principal HMM limitations: 1) weak durationdn
elling, 2) assumption of conditional independence of olegéns
given the state sequence and 3) the restrictions on feattnace
tion imposed by frame-based observatidng [13]. To the aoptr
SMs provide explicit state duration distributions, explaorrela-
tion models and use segmental rather than frame-baseddsatu

The paper is structured as follows. In secfidn 2 we introduce
the formalism of SMs and how we adapt it to audio descriptors.
In sectior B, we present an experimental setup to validateu
proach. We finally present the results of a classificatiok, tasd
give perspective for future studies in sectibhs 4[@nd 5.

1. INTRODUCTION

One way of producing innovative music is to add complex ssund
to the composer’s vocabulary. We can think of various exaspl
such as noise machines of the italian Futdlisteunds produced
from electronical devices as well as extended playing tectas
on traditionnal instrument§1[L] P] 3]. Along a single soundr,
complexity can be introduced by modulating pitchness, ithbre
enveloppe, granularity etc. In such cases, an elementanydso
can not be described only with steady values for pitch, tembr
duration and intensity values, which is the modeling asgionp
behind most systems designed for western music transaripti

In order to describe such complex notes, it is natural to seek
for existing sound ontologies which could help to apprehgred
infinite number of possible sounds. In his wdrk [4], Pierr&&af-
fer proposed a classification method based on a separatepdesc

tion over soundmatter and shape. Subsequent works refined 2. SEGMENTAL MODELS
the approach into musical theorids [%, 6] yielding a set of-mo ) ) ) )
phological criterias. Previous works [7, 8] have proposetiets In this section, we present some key points of the SM fornmalis

for automatic classification of these criterias, relyingpamame- to model time dynamics. This modelling is based on a set afecur
ters extracted from the temporal envelopes of sound descsip ~ Primitives that we introduce here. We also describe the diego
In these studies, the authors have pointed out several anisg ~ Process that permits to segment a signal into a sequence\vef cu
cases when the symbolic level of description over-simgliftee primitives.

measured temporal profiles. For example, a profile may be glob

ally ascending but locally descending in specific regiorsisTthe 2.1. Model Description

1The Intonarumori (noise intoners) built by Russolo in theyeaoth The SM formalism addresses two aspects that are partigidal
century. sential for our approach. We briefly review these two poimis a
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we invite the reader to refer t_[113] for a more in-depth prese
tation of SMs. First, contrary to HMMs where observations ar

assumed to be independent from each other, SMs directly Imode

sequences of observations. Each state represents eleynamize
shapes, also called primitives. This first property enataéslly
consider possible time dependence between successiatfsagnes
thanks to the use of explicit curve shapes. The second iyoger
dresses duration modeling of states. In SMs, the time spent i
each state is defined in a flexible way, using duration distioins.
This permits to reflect that each curve shape possessesacchar
teristic duration length with some variability. Combinedgjéther,
these two properties enable to consider curve primitiveéls pos-
sible amplitude and/or time deformations, which grants xilfle
framework for the modelling of shapes. SMs have shown sgeces
ful in data mining to identify patterns in time seriés][14}, to
provide a higher level representation in handwriting redtgn
tasks[[ID]. We here extend the idea to model time shapes in aud
feature curves.

We represented on Figufg 1 the general concept of the seg-

mental approach applied to a monodimensional signal. W bui
an ergodic model where each stéteis a predefined curve primi-
tive: for each curve primitive, several duration lengthsire pos-
sible. This topology then enables to decompose the inpuagkig
into a sequence of primitives, each characterized by arxiadd
duration pair §;, [;), using the decoding procedure presented in
sectiorZB.
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Figure 1: Model topology for the SM: each state represents\aec
primitive S; with possible duration lengtis. The model is fully
connected. The decoding procedure then segments an igpat si
into a sequence of primitive index and duration pair.

2.2. Trajectory Models

From the model description, it appears that the choice made f
the set of curve primitives is crucial. It not only condit&the ob-
tained segmentation, but a judicious choice of primitivas addi-
tionally grant a level of interpretation on the signal depaosition.
In this paper, we defined a set of primitives a priori as dorj&&i
the primitives are segments with constant or weak curvatité
slopes equally distributed withip-7 /2; 7 /2].

A T-long trajectory is generated using an initial an@lg;., a
final angledyinq:, and the following linear interpolation:

"
T-1

Varying T, we obtain different lengths of elementary trégeies.
Varying 0in:: andf ¢inq:, We can set the main segment angle. A set
of nine such elementary models is illustrated on Fidllire 2echE
segment represents an archetype building block for a featuve,

in the sense that it is built upon the idea that any featuresccould

be roughly described as a concatenation of successive segme

0 = Oinit + (Ofinat — Oinit), with t = [0,T — 1]

with various durations.

The reason for choosing this set is partly inspired by thekwor
in [L6] where the author compared an analogous predefined set
to a more specific one, learned from several handwritingsa#sa
and found that the predefined one were generic enough tortccou
for any handwriting curve. We adapted it using only segmants
the x-positive plane. Although quite basic, these curveitives
can capture possible trends of signal, typically statigrgwing up
or down. In addition, these features actually match aspedtse
sound typology proposed by Schaeffér [4]. More advancead-pri
itives could be defined, in particular primitives with mogesific
curve shapes.

Another important aspect in the modeling deals with theaoi
of a set of possible duration lengths for the primitives. sTéét
actually controls the time deformations that each priraitian as-
sume and parallely defines a temporal granularity.

So
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S7
N3

Ss

S4
S3
S2
S1

Figure 2: Set of nine curve primitives

2.3. Decoding

The decoding of the ergodic model yields to a segmentati@mnof
input signal into the chosen primitives. We perform thigpsoa
the basis of anaximum a posteriofikelihood, with a 3D Viterbi
procedure[[13].

For an observed input signal...x:, we compute the corre-
sponding sequence of anglés...0; to be invariant to possible
curve offsets. We use the following formula :

0; = arctan((xy — x¢—1) * fr)

1)

where fr is the input signal’s frame-rate.
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Assuming a white gaussian noigg with varianceo for the
observations, we gét, = 0, + b,. The likelihood of the primi-
tive Sj, with respect to the observed sequence of an@iesét is
approximated, as done in_J10]:

(6: — 0:)°

FU 1<
—logp(@l..,9t|t75'k):§z: > 2)

=1

g

wheref; is an element in the sequence of anglesSpr

For an observed sequence of andles.dr, the decoding is
based ord:(j), the log probability of the most likely sequence of
elementary trajectories ending with trajectory lapedt timet:

6:(j) = max maxd; (i) aij pj (1) p(Bi_141..0:|1,5;) (3)

i=1,..., M leLl
wherea;; is the transition probability from stat€; to S;, M is
the number of elementary trajectorigsjs the set of possible du-
ration lengths, ang; (/) the probability to stay in staté; during
[ successive observations.

Choosing the maximum posterior probability path yields to

two N-long sequencesS; andl{’, whereN is the number of
states in the path. These two sequences actually give ssesyiee
tion of the input signal temporally decomposed on the setiafip
tives. Given our choice of curve primitives, this decomgfosidi-
rectly informs us of the signal trends over successive tinges.

3. EXPERIMENTS

The approach was evaluated on a set of violin contemporagy pl

ing techniques. We describe here the datasets, the choden au

description and the evaluation procedure.

3.1. Dataset

We specifically recorded data to carry out an evaluation of ou

approach. The music material involved various pitch andnnt

sity profiles. To do so, we defined a musical vocabulary (see

Figure[Ba ) composed of two pitch profilegpgvard glissando,
downward glissand@nd three intensity profileciescendo, de-
crescendo, sforzandoefered a1 > andii 2,3 respectively. This
vocabulary was chosen for the strong intrinsic temporalgians

of its elements. Crescendi(resp. glissand) consist in continu-
ously progressing from one intensity level (resp. pitchanother.

S forzando consists in a step-like intensity profile with a louder
part at the beginning. We generated short music sketchesfout
this vocabulary, by random combination of the vocabulaejés
ments with random pitches. Each sketch is a four-beat seand
beat being a combination of one intensity profile and onehpitc
profile. Moreover, no global dynamic levels were imposedy on
crescendanddecrescendiFigurdl3b shows one example of a gen-
erated music sketch.

We automatically generated 43 sketches involving randam pr
portions of pitch and intensity profiles. The generatedesarere
interpreted by a violin player at a given tempo66fbpm. Sound
was recorded at4100 Hz, and sliced intol6.4 msec windows,
every5.8 msec, yielding an approximate frame rgite= 172 Hz.

3.2. Audio Features

We extracted two sound descriptors, highly correlatedéathsi-
cal dimensions of pitch and intensity involved in our datnely
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Figure 3: Pitch and intensity vocabulary elements (a) amdckk
example generated from the combination of pitch and intgnsi
profiles (b). Sketches were performed on a violin.

fundamental frequency[lL7] and loudneBsl[18]. In order Far t
considered pitch profiles to be shift-invariant along trexfrency
axis, fundamental frequency was mapped frbertz to a loga-
rithmic scale ¢ent3. The descriptor sequences were normalised
within the [0, 1] interval, using the possible violin ranges in pitch
(190H = to 4400H z) and intensity .01 Sones to 15 Sones).
Subsequently, these values were converted to angle sexsueith
Equatior[lL.

3.3. Evaluation Method

To assess our approach, we carried out a classification tegieo
vocabulary elements defined in secfiod 3.1. The tasks catebe i
tified as:

e taskTL classify theupwardanddownward glissandpitch
profiles

e taskT2 classify thecrescendo, decrescendadsforzando
intensity profiles

The audio feature computation on each class element yields t
set of pitch and loudness values on which we separately réh a 3
Viterbi decoding. The output sequences of primitives argbas
ciated durations are then fed into a higher level HMM to cienst
tute models of each vocabulary elements. This step is sitala
the higher-level stage performed [n]10] and can be seen aga w
to agglomerate constitutive sub-units (i.e. the user-ddfiorimi-
tives) into larger semantic units. For this higher level Hivive
chose a 3-state left-right topology with a 2-dimensionali§san
model and diagonal covariance to account for state indicéls a
segment duration lengths.

The classification task was performed as follows. A typical
train/test round consisted in training the higher-leveldeloon a
randomly picked’0% part of the data, and testing on the remaining
30%. To evaluate a model on a given task, we ran each train/test
round ten times in a row and averaged the classification saore
each test set. Training the models was done with converitiona
EM learning [19] using HTKI[2D] with simple left-right modgl
Classification scores were computed as the mean of diagemad t
on the normalised confusion matrix.

As a reference, we performed the same classification tasks
with an HMM directly operating on the audio frames. We used
the same 3-state left-right topology and train/test praces| with
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a 1-dimensional Gaussian model to account for an incoming an
gle sequencéd,...d,. The experiment protocol is summed up on

Figure@

Classification tasks

/ —*
ool segmental ol
decoding

S @@_@ .

Figure 4: Experimental set overview. A left-right HMM withree
states is trained with segmented observations output frenseg-
mental decoding procedure. Classification results are aceato
a left-right HMM operating on audio frames.

DB
train

4. RESULTS

In this section, we first give a qualitative result intendtoglius-
trate a typical output of the segmental decoding layer. Véa th
give quantitative results on the classification tasks.

4.1. Segmentation results

The segmentation was performed using the primitives ptedan
sectioZP. We defined the set of possible duration lengttis w
values linearly taken betwee280ms (roughly corresponding to
short violin note) an@.6s (several notes). The curves on Figure
show the resulting segmentation for one example of pitofilpr
and loudness profile.

We can see that on this example, tilessandois composed
of three phases, i.e. flat pitch then increasing pitch anthétg
pitch. This description in itself is quite informative orethiolinist
playing as we are able to see the details of his performantiei®n
vocabulary element: in this example the pitch increasiragphwvas
relatively short with two well defined flat phases. On the loesb
profile, we can see that tt@escendds composed of a linearly
increasing phase during most of the time before a rapidselea

4.2. Classification results

Classification scores for pitch profiles displayed in Fig@r@ask

T1) show that the segmental approach performs significantly be
ter than the baseline frame-based approach (median va82¥at
versus 72%). Moreover, the results also show more consisten
as their variability is much smaller in the segmental apgio@n-
terquartile of 7 versus interquartile of 18). For the louskprofiles
(taskT2), results appear to be relatively similar between the two
approaches (median value around 77%). However, the segiment
approach shows once again a narrower variability in classifin
(interquartile of 3 versus interquartile of 12).

pitch (a.u.) loudness (a.u.)
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Figure 5: Segmentation results on two profile classes fromi.DB
a) shows a pitch profile for ampward glissandalass. b) shows an
intensity profile for acrescendcclass. Below each feature curve,
the sequence of primitive labels and durations is repoitedach
box, the shape of the corresponding symbolic representatio
each primitive is printed.

a) b)

seems to be the most discriminating one. In the frame-bgsed a
proach, the second-state Gaussians only differ by a slidfer-d
ence of mean, and tend to overlap. In the segmental approach,
these second-state Gaussians are much more distinct.editer
ingly, looking at the graphs, the segment duration obsematdo

not seem to add much more discriminative power to the model.
When inspecting loudness models, no such clear contrasbhvas
served between the two approaches on the Gaussian digtnidut

In both cases, data looked less unimodal, which questi@shb-

sen topology.
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Figure 6: Classification scores on tagksandT2.

5. CONCLUSION AND PERSPECTIVES

We propose the use of Segmental Models to segment time curves
of audio signals. The implementation we proposed was tasted
two classification tasks using a database of violin contearyo

We can get insight of these results by inspecting the learned playing. The segmental approach performed better thamatdn

models and how the data fits. Figlile 7 shows an example of theimplementations of Hidden Markov Models in most cases.

learned models for the two pitch profiles, for the frame-beege-

Im-
portantly, Segmental Models overcome well-known limaas of

proach (a and c) as well as for the segmental approach (b and d)HHMs, by explicitly modeling the time duration of primitisgand

As one could expect for this classification task, the secdatd s

by taking into account the time dependence between suveessi

DAFX-4



Proc. of the 1¥' Int. Conference on Digital Audio Effects (DAFx-09), Contaly, September 1-4, 2009

angle b) Si I

1 1

— ~
1l 05 1l 05 0.005

S i
0 - 0 0

123456789 0 200 400

k=2
_
k=2

o/
123456789 0

200 400

[s2] [s¢)
Il 1 Il 0.5 0.005
= e ji: N = _/I\
0 0

123456789 0 200 400

c) d)
2 1 0.01
- -
1 Il 0.5 0.005
X X
0
-2 -1 0 1 2 C123456789 00 200 400
1 0.4 0.04
(V)
Il 05 Il 0.2 0.02]
|l =
0 0 ol

123456789 0 200 400

123456789 [ 200 400

Figure 7: Observation densities and state aligned dataéonéd
models for the two pitch classes: stands for the state number
of the model. a) states of the frame-based HMM for classb)
states of the segmental HMM for clags c) states of the frame-
based HMM for clasg- d) states of the segmental HMM for class
D2

signal frames. Future perspectives may address the mgdafin
more complex musical categories involving cyclic struesyras
well as the study of a realtime implementation on a data strea
using Viterbi extensions such as [n]21]. The segmentalGambr
performed well on a monophonic instrument in the contexioof-c
temporary music, however we believe that this approach ean b
easily extended to broader situations. In particular, veararesti-
gating the use of more complex curve primitives to directlgir@ss
specific sound evolutions. Besides, we are also currentinelx
ing the approach to multidimensional features that coudtuite
data from motion sensors.

6. ACKNOWLEDGMENTS

We would like to acknowledge Thierry Artiéres, Norbert Selhn
and Xavier Rodet for fruitful discussions. This work hasrpar-
tially supported by the ANR project Interlude.

7. REFERENCES

[1] M. Moller, “New sounds for flute,” Available at
http://lwww.stz.se/flutetech, accessed April 05, 2009.

[2] F.Bevilacqua, N. Rasamimanana, E. Fléty, S. Lemoutod, a
F. Baschet, “The augmented violin project: research, compo
sition and performance report,” Broceedings of the Inter-
national Conference on New Interfaces for Musical Expres-

sion (NIME) 2006.

M. Kaltenecker, Avec Helmut LachenmannVan Dieren,
Paris, 2001.

P. SchaefferTraité des objets musicau$euil, 1966.

(3]
(4]

[5] P. Schaeffer, G. Reibel, and B. Ferreyr@oplfége de I'objet
sonore INA/GRM, 1967.

M. Chion, Guide des objets sonores
Buchet/Chastel, 1983.

J. Ricard and P. Herrera, “Morphological sound desmipt
computational model and usability evaluation,” AES con-
vention 2004.

G. Peeters and E. Deruty, “Automatic morphological digsc
tion of sounds,” inAcoustics 08Paris, 2008, SFA.

L. Rabiner and B.H. Juangrundamentals of speech recog-
nition, Prentice-Hall, Englewood Cliffs, 1993.

T. Artieres, S. Marukatat, and P. Gallinari, “Onlinenia
written shape recognition using segmental hidden Markov
models,”IEEE transactions on pattern analysis and machine
intelligence vol. 29, pp. 205-217, 2007.

A.C. Morris, S. Payne, and H. Bourlard, “Low cost duoati
modelling for noise robust speech recognition,” IGSLP,
2002, pp. 1025-1028.

L. Rabiner, “A tutorial on hidden Markov models and se-
lected applications in speech recognition,”Froceedings of
the IEEE 1989.

M. Ostendorf, V. Digalakis, and O. A. Kimball, “From
HMMs to segment models: a unified view of stochastic mod-
eling for speech recognition, JTEEE Trans. on Speech and
Audio Processingvol. 4, pp. 360-378, 1996.

X. Ge and P. Smyth, “Deformable Markov model templates
for time-series pattern matching,” Rroceedings of the ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining 2000, pp. 81 — 90.

T. Artieres and P. Gallinari, “Stroke level HMMs for on-
line handwriting recognition,” irProceedings of the Inter-
national Workshop Frontiers in Handwriting Recognitjon
2002, pp. 227 — 232.

S. Marukatat, Une approche générique pour la reconnais-
sance de signaux écrits en ligne. A generic approach to on-
line handwriting recognition. Ph.D. thesis, Université Paris
6, 2004.

A. de Cheveigné and H. Kawahara, “Yin, a fundamental fre
quency estimator for speech and musi€tie Journal of the
Acoustical Society of Americaol. 111, no. 4, pp. 1917 —
1930, 2002.

B. C. J. Moore, B. R. Glasberg, and T. Baer, “A model for
the prediction of thresholds, loudness, and partial loadfie
Journal of the Audio Engineering Societpl. 45, no. 4, pp.
224 — 240, 1997.

Jeff A. Bilmes, “A gentle tutorial on the em algorithmahits
application to parameter estimation for Gaussian mixtace a
hidden Markov models,” Tech. Rep., U.C. Berkeley, 1997.

S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw,
X.A. Liu, G. Moore, J. Odell, D. Ollason, D. Povey,
V. Valtchev, and P. Woodlandihe HTK Book (for HTK Ver-
sion 3.4) Cambridge University Engineering Department,
2006.

J. Bloit and X. Rodet, “Short-time Viterbi for online hm
decoding : evaluation on a real-time phone recognitiontask
in ICASSPR Las Vegas, 2008.

(6] INA/GRM,

(7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

DAFX-5


http://www.sfz.se/flutetech

Proc. of the 1¥' Int. Conference on Digital Audio Effects (DAFx-09), Contaly, September 1-4, 2009

[22] G. Gravier, G. Potamianos, and C. Neti, “Asynchrony mod
eling for audio-visual speech recognition,” Human Lan-
guage Technology Conference (HLZD02.

[23] G. Peeters, “A large set of audio features for sound rifgsc
tion (similarity and classification) in the Cuidado project
Tech. Rep., IRCAM, 2004.

[24] D. Smalley, “Spectromorphology : Explaining sound-
shapes,”Organised Soundvol. 2, pp. 107-126, 1997.

[25] J. O. Ramsay and B. W. SilvermaRunctional Data Analy-
sis New York: Springer-Verlag, 1997.

[26] P. Leveau, E. Vincent, G. Richard, and L. Daudet,
“Instrument-specific harmonic atoms for mid-level music
representation,” |[EEE Transactions on Audio, Speech and
Language Processingol. 16, no. 1, pp. 116 — 128, 2008.

DAFX-6



	1  Introduction
	2  Segmental Models
	2.1  Model Description
	2.2  Trajectory Models
	2.3  Decoding

	3  Experiments
	3.1  Dataset
	3.2  Audio Features
	3.3  Evaluation Method

	4  Results
	4.1  Segmentation results
	4.2  Classification results

	5  Conclusion and Perspectives
	6  Acknowledgments
	7  References

