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ABSTRACT

This extended abstract summarizes DAFx-related developments at
CCRMA over the past year or so.

1. INTRODUCTION

DAFx-related research has been very active at CCRMA over the
past year and beyond. This extended abstract (for one of the keynote
talks) provides pointers to research threads in which the author par-
ticipated as adviser, collaborator, or both.1

2. SPRING REVERB SIMULATION

In previous work [5], a spring reverberator emulation was devel-
oped based on dispersive allpass filters in a waveguide structure.
This work has now been extended to include additional modes of
wave propagation, and a full paper is in review [6].

3. REAL-TIME DISCRETE-TIME CIRCUIT MODELS

This past June, David Yeh completed his electrical-engineering
Ph.D. dissertation entitled “Digital Implementation of Musical Dis-
tortion Circuits by Analysis and Simulation” [7]. The most com-
prehensive journal paper on this work to date has been submitted
[8], and much of the work has been presented at prior DAFx meet-
ings [9, 10, 11, 12]. The basic topic is real-time simulation of
analog circuits (both linear and nonlinear) in the digital domain.
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1CCRMA DAFx-related threads not summarized here include those
supervised by Consulting Professor Jonathan Abel and his collabora-
tors/advisees. Most of this work has been submitted to the upcoming New
York meeting of the Audio Engineering Society in San Francisco.

4. VIRTUAL ACOUSTIC GUITAR MODELS

At the time of this writing (July 2009), Nelson Lee’s computer-
science Ph.D. dissertation exists in draft form. Recent papers based
on this work include (in this proceedings) “Low-Order Allpass In-
terpolated Delay Loops” [13], “Pitch-Glide Analysis and Synthe-
sis from Recorded Tones” [14] (also in this proceedings), “Ex-
citation Extraction for Guitar Tones” [15], and “Measuring and
Understanding the Gypsy Guitar” [16]. In addition to working
on finishing his thesis, Nelson is working on a book chapter for
the upcoming Springer handbook on musical acoustics of stringed
musical instruments, edited by Tom Rossing.

5. HAPTIC FEEDBACK CONTROL FOR VIRTUAL
INSTRUMENTS

Edgar Berdahl’s electrical-engineering Ph.D. dissertation is also
nearing completion. Berdahl has been studying how to use feed-
back control to design tangible electronic musical instruments.

First, he has introduced several frameworks for changing the
acoustical properties of traditional, acoustic musical instruments.
The positive real framework provides insight into designing linear
feedback controllers [17], while a nonlinear framework enables the
design of feedback controllers that can induce especially unusual
dynamic behaviors [18].

Second, Berdahl has studied how to use haptic devices to me-
chanically couple a musician to a virtual musical instrument. Be-
sides introducing a general method for designing haptic musical
instruments using digital waveguide technology [19], Berdahl has
shown that feedback control can further be employed to advanta-
geously affect a musician’s gestures. The Haptic Drumstick demon-
strates that feedback control can enable a musician to make ges-
tures that would otherwise be difficult or impossible [20], and a
haptic Theremin-like instrument demonstrates that feedback con-
trol can aid a musician in playing more accurately [21].

Coincidentally, David, Nelson, and Ed were all EE undergrad-
uate students together at UC Berkeley. It is remarkable to see them
all graduating from Stanford at about the same time. The four of
us formed a rock band late in the evening on commencement day
and had a fitting musical celebration at Nelson’s parents’ house.

6. NEW DIGITAL OSCILLATOR ALGORITHMS

Juhan Nam is a Ph.D. candidate in the Computer Based Music
Theory and Acoustics program at CCRMA. Previously he worked
at Young Chang with Hal Chamberlin on Kurzweil synthesizer
products.
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During the past year, Prof. Vesa Välimäki from HUT spent
part of his sabbatical leave at CCRMA. A portion of this visit was
a highly productive series of collaborations with Juhan Nam and
others at CCRMA.

In one collaboration, Juhan et al. developed alias-free digital
oscillators based on a feedback delay loop [22] (in this proceed-
ings).

In another collaboration, Vesa’s 2005 paper on “Differenti-
ated Parabolic Waveform” (DPW) synthesis [23] was extended to
higher-order polynomial waveforms. The basic idea of DPW is to
generate sawtooth waveforms by first synthesizing (digitally) the
time integral of a sawtooth waveform (i.e., a parabolic wave), fol-
lowed by a first-order finite-difference (1 − z−1) which creates a
slightly filtered sawtooth in the digital domain. The net result is
less aliasing distortion in the audible band.2

Vesa, with one of his graduate students, had already worked
out the extension to the third-order case. At CCRMA, we extended
the idea to all orders by maximizing “flatness” at the “switch-back”
point in the sawtooth waveform [24]. As in the derivations of But-
terworth filters [25] and Lagrange interpolators [26], “maximum
flatness” of a function f(x) at some point x0 is defined as maxi-
mizing the number of initial zero terms in its series expansion after
the constant term. Thus, we desire the first N derivatives of f(x)
to be zero at x = x0, where N is the number of degrees of free-
dom we have. Some further details on this technique are presented
in the next section below.

An especially nice contribution from Juhan (in the author’s
opinion) was the extension of the DPW technique from sawtooth
to triangular waves, square waves, and their integrals/derivatives
(also described in [24]).

A related journal submission [27] describes other use of poly-
nomial interpolation (especially B-splines) to reduce aliasing. Au-
ditory masking curves were employed by determining the highest
fundamental frequency for which all aliased components remain
masked under the harmonic components.

6.1. Sawtooth Waveforms via Differentiated Polynomials

Let
f(x) = xn + an−1x

n−1 + ... + a1x + a0 (1)

denote the general nth-order monic polynomial. We may differen-
tiate f(x) successively n − 1 times to obtain the first-order poly-
nomial

f (n)(x) = n! x + (n− 1)! an−1.

This polynomial generates a sawtooth waveform as x periodically
traverses the interval −1 to 1. To obtain a zero-mean signal, we
need an−1 = 0. This leaves n − 1 remaining degrees of freedom
for maximizing flatness at the transition from x = 1 to x = −1
in f(x). Since a0 has no effect on this transition, we may set it to
zero, leaving n− 2 degrees of freedom.

To maximize wraparound smoothness, we compute an for n ∈
[1, n− 2] such that

f (k)(−1) = f (k)(1) (2)

for k = 0, 1, . . . , n− 1.

2Vesa’s original DPW algorithm has already been added to Faust’s osc-
illator algorithm library osc.lib as the line:
saw2(F)=saw1(F)<:*<:-(mem):*(0.25’*SR/F);

In general, every polynomial f(x) can be split into a sum of
its even and odd parts:3

f(x) = fe(x) + fo(x)

The even part consists of all even powers of x, while the odd part
contains all odd-order terms. The even part fe(x) satisfies our
smoothness constraint fe(−1) = fe(1) spontaneously. Since the
odd part obeys fo(−1) = −f(1), our constraint (2) for k = 0
demands fo(−1) = fo(1) = 0. In particular, f0(1) = 0 requires
that the sum of the odd-order polynomial coefficients must be zero.
The even-order coefficients are unconstrained for k = 0.

The derivative of an even polynomial is odd, and vice versa.
Therefore, setting k = 1 in our constraint (2), we obtain a con-
straint on the even part fe(x) (specifically, the coefficients of f ′e(x)
must sum to zero), but no constraint on the odd part fo(x) for
k = 1.

Suppose the order n of f(x) is odd. Then O(fo) > O(fe),
where O(f) denotes the order of the polynomial f . If f(x) satis-
fies the constraints (2) for k = 0, 1, . . . , n − 1, then it continues
to satisfy those constraints when its even part is replaced by zero.
Therefore, only odd polynomials need to be considered in the first
place. Similarly, if f is even, then O(fe) > O(fo), and fo may be
replaced by zero.

In summary, our polynomial f(x) may be assumed without
loss of generality to be an even polynomial (zero coefficients for
all odd-power terms) when its order is even; similarly, f(x) can
be assumed to be an odd polynomial when its order is odd. This
assumption also eliminates about half of the polynomial terms and
saves computation in practice.

Given a general even or odd starting polynomial f(x), ev-
ery other derivative has the sum-to-zero constraint. The totality
of these constraints yields an upper triangular matrix equation for
the desired polynomial coefficients, which can easily be “back-
solved” to produce the coefficients satisfying the constraints. This
procedure quickly yields the following results for orders up to
n = 6:

f2(x) = x2

f3(x) = x3 − x

f4(x) = x4 − 2x2

f5(x) = x5 − 10

3
x3 +

7

3

f6(x) = x6 − 5x4 + 7x2

Finally, to generate sawtooth waveforms with reduced aliasing,
these functions fn(x) on [−1, 1] may be passed through the it-
erated finite difference (1 − z−1)n−1/(2/P0)

n−1, where P0 =
fs/f0 denotes the pitch-period in samples. (Other scaling strate-
gies are discussed in [24].)

7. SPECTRAL DELAY FILTERS

A spectral delay filter is an audio effect consisting of a chain of
allpass filters followed by an equalizer. In a typical application,
its impulse response sounds like a “chirp” signal. The equalizer is
used to keep the output amplitude more uniform. Based on some

3Recall that a function f(x) is said to be even if it satisfies f(−x) =
f(x), and odd if f(−x) = −f(x), for all x. The even part of f(x)
is given by fe(x) = [f(x) + f(−x)]/2, and the odd part by fo(x) =
[f(x)− f(−x)]/2.
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prior work by Vesa and his students, spectral delay filters were
developed at CCRMA during Vesa’s sabbatical visit, resulting in
a paper to appear in the Journal of the Audio Engineering Society
[28].

In another collaboration, spectral delay filters were further de-
veloped with Vesa’s student Jussi Pekonen [29] (see elsewhere in
this proceedings).

8. AUDIO FFT FILTER BANKS

Last summer, while trying to finish my spectral modeling book [4],
I hit upon some apparently new methods for the design and imple-
mentation of nonuniform audio FFT filter banks [30] (elsewhere in
this proceedings). This work was motivated by wanting to extend
the Brown-Puckette FFT-based constant-Q transform [31] to an ef-
ficient implementation of audio filter banks such as those used for
“loudness spectrogram” computations [32].

9. FLASH AUDIO PLUGINS AND FAUST TO
ACTIONSCRIPT CONVERSION

Travis Skare is a Stanford EE graduate student who, for a project at
CCRMA last spring, wrote a Faust architecture file and associated
code which creates ActionScript Web-browser plugins from Faust
source code. Several of the standard Faust examples have been
successfully compiled, such as pitch-shifter, freeverb,
karplus, osc, and multibandfilter. Travis is seeking
permission from his employer to release the code in free, open-
source form.

Faust compiles to C++, and this can be translated to Action-
Script using Adobe Alchemy and Flex. The latest version of Flash
10 is required for runtime-generated sound support, and presently
this includes only stereo, 32-bit samples at 44.1 kHz. Microphone
input is not yet supported in Flash, but sound can be input to the
plugin from disk files. The minimum latency was found to be 46
ms (the smallest buffer size of 2048 at 44.1 kHz). The delay from
plugin GUI controls (sliders) to actual slider events was found to
be about half a second, so we might as well use the largest audio
buffer size in Flash (8192 samples), which alleviates load on the
rest of the system.

10. VIRTUAL ACOUSTIC MODELING OF
UNDERGROUND LABYRINTHS

Travis is also working on the configurable microphone array project
associated with the Chavin project at CCRMA [33, 34]. The Chavin
project is concerned with the measurement, archiving, and analy-
sis of the acoustics of underground “galleries” at the pre-Inca site
of Chavı́n de Huántar in Peru. These galleries predate Inca soci-
ety by over 2000 years. This acoustic modeling project is being
carried out in collaboration with Prof. John Rick (Anthropological
Sciences) [35].

11. SPECIAL ISSUE OF THE IEEE ASLP

Finally, a special issue on “Virtual Analog Audio Effects and Mu-
sical Instruments” is being organized for the IEEE Transactions
on Audio, Speech, and Language Processing by Vesa Välimäki,
Frederico Fontana, Udo Zölzer, and myself. We received a large

number of excellent submitted papers and hope to see the issue
appear in March of 2010.

12. CONCLUSIONS

As evidenced above, it has been an active year for DAFx-related
research at CCRMA. For further details, see the cited references
themselves, and note that many have supporting websites at CCRMA
and/or HUT under the lead author’s home page.
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